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ABSTRACT
Idiographic modeling is rapidly gaining popularity, promising to tap into the within-person
dynamics underlying psychological phenomena. To gain theoretical understanding of these
dynamics, we need to make inferences from time series models about the underlying sys-
tem. Such inferences are subject to two challenges: first, time series models will arguably
always be misspecified, meaning it is unclear how to make inferences to the underlying sys-
tem; and second, the sampling frequency must be sufficient to capture the dynamics of
interest. We discuss both problems with the following approach: we specify a toy model for
emotion dynamics as the true system, generate time series data from it, and then try to
recover that system with the most popular time series analysis tools. We show that making
straightforward inferences from time series models about an underlying system is difficult.
We also show that if the sampling frequency is insufficient, the dynamics of interest cannot
be recovered. However, we also show that global characteristics of the system can be recov-
ered reliably. We conclude by discussing the consequences of our findings for idiographic
modeling and suggest a modeling methodology that goes beyond fitting time series mod-
els alone and puts formal theories at the center of theory development.
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Introduction

Idiographic modeling is rapidly gaining popularity,
both in response to concerns about the validity of
inferences from cross-sectional data to within-person
processes (Fisher et al., 2018; Hamaker, 2012;
Molenaar, 2004), and due to the increased availability
of intensive longitudinal data (Miller, 2012). A central
promise of idiographic models is that they allow us to
tap into the system of within-person dynamics under-
lying psychological phenomena (e.g., Fisher et al.,
2018; Hamaker & Wichers, 2017; Wichers, 2014).
With this aim in mind, many studies have used statis-
tical time series models, such as the Vector
Autoregressive (VAR(1)) model, to investigate psycho-
logical and psychiatric phenomena (e.g., Bak et al.,
2016; Bringmann et al., 2013; Curtiss et al., 2019;
Fisher et al., 2017; Groen et al., 2019; Hasmi et al.,
2017; Klippel et al., 2017, Klippel et al., 2018; Kroeze
et al., 2017; Lee et al., 2017; Pe et al., 2015; Snippe
et al., 2017; van der Krieke et al., 2017; van Winkel
et al., 2017; Vrijen et al., 2018; Wigman et al., 2015).

However, the final goal of this type of research is
typically not to fit a statistical time series model.

Instead, it is to further our theoretical understanding
of the within-person dynamics underlying the phe-
nomenon at hand, which allows us to explain, predict
and control the dynamics (e.g., Haslbeck et al., in
press). This raises the question of how to make infer-
ences from time series models to an underlying sys-
tem of within-person dynamics. Such inferences are
subject to two fundamental challenges. First, the true
system will most likely be more complicated than the
time series model at hand, which means that the latter
is misspecified. Misspecification is a problem, because
it implies that it is generally unclear how to make
inferences from the parameters of time series models
to characteristics of the true system. Second, if we are
to make any inferences about within-person dynamics
the sampling frequency of measurements has to match
the time scale at which those dynamics operate. If it is
too low, the dynamics are not captured in the data
and consequently cannot be inferred from a time ser-
ies model. Of course, misspecification and insufficient
sampling frequency are problems that are pervasive in
all situations in which one’s aim is to identify an
underlying system from data. This generality makes it
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difficult to derive results that are true in all situations.
Instead, results likely depend on the particular class of
system and the particular class of time series model at
hand. While this makes it difficult to study these
inference problems, understanding them is essential to
successfully constructing theories of within-person
dynamics.

The goal of this paper is to illustrate these two fun-
damental problems to the growing community of
applied researchers that aims to study within-person
dynamics with intensive longitudinal data. To do so,
we adopt the following simulation approach: we
define a simple but non-trivial within-subjects model
as the true system, and then try to recover this system
with the methodology typically employed in the psy-
chological time series literature. The idea behind this
approach is that if we run into problems with this
simple system, then these problems are unlikely to go
away when studying more complicated systems. This
approach is similar to the one of Lazebnik (2002) who
studied whether the methods of biologists allow them
to fix a radio, and Jonas and Kording (2017) who
studied whether the methods of neuroscientists allow
them to understand a micro-processor. These papers
led to reevaluations of the methods used to recover
systems in these disciplines, and our hope is that our
paper can contribute to a similar discussion in the
idiographic modeling literature in psychology.

To study the problems of misspecification and low
sampling frequency in this paper, we use a toy model
for emotion dynamics, which can switch between two
emotional states (cf. van de Leemput et al., 2014). We
chose this system for two reasons: First, bistability is a
frequently theorized property of psychological phe-
nomena (e.g., Borsboom, 2017; Cramer et al., 2010,
2016; Kalisch et al., 2019; Nelson et al., 2017; van de
Leemput et al., 2014; Wichers et al., 2015, 2019); and
second, although it is relatively simple, it is complex
enough to render the most common time series mod-
els misspecified. We introduce this system in the next
section. Our general approach to investigate the prob-
lems of misspecification and insufficient sampling fre-
quency is to simulate time series data from our true
system and attempt to infer characteristics of the sys-
tem from statistical time series models.

We tease apart the problems caused by misspecifi-
cation and low sampling frequency by using a time
series with a very high sampling frequency, which
allows us to investigate the extent to which one can
make inferences from parameters of time series mod-
els (such as the VAR(1) model) to the characteristics
of an underlying system, if the time series models are
misspecified. Following this, we reduce the sampling

frequency to a level that is typical for studies using
the Experience Sampling Method (ESM) and discuss
the consequences this has for making inferences from
time series models about the true system. We find
that misspecifaction is a fundamental barrier for mak-
ing straightforward inferences from time series models
to the underlying system. We also show that if the
sampling frequency is too low, the underlying system
cannot be recovered in principle. However, we also
show that some aspects of the global behavior of the
system can be recovered despite misspecification and
insufficient sampling frequency. Finally, we discuss
the consequences of our findings for idiographic mod-
eling and suggest to adopt a more general modeling
methodology that puts formal theories at the center of
theory development.

A bistable dynamical system for
emotion dynamics

We begin by introducing the dynamical systems
model which we will use as the true system through-
out the paper. We will describe the dynamics of this
system, how we can generate data from it, and finally
the characteristics of this system which we would
hope to infer from statistical time series models.

Model specification

The system we will study in this paper is a bistable
toy model of emotion dynamics. We chose a bistable
system because this class of system has received con-
siderable attention in the psychological literature (e.g.,
Borsboom, 2017; Cramer et al., 2016; Kalisch et al.,
2019; Nelson et al., 2017; van de Leemput et al., 2014;
Wichers et al., 2015, 2019). Bistable systems have two
stable states, which can be interpreted as different psy-
chological states such as “healthy” or “unhealthy”
(e.g., depressed). These types of systems are often for-
malized within the framework of differential equations
(e.g., Hirsch et al., 2012; Strogatz, 2015), a formaliza-
tion we will adopt in the current paper. Differential
equations describe dynamics in terms of the derivative
dxi
dt , that is, the rate-of-change of each variable xi with
respect to time. For an introduction to the interpret-
ation of differential equation models in a psycho-
logical setting, see for example Boker (2002), Boker
et al. (2010) or Ryan et al. (2018). To produce bistable
behavior these differential equation models must con-
tain non-linear terms, for example in the form of
(product) interaction effects between variables
(Strogatz, 2015).
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Specifically, we choose a four-variable generaliza-
tion of the classic Lotka-Volterra model for competing
species (e.g., Freedman, 1980), which has been used
previously as the basis for a toy model for emotion
dynamics by van de Leemput et al. (2014). The varia-
bles in the system represent two emotions with posi-
tive valence (Cheerful (x1) and Content (x2)) and two
emotions with negative valence (Anxious (x3) and Sad
(x4)) with a value of zero interpreted as the absence of
that emotion. The dynamics of the system are defined
by the stochastic differential equations shown in the
left panel of Figure 1.

This equation defines for each emotion variable
how it changes (dxi) over a infinitesimal time step
(dt). In other words, the differential equations specify
the local or micro-dynamics of the system. The
parameters defining the rate-of-change dxi

dt can be
interpreted similarly to a standard regression model.
The constant term 1.6 ensures that the emotion varia-
bles (with high probability) take on only positive val-
ues. The second term defines the linear main effect of
an emotion xi on its own rate-of-change, with a
regression parameter of 1. The matrix C represents
the dependencies between emotions in the form of
interaction effects. Emotions of the same valence
reinforce each other, with for example C12 ¼ 0:04
indicating that the rate-of-change of x1 (Cheerful)
depends on the product of x1 and x2 (Content)
weighted by 0.04. Emotions of different valence sup-
press each other, with C13 ¼ �0:2 indicating that the
rate-of-change of x1 depends on the product of x1 and
x3 (Anxious) weighted by �0.2. The diagonal elements
are quadratic effects, indicating that the rate-of-change

of xi depends on x2i weighted by �0.2. Finally, the
term r dWi

dt represents the stochastic part of the model
in the form of a so-called Wiener process. This is
essentially a differential-equation version of a standard
Gaussian perturbation term with independent incre-
ments, representing the short-term fluctuations in
emotions caused by the environment the system inter-
acts with. The size of the stochastic input to the sys-
tem is determined by the time-interval between
realizations of the process Dt and r. For example, if
we were to generate data from this model with a step
size of Dt ¼ 1, we would have Gaussian noise
with Nð0, r2Þ:

Why did we choose this specific model to illustrate
the problems of misspecification and insufficient sam-
pling frequency? First, it is misspecified with respect
to the time series models used by most substantive
researchers, yet it is similar in form to those models.
For instance, similar to the popular VAR(1) model, it
specifies dynamic relationships in terms of time-
lagged relationships, though here in differential-equa-
tion form, akin to the continuous-time version of the
VAR(1) model (cf. Ryan & Hamaker, in press;
Voelkle & Oud, 2013). However, it is also misspecified
with respect to the VAR(1) model as it contains add-
itional interaction terms. We hope that the familiarity
of many readers with the VAR(1) model will help
them to understand this true system, and the similar-
ity of the true model to the VAR(1) model allows us
keep discussion of the effects of misspecification con-
cise. Second, our true model exhibits bistability, which
is a property that is interesting theoretically to many
psychological researchers.

Figure 1. Left panel: Model equations and parameters of the bistable emotion system. Right panel: the vector field defined by the
parameters in the left panel. Solid points indicate stable fixed points and the empty point indicates an unstable fixed point. The
solid lines indicate the values at which derivative of positive emotion (orange) and negative emotion (light blue) is equal to zero.
At the points at which the two lines meet, both derivatives are equal to zero and the system remains in this (stable) state. The
green dashed lines illustrate three trajectories that the system can take through the vector field.
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To get an idea about the qualitative dynamics of
the system we first focus on the deterministic part of
the differential question, that is, the equation in
Figure 1 without the stochastic term r dWi

dt : Since the
matrix C is symmetric, we are able to collapse the sys-
tem into a 2-dimensional system consisting of only
positive emotions (PE) and negative (NE) emotions.
This allows us to study the qualitative dynamics of the
system using a 2-dimensional vector field, in which
arrows indicate how the system is expected to change
given any combination of positive and negative emo-
tion values at a particular point in time (see right
panel of Figure 1). Perfectly horizontal arrows in the
vector field indicate where we would expect no change
in the negative emotion dimension at the next time
point dNE=dt ¼ 0, indicated by the blue solution line,
while perfectly vertical arrows indicate no change in
the positive emotion dimension dPE=dt ¼ 0, desig-
nated by the orange solution line. The locations at
which these lines cross indicate fixed points (also
known as resting states or equilibrium positions) of the
system. At these locations, both derivatives are equal
to zero, which means that the values of the variables
in the system will not change anymore once they have
reached this location.

From Figure 1 we can see that the system exhibits
three fixed points: Two are stable, located at
(PE¼ 1.36, NE¼ 4.89) and (PE¼ 4.89, NE¼ 1.36),
which could be characterized as unhealthy (low posi-
tive, high negative emotion) and healthy (high posi-
tive, low negative emotion) stable states of the system.
If the system takes on any value above the diagonal
(NE > PE) it will eventually return to the unhealthy
fixed point, and if it takes on any value below the
diagonal (NE < PE) it will return to the healthy fixed
point. The third fixed point, (PE¼ 2.80, NE¼ 2.80)
represents an unstable fixed point: If the system starts
exactly on the diagonal of the vector field (PE ¼ NE)
it will return to this fixed point, but any deviation will
cause the trajectory to veer off toward one of the sta-
ble fixed points. The behavior of the system can be
read off the vector field by starting at a given point
and following its arrows. The three green lines in
Figure 1 show the trajectory of the system for three
different starting points.

We have seen that in the deterministic system, no
matter what value the emotion variables take on ini-
tially, the system eventually moves to one of the fixed
points and stays there indefinitely. However, this is
not a realistic model, since the emotions of a person
are continuously changing over time. Rather than
staying at a particular fixed point, they are likely to

move around the two fixed points. To allow our
model to show such behavior, we add the stochastic
noise term r dWi

dt to the model. This stochastic version
of the bistable system will generally fluctuate around
either the healthy or unhealthy fixed point, but occa-
sionally the noise term will be large enough to “push”
the system from one stable fixed point to another,
that is, the noise will cause the system to switch from
the healthy to unhealthy state or vice versa. The fre-
quency with which this switching occurs is a function
of the distance between the two fixed points, the
shape of the vector field in the area between the two
fixed points, and the variance of the Gaussian noise
process, as determined by the r parameter. If the
noise variance is low, the probability of a noise draw
that is large enough to “push” the system to the other
fixed point is small, and consequently the frequency
of switching is low. In contrast, if the variance is high,
the probability of a large enough noise draw to switch
to the other fixed point is high, and consequently the
switching frequency is high. Here we choose r ¼ 4:5
to give a relatively high number of switches in the
time series data we generate from this model. We
describe this data generation in the following section,
which will also allow us to visualize the behavior of
the full stochastic system.

Generating time series

We now show how to generate time series data from
the model specified above, allowing us to illustrate
the behavior of the system of differential equations
including noise. We generated data by computing
the numerical solution to the model described in the
left-hand panel of Figure 1 on the interval ½0, 20160�:
We interpret a unit of time t¼ 1 as one minute, and
therefore the time series spans two weeks
(60� 24� 14 ¼ 20160). To generate the data we use
Euler’s method (e.g., Atkinson, 2008), with a step
size of Dt ¼ 0:01: We chose this step size to limit
computational cost and disk space, however the sys-
tem shows qualitatively the same behavior for
smaller step sizes. We obtain a time series dataset by
sub-sampling the numerical solution obtained via
Euler’s method 10 times per minute (that is, every
six seconds). We therefore obtain a time series data-
set with 20160� 10¼ 201600 measurements, which
is shown in Figure 2. The code to generate data and
reproduce all results and figures shown in this
paper can be found at https://github.com/jmbh/
RecoveringWithinPersonDynamics.
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This time series can be seen as an “ideal” time ser-
ies since it has been measured with an extremely high
sampling frequency of every six seconds, a continuous
response scale, no measurement error or missing val-
ues, and frequent switches. The length of the time ser-
ies implies that sampling variation plays essentially no
role when estimating models based on this time series
dataset. From Figure 2, we can see that the configur-
ation of the toy model we have chosen ensures that
we obtain a time series which appears to switch
approximately 17 times between the two stable fixed
points in the two week interval. This represents again
an idealistic scenario, as observing this many switches
between states gives us the best possible chance to
correctly characterize the full system. We use the
“ideal” time series data in the next section to study to
what extent one can make inferences from misspeci-
fied statistical time series models to the characteristics
of the true model if the sampling frequency is high
enough. A time series with a much lower sampling
frequency will be used to study the problem of insuffi-
cient sampling frequency in a later section.

Qualitative characteristics of the true system

In the main text we defined the true system with a set
of four differential equations. These equations define
the rate-of-change of each variable xi given the state
of all variables (including xi itself) and therefore rep-
resent the local or micro-dynamics of the system. In
the remainder of this paper we aim to use statistical
time series models to make inferences about the true
system. These statistical time series models are

misspecified and we therefore already know that it is
impossible to recover the exact local dynamics of the
true system. However, it is conceivable that one can
make inferences about qualitative characteristics of the
true system that are less specific than the exact local
dynamics. To be able to evaluate to which extent this
is indeed possible, we define a number of general
characteristics that describe the true system. We div-
ide those general characteristics in local and global
characteristics:

Local Characteristics

1. Suppressing effects between valences, reinforcing
effects within valences

2. Relative size of suppressing/reinforcing effects
3. All parameters are independent of time and inde-

pendent of variables outside the model

Global Characteristics

1. Bistability (two stable fixed points)
2. Position of stable fixed points
3. Variability around fixed points
4. Frequency of transitions

The local characteristics describe qualitative proper-
ties of the local dynamics: The first characteristic is
that emotions of the same valence reinforce each
other, while emotions of different valence suppress
each other. The second characteristic is the fact that
the size (absolute value) of the reinforcing effects
(0.04) are smaller than the suppressing effects (–0.20).
The third characteristic is that all parameters in the
system of differential equations are independent of

Figure 2. Panel (a) shows the “ideal” time series of the four emotion variables Cheerful, Content, Anxious and Sad. We see that
the system switches 17 times between healthy and unhealthy state. Panel (b) displays the twelfth switch, which is a transition
from the unhealthy to the healthy state, which occurs on day 9.
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time and independent of variables outside the model.
That is, the parameters of the model given in Figure 1
remain fixed over the window of observation.

We describe the remaining four characteristics as
global in the sense that they do not refer to a specific
property of the local dynamics, but to the overall
qualitative behavior of the system (which are, of
course, produced by the local dynamics). The first glo-
bal characteristic is bistability, which means that the
data generating mechanism exhibits two stable fixed
points. The second global characteristic is the position
of the stable fixed points, which are at (PE ¼ 4:89,
NE ¼ 1:36) for the healthy fixed point, and (PE ¼
1:36, NE ¼ 4:89) for the unhealthy fixed point. Third,
we consider the variability around the different fixed
points. Figure 2 shows that, for both fixed points, the
variability of the emotions with lower values is smaller
than the variability of the emotions with larger values.
The final characteristic is the frequency of transitions
between the area around the healthy fixed point and
the area around the unhealthy fixed point. In the time
series shown in Figure 2 we see that the system
switches around 17 times in a two week period.

The problem of misspecification

We study the problem of misspecification by trying to
recover the characteristics of the true system with the
most popular and some more advanced analysis strat-
egies for time series used in psychological research. We
begin by using simple descriptive statistics and data visu-
alizations, before analyzing the data with the well-known
Hidden Markov Model (HMM) and Vector Auto-regres-
sive (VAR(1)) model, and finally a less commonly used
regime-switching extension of the VAR(1) model known
as the Threshold VAR(1) (TVAR(1)) model. We chose
the VAR(1) model, because it has become an extremely
popular model for intensive longitudinal data (see
Appendix E). HMMs are also a popular class of time
series models in psychological research (Asparouhov
et al., 2017; de Haan-Rietdijk et al., 2017; Neale et al.,
2016; Visser, 2011) and the TVAR(1) model is an inter-
esting extension of the VAR(1) model (De Haan-Rietdijk
et al., 2016; Hamaker et al., 2009, 2010, 2016), which
allows us to discuss how theoretical input can mitigate
the problem of misspecification. Each of these models is
misspecified, which means that the true system is not a
special case of the model at hand. For each model, we
examine whether it is possible to recover the local and
global characteristics of the dynamical system. To study
the problem of misspecification independently of the
problem of insufficient sampling frequency, we use the

high sampling frequency time series described in the pre-
vious section. This means that we have essentially the
best data one could hope for to recover within-person
dynamics, and therefore any problems with recovery
have to be due to misspecification.

Descriptive statistics and data visualization

We begin by analyzing the data with simple descrip-
tive statistics and data visualizations. As a first step
we inspect the histograms of each variable which are
shown in the top panel of Figure 3. We see that each
of the variables is bimodal, appearing roughly like a
mixture of two normally distributed variables. These
distributions are roughly centered around the values
1.6 and 4.8, and the variance of the higher-valued dis-
tribution seems to be slightly larger. This kind of ana-
lysis can be made more sophisticated in many ways.
For example, separating the overall density into two
distributions would allow us to calculate means and
variances, as well as calculating how frequently obser-
vations appear in each of the two distributions. We
will formalize these ideas with a statistical model in
the following subsection, but for now we study the
underlying system with additional visualizations.

Going beyond the univariate distributions, we
inspect the bivariate relationships between emotion
variables at the same time point. Panel (e) shows the
relationship between Cheerful and Content, two emo-
tions with the same (positive) valence. We see that
most density is concentrated at values in which both
emotions are either high, or low. This means that the
system is mostly in a state in which Cheerful and
Content are both high, or both low. Some observa-
tions are also in-between the two states, which sug-
gests that the system is occasionally switching between
those two states. Panel (f) shows the relationship
between Cheerful and Anxious, two emotions with
different valence. We see that the system is mostly in
a state in which Cheerful is high and Anxious is low,
or the other way around. These two clusters clearly
indicate that the system is bistable, and enable us to
get a rough indication of the locations and variance
around both fixed points. If we plot the data as a
function of time as in Figure 2 we can additionally
gauge how frequently the system switches between the
states at which the system stays most of the time.

Taking all results together, which characteristics of
the true system did we recover? We clearly recovered
the fact that the system is bistable and we got a rough
idea about the location and variance of the distribu-
tions at the two fixed points. By inspecting Figure 2
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we were also able to gauge the frequency of switches.
To provide a more quantitative picture of the fixed
points and the variance around them, in the following
subsection we fit a Hidden Markov Model (HMM).

Mean Switching Hidden Markov Model

In the previous subsection we eyeballed the location
and variance of distributions around fixed points,
their relative frequency, and how often the system
appeared to switch from one distribution to the other.
We now obtain numerical estimates of these quanti-
ties by employing a more rigorous approach.
Specifically, we will fit a Hidden Markov Model
(HMM). In an HMM observations are drawn from a
mixture of distributions, where at each time step there
is some probability of switching from one distribution
component to another, encoded by a transition
matrix. To fit the HMM, we must specify a particular
type of distribution, and the number of components
we believe to make up the mixture.

Here we chose a Gaussian distribution with
diagonal covariance matrix and K¼ 2 components.

For more details on this type of model see Zucchini
et al. (2017). We fit the model using the R-package
depmixS4 (Visser & Speekenbrink, 2010) and obtained
the following estimates for the means and standard
deviations for the two components k1 and k2 and the
transition matrix M̂ :

l̂ð1Þ ¼
1:47
1:46
4:71
4:71

0
BB@

1
CCA, r̂ð1Þ ¼

0:41
0:40
0:63
0:62

0
BB@

1
CCA,

l̂ð2Þ ¼
4:75
4:76
1:45
1:45

0
BB@

1
CCA, r̂ð2Þ ¼

0:63
0:62
0:40
0:40

0
BB@

1
CCA,

M̂ ¼ k1
k2

k1 k2
0:9996 0:0004
0:0004 0:9996

� �
:

The entries in the parameter vectors refer to the
four variables Cheerful, Content, Anxious and Sad.
When inspecting the means l̂ð1Þ, l̂ð2Þ of the two com-
ponents, we see that the HMM picked up two states:

Figure 3. Top panel: The histograms of the four emotion variables Cheerful, Content, Anxious and Sad. Lower panel: The bivariate
relationships between Content and Cheerful, and between Anxious and Cheerful. All other bivariate relationships are similar to the
ones in panel (e) and (f), due to the symmetry in the true system.
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one in which the positive emotions are low and nega-
tive emotions are high (State 1); and one in which the
reverse is true (State 2). The HMM also picked up
that the variance is lower for variables that are in a
state in which their values are lower. The HMM iden-
tified the same qualitative features as eyeballing the
visualizations in the previous section. However, it pro-
vides a more principled way to estimate the means
and variances of the components. Indeed, the mean
estimates of the two components are very close to the
true fixed points of the system.

In addition, the HMM predicts for each data
point to which state (or components) it belongs and
also provides a transition matrix between states M̂:

Figure 4 displays the full time series together with
the predicted state for each time point (gray/white
shading). When inspecting the predicted compo-
nents visually, it seems that the HMM captured the
switches well. Next to the larger blocks in which the
system stays in the same state, it also identifies
switches in which the system switches back and
forth within only a few time points. These switches
might have been missed when merely eye-balling
the time series. Since the system mostly stays in the
same state and switches only occasionally, the prob-
abilities on the diagonal of the transition matrix M̂
are much larger than on the off-diagonal elements.

Taking all results together, which characteristics of
the true system did we recover? Qualitatively, we
reached the same conclusions as with the visualiza-
tions in the previous sections. However, by going
beyond mere eyeballing and fitting a HMM, we
obtained estimates of the location and variance of the
distributions around fixed points, we obtained a

transition matrix, and we were able to predict for
each time point to which component it belongs. This
means that we successfully captured the global charac-
teristics, however we did not capture any local charac-
teristics. We turn to those next.

Lag-1 relationships & VAR(1) model

We now turn to the local dynamics describing the
temporal relations between the four emotion variables
at a very small time scale. We begin by visualizing the
temporal relationships between pairs of variables over
two subsequent time steps, which are in the present
dataset six seconds apart. These relationships are also
modeled by the VAR(1) model, with the only differ-
ence that in the VAR(1) model these relationships are
conditional on all other variables at the previous time
point. Figure 5 displays this temporal relationship
between Cheerfult�1 and Contentt in panel (a), and
the relationship between Contentt�1 and Anxioust in
panel (b). We first consider the lagged relationship
between Cheerfult�1 and Contentt in panel (a). We
see that most of the density is where both variables
have either high or low values. Note that the densities
look quite similar to the ones of the lag-0 relation-
ships shown in the lower panels of Figure 3. This is
because the sampling frequency is extremely high and
therefore observations do not change much over one
time step. Fitting a linear regression model we find a
strong positive relationship between these two lagged
variables q ¼ 0:98 (red line).

What can we conclude from this strong positive
lagged relationship? It might be tempting to conclude
that Cheerful has a positive linear effect on the rate-

Figure 4. Time series of the four emotion variables, also shown in panel (a) of Figure 2, with background color indicating whether
a given time point is assigned to state 1 or state 2 of the mean-switching HMM.
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of-change of Content. However, this would be incor-
rect, because the relationships in the true system
include product interaction terms. Instead, this par-
ameter represents the best linear approximation to the
lagged relationship, so perhaps we can at least use it
to infer a more coarse local characteristic such as
whether the relationship between the two variables is
suppressing or reinforcing. For this bivariate relation-
ship, it turns out that we would correctly infer the
local characteristic of the true system that emotions of
the same valence have a reinforcing effect on each
other. The same argument applies to the relationship
between Contentt�1 and Anxioust , except that the
best linear approximation is negative, and that we
would correctly conclude that emotions with different
valences suppress each other. However, the problem
with this type of inference is that we do not know
when it turns out to be correct. We illustrate this

problem with the popular lag-1 Vector Autoregressive
(VAR(1)) model.

The VAR(1) model predicts each variable Xi at
time t by a linear combination of all variables (includ-
ing Xi) at the previous time point, written in vector
form as

Xt ¼ aþUXt21 þ et , (1)

where a is a vector of intercepts, U is a matrix con-
taining the auto-regressive (/ii) and cross-lagged
(/ij, i 6¼ j) effects, and et is a vector of normally dis-
tributed residuals et � Nð0,WÞ, which are independ-
ent across time, with residual variance-covariance
matrix W:

Panel (c) of Figure 5 displays the estimated param-
eters in the U-matrix, and the estimated intercepts are
a ¼ f0:27, 0:28, 0:26, 0:26g: We see that there are
strong auto-regressive effects which could be taken as

Figure 5. Panel (a) shows the relationship between Content and Cheerful, two emotions with the same valence, spaced one time
point apart (at a lag of one). The red line indicates the best fitting regression model. Similarly, panel (b) shows the relationship
between Anxious and Content, two emotions with different valence, at a lag of one. Panel (c) displays the matrix of lagged regres-
sion parameters, estimated from a VAR(1) model, as a network, and panel (d) displays the partial correlation matrix of the residuals
of the VAR(1) model as a network. This latter network is often referred to as the contemporaneous network.
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evidence that each variable has a strong effect on its
own rate-of-change, which is indeed the case in the
true model. In addition, we see again that there are
positive linear lagged effects between emotions with
the same valence, and negative lagged effects between
emotions with a different valence. We also see that
the effects within valence are about twice as large as
the effects between valence, which could lead us to
conclude that the reinforcing effects in the true model
are stronger than the suppressing effects. However, we
know that this is incorrect. Indeed, in the true model
the reverse is true. This illustrates the fact that there
is no guarantee that naive inferences from the param-
eter estimates in misspecified time series models to
characteristics of the true model need to be correct.
The source of misspecification in this case is the pres-
ence of non-linear relationships in the true system,
relationships which the VAR(1) model approximates
with linear effects. This becomes clear when compar-
ing the VAR(1) model in equation (1) with the true
bistable system defined on the left-hand side of Figure
1: while the VAR(1) model does contain a constant
term, linear self-dependency and Gaussian perturb-
ation variance term, it fails to incorporate the non-lin-
ear product term Cijxjxi: Note that, although there are
well known complications to making inferences from
(discrete-time) VAR(1) parameters to differential
equation models (Kuiper & Ryan, 2018; Ryan &
Hamaker, in press; Voelkle et al., 2018), fitting the
continuous-time equivalent to the VAR(1) model will
not overcome the issue of model misspecification in
this case (for details see Appendix B).

Panel (d) of Figure 5 shows the partial correlations
between the residuals of the model. In practice,
dependencies between residuals may be brought about
due to multiple factors, such as the presence of unob-
served common cause variables, dependencies between
processes operating at a different time-scale, differences
in time-intervals between observed measurement occa-
sions, or misspecification of the functional form of the
lagged dependencies. In this case, we know that mis-
specification of the functional form is the source of
these residual dependencies, since the other issues we
have listed here are absent from the true system and
data generation scheme. Although the residual partial
correlations succeed in flagging model misspecification,
it is difficult to interpret the exact values of the partial
correlations in this setting. In practice, applying a rea-
sonable interpretation of residual structures will likely
require assumptions about the absence of one or more
potential sources: For example, if we are willing to
accept that the data-generating mechanism is linear

and first-order, and observations are equally spaced,
residual partial correlations may flag the presence of
unobserved common cause variables.

An additional consequence of the fact that the
VAR(1) model only includes linear effects, but
the true system includes non-linear effects, is that the
VAR(1) model cannot generate data that has the same
global characteristics of the data generated by the true
system. The reason is that the VAR(1) model exhibits
only a single fixed point which is equal to its mean
vector l ¼ ðI �UÞ�1

a, where I is the identity matrix
(Hamilton, 1994). Thus, the histograms of data gener-
ated from a VAR(1) model will show a uni-modal dis-
tribution, which means that none of the four global
characteristics can be reproduced. We illustrate this in
Figure 14 in Appendix C.1 by generating two weeks
of data from the VAR(1) model estimated in this sec-
tion. Checking the characteristics of the empirical data
against the characteristics of the model-generated data
is a valuable tool for model evaluation. This is espe-
cially the case for high-frequency data, because varia-
bles do not change much from one time point to the
next. In such a situation, a VAR(1) model can fit
the data very well even though it recovers none of the
characteristics of the true system.

Careful researchers may detect that the VAR(1)
model is misspecified in this type of situation, for
instance by comparing empirical and model-generated
data as we have here, or more generally by using diag-
nostic tools (such as correlation and partial correlation
plots) to check whether the assumptions of the
VAR(1) model are met. This type of model explor-
ation is crucial: At a minimum, it would indicate in
this case that the VAR(1) model parameters should be
interpreted with caution, thus mitigating the possibil-
ity of drawing incorrect conclusions about the true
system. Ideally, such model exploration would lead
the researcher to choose a model which is less misspe-
cified, that is, “closer” to the true system. However,
we would caution that there is likely no guarantee
that such a procedure will succeed. In Appendix D we
show that standard application of time series diagnos-
tics can easily lead one to, for instance, mistakenly
remove a (seasonal) trend from the data, obtaining a
VAR(1) model whose assumptions appear to be met
in this transformed dataset. Although the resulting
model appears to fit well to the data, it still does not
help us to correctly characterize the true system.
Thus, diagnostics and assumption checks should not
be used primarily to motivate data transformation
that ensure that the assumptions of the misspecified
model are met, but rather to choose models that allow
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us to characterize the key features of the system under
investigation.

To summarize, the true system is not a special case
of the VAR(1) model, and therefore the VAR(1)
model is misspecified. In the present case the main
source of misspecification is the fact that the true sys-
tem includes non-linear effects, while the VAR(1)
model does not. This misspecification has the effect
that we cannot make reliable inferences from parame-
ters of statistical models to the local characteristics of
the true system.

Threshold VAR(1)

In the previous section we showed that the VAR(1)
model did not allow us to recover most key character-
istics of the dynamical system. The main barrier to
using the VAR(1) model was that the true dynamics
in our system are non-linear. That is, the effect of “Xj

now on Xi later” depends on the current value of Xi.
This means that a) it is difficult to infer local charac-
teristics such as which relationships are stronger or
weaker than others, and b) the VAR(1) model in prin-
ciple cannot reproduce the global characteristics
related to multiple stable states. Here, we go beyond
the VAR(1) model by considering regime-switching
VAR(1) models, which allow observations to be drawn
from two or more distinct states with different sets of
parameters (Tong & Lim, 1980), potentially allowing
us to overcome these limitations.

Regime-switching VAR(1) models differ from one
another in how they specify the mechanism that
allows the system to switch from one state to another.
For example, the Markov-Switching VAR(1) combines
the HMM and VAR(1) models, modeling state-switch-
ing behavior as governed by a latent Markov process.
For the dynamical system we study in the current
paper, the threshold VAR(1) (TVAR(1)) model would
most closely approximate the behavior of our true sys-
tem. The TVAR(1) describes a system which switches
between states depending on the value of a threshold-
ing variable zt:

Xt ¼ að1Þ þUð1ÞXt21 þ eð1Þt if zt £ s

Xt ¼ að2Þ þUð2ÞXt21 þ eð2Þt if zt>s

where s is known as the threshold value, a parameter
which must be estimated, and aðiÞ,UðiÞ are the intercept
vector and the matrix of lagged regression coefficients
in state i respectively. Notably, the thresholding variable
zt must be specified a-priori, either as a time-varying
covariate, or as one of the X variables in the model
itself, and, similar to the HMM, the number of states
expected must be specified a-priori or determined

through model selection. Here we choose to fit a
TVAR(1) model with a single threshold value, that is,
two states, and use Cheerful (X1, t�1) as the threshold-
ing variable. We estimate the TVAR(1) model using
the R-package tsDyn (Fabio Di Narzo et al., 2009).

Figure 6 displays the main results from the esti-
mated TVAR(1) model, in which the threshold is esti-
mated as ŝ ¼ 2:811: Panel (a) shows the time series
and the shading indicates which observations of
Cheerful are below (gray) or above (white) the thresh-
old. We see that the estimated threshold does well in
separating the time series into periods in which the
system is in an unhealthy state (based on Cheerful
values below the threshold) and a healthy state
(Cheerful values above the threshold). Inspecting the
lagged networks for each regime in panels (b) and (c)
of Figure 6 we see that the auto-regressive effects and
the within-valence cross-lagged effects are quite simi-
lar across both regimes. However, this is not the case
for the cross-lagged effects between variables of
opposite valence. In the healthy regime, negative
valence emotions have much stronger cross-lagged

effects on positive emotions (/̂ð2Þ
13 ¼ /̂ð2Þ

14 ¼ /̂ð2Þ
23 ¼

/̂ð2Þ
24 ¼ �0:08), and vice versa for the unhealthy regime

(/̂ð1Þ
31 ¼ /̂ð1Þ

41 ¼ /̂ð1Þ
32 ¼ /̂ð1Þ

42 ¼ �0:08). Applying the
standard way of calculating model-implied means for
the VAR(1) models above and below the threshold
separately, we obtain l̂2 ¼ f4:74, 4:75, 1:45, 1:46g for
the healthy state and l̂1 ¼ f1:49, 1:48, 4:69, 4:69g for
the unhealthy state.

There are two striking aspects of the TVAR(1)
model results. The first is that the TVAR(1) threshold
value picks up on many of the global dynamics pre-
sent in the system: The threshold correctly separates
the time series based on whether the system is close
to the healthy or unhealthy fixed point, and captures
the approximate position of those two fixed points. In
part, this is due to the specific parameterization of
our bistable dynamical system. Due to the symmetries
in the true system, the value of Cheerful happens to
be a very good indicator of the multivariate position
of the system: If Cheerful is high (i.e. above the
unstable fixed point) Content is high and Anxious
and Sad are low (below the unstable fixed point) and
vice versa. Thus, although the switching behavior in
the true system is dependent on the position of the
system in multivariate space, in the simple system
used in this paper a univariate threshold is sufficient
to capture this to a high degree of accuracy.

Second, the TVAR(1) recovers two separate asymmet-
ric matrices of lagged parameters. These asymmetries
are present because the TVAR(1) model is
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approximating the continuous non-linear relationships
in the true system with a step-function along the vari-
able Cheerful. That is, we fail to capture that each
lagged relationship is an interaction effect, dependent
on the value of the variables involved. However, since
thresholding on Cheerful succeeds in separating the
two states in our system, the TVAR(1) lagged parame-
ters correctly pick up that the strength of each rela-
tionship differs depending on whether the system is
near the healthy or unhealthy fixed point. We saw
that this was indeed the case in the left hand-panel of
Figure 5b, where the marginal relationship between
Cheerfult�1 and Anxioust is clearly more strongly
negative near the unhealthy fixed (top left quadrant)
point and less strongly negative near the healthy fixed
point (bottom right quadrant). Reflecting this, in
Figure 6 we see that in the unhealthy regime Cheerful
has a stronger negative lagged effect on Anxious
/ð2Þ
14 ¼ �0:08 than in the Healthy regime /ð1Þ

14 ¼

�0:03: In Appendix C.2 we show that these asymmet-
ric lagged parameter matrices (in combination with
the state-dependent residual covariance matrices) also
succeed in reproducing the global characteristic that
the variability of the emotion variables differ in
each regime.

In summary, the TVAR(1) model reproduces two
regimes or states which are determined by a univari-
ate threshold. The lagged parameters in each regime
are asymmetric, showing that the strength of the
lagged relationships between variables of opposite
valence (e.g. Cheerfult�1 and Anxioust) is dependent
on which state the system is in. With knowledge of
the true system we could explain that the univariate
threshold is capable of approximating the position of
the unstable fixed point in multivariate space, and
that the asymmetric lagged parameters are produced
by the continuous non-linear relationships present in
the system. However, without theoretical knowledge

Figure 6. Panel (a) shows the two weeks of the time series, with observations shaded in either gray or white as a function of
whether Cheerfult�1 is above or below the threshold ŝ ¼ 2:811: Panels (b) and (c) show the estimated VAR(1) parameters as
lagged networks in the healthy (white) and unhealthy (gray) regimes respectively.
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about the true system, one might incorrectly conclude
that, for instance, the true parameters of the system
change over time, or that they are dependent only on
the Cheerful variable. This shows that the use of a
misspecified time series model to make direct infer-
ences about the system is highly challenging even
under ideal conditions: Although the global dynamics
of the system were recovered in this case, any infer-
ences about local dynamics were heavily dependent
on theoretical insight about the system at hand.

With those caveats in mind, these results can be
interpreted with cautious optimism. The more com-
plex the model we were able to fit, and the more the-
oretical knowledge we had with which to guide model
choice, the more characteristics of this system we
were able to recover. However, there is no guarantee
that for other dynamic systems, or even variants of
the present dynamic system with different parameter
values, that the TVAR(1) model would succeed in
allowing any such accurate inferences. Rather, our
analysis suggests that strong theoretical ideas about
the underlying system are necessary to be able to
make even the most basic inferences from common
time series models.

The problem of insufficient
sampling frequency

We now turn to the problem of sampling the system
with a sampling frequency that is insufficient for it to
be recovered. To study the effects of insufficient sam-
pling frequency, we create a time series with measure-
ments every 90minutes, which is a sampling frequency
that is typical for ESM studies. We create this time
series by taking every 900th measurement from the ori-
ginal time series shown in Figure 2. The resulting sub-
sampled time series is shown in Figure 7.

The ESM time series appears less dense, which is
what we would expect since it contains only 1/900 of
the time points of the ideal time series in Figure 2.
However, we see that the system is still bistable and
that the location of and variance around the fixed
points is largely the same. In this section we will use
this emulated ESM time series to try to recover the
true bistable system using the same array of methods
as in the previous section, in which we analyze the
ideal time series. To ensure that results reflect only
the effect of lowering the sampling frequency, and not
the effect of lowering the overall sample size, we
increase the period of the ESM time series to
1800weeks, resulting in 201600 observations spaced at

90minute time-intervals, equal to the sample size used
in the previous section.1

Descriptive statistics, data visualization & HMM

We again begin by analyzing the data with descriptive
statistics and data visualizations. We see that both the
histograms and the bivariate relationships at the same
time point look exactly the same as the ones of the
high sampling frequency time series shown in Figure
3. We again see that the system is bistable, and get a
rough idea of the location and variance and the fre-
quency of the two states (see Figure 8).

To obtain numerical estimates for those quantities,
we fit the Mean Switching HMM to the ESM-time
series and obtain the following estimates:

l̂ð1Þ ¼
1:47
1:46
4:71
4:71

0
BB@

1
CCA, r̂ð1Þ ¼

0:41
0:41
0:63
0:63

0
BB@

1
CCA, l̂ð2Þ ¼

4:71
4:71
1:47
1:47

0
BB@

1
CCA,

r̂ð2Þ ¼
0:64
0:64
0:41
0:41

0
BB@

1
CCA, M̂ ¼ k1

k2

k1 k2
0:915 0:085
0:090 0:910

� �
:

Again, we see a very similar pattern of results as
obtained from the HMM fit to the ideal time series in
the main text, with the means and standard deviations
of state 1 and state 2 reflecting the unhealthy and
healthy states respectively. The only difference is that
the off-diagonal elements are larger than in the high
sampling frequency time series. The reason is that
there is still the same amount of switches in a given
time period, however, there are much fewer observa-
tions between any two switches. Similarly to the ana-
lysis of the high frequency time series, we could
predict the state for each time point. We display the
predicted states for the first two weeks of the time ser-
ies in Figure 11 in Appendix A, where we can see that
the model again succeeds in capturing which observa-
tions are close to the healthy or unhealthy fixed point.

Taken together, we were still able to recover bist-
ability, the location and variance around fixed points,
and the frequency of switches. That is, the recovery of
global dynamics was unaffected by reducing the sam-
pling frequency. This makes sense, because the global

1Note that, to ensure comparability, we use the same Euler step size of
Dt¼ 0.01 to generate the ESM data as was used to generate the ideal
time series. However, this makes generating a single time series of the
required length prohibitively time-consuming. In order to make data
generation more feasible, we instead generate 900 sub-sampled time
series in parallel, where the first observation of each series is a random
draw from a Gaussian distribution centered around the healthy fixed
point and with unit variance.
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characteristics used here are not defined with respect
to dependencies across time. Therefore, and because
we kept the sample size constant, the data visualiza-
tions and HMM model show results that are similar
to the ones obtained in the high sampling frequency

time series. This is good news, because it shows that
one can learn some characteristics of a system, even if
measurements are taken at a frequency that is unlikely
to tap into the local dynamics of the phenomena
of interest.

Figure 8. Top panel: The histograms of the four emotion variables Cheerful, Content, Anxious and Sad in the ESM-time series.
Lower panel: The bivariate relationships between Content and Cheerful, and between Anxious and Cheerful in the ESM-time series.
The red line indicates the best fitting regression line. Note that all other bivariate relationships are similar to the two shown ones,
due to the symmetry in the true system.

Figure 7. Panel (a) shows the ESM time series which was obtained by taking measurements snapshots every 90minutes. Panel (b)
displays the information the ESM data captures about the twelfth switch in the system, as depicted in Figure 2. Note that the ESM
time series we analyze in section in the main text is much longer (1800weeks) than the 14 day ESM time series shown here.
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Lag-1 relationships & VAR(1) model

We now turn to dependencies across time. Again, we
begin by inspecting bivariate dependencies between
t� 1 and t. Panel (a) of Figure 9 displays the within-
valence dependency between Cheerful at t� 1 and
Content at t. We see that the density looks very differ-
ent from the one of the high frequency time series
shown in Figure 5: First, there seem to be four density
clusters instead of two. And second, each of the dens-
ity clusters Cheerfult�1 and Contentt has a circular
shape or is oriented along one of the two axis, which
implies that the variables are locally uncorrelated.

The two additional density clusters are explained
by the fact that in the ESM time series it is possible
that a switch occurs between two subsequent

measurements. For example, at t� 1 the system is in
the healthy state, and at t the system is in the
unhealthy state. This would lead to a point in the
cluster in the bottom right corner. Such large “jumps”
are possible in the ESM data, because in-between
every pair of ESM measurement we skip 900 measure-
ments in the high frequency time series. In the latter,
such jumps are not possible, because the process
changes relatively slowly from one time step to
the next.

The lowered sampling frequency also explains the
absence of dependency in each separate density. The
differential equations of the true system specify a local
dependency between variables, essentially from one
infinitely small time step to the next. However, we
now omitted 900 time points that are present in the

Figure 9. Panel (a) shows the relationship between Content and Cheerful, two emotions with the same valence, spaced one meas-
urement occassion apart (i.e., at a lag of one but with 90minutes between measurements) for the ESM time series. The red line
indicates the best fitting regression model. Similarly, panel (b) shows the relationship between Anxious and Content two emotions
with different valence, at a lag of one. Panel (c) displays the matrix of lagged regression parameters, estimated from a VAR(1)
model, as a network, and panel (d) displays the partial correlation matrix of the residuals of the VAR(1) model as a network. This
latter network is often referred to as the “contemporaneous” network.
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ideal dataset between any two measurement points in
the ESM dataset. Since independent noise is injected
at a rate of every six seconds, there is hardly any
dependency left between measurements taken
90minutes apart. This is very similar to simulating
900 measurements from a VAR(1) model, and trying
to predict the 900th observation from the first. The
density of the relationship between Content at t� 1
and Anxious at t shown in panel (b) of Figure 9 is
explained analogously.

We now know how to explain the densities of
the bivariate relationships between lagged variables.
How does this influence how we interpret the
parameters of the VAR(1) model fit to these varia-
bles? Above, we were struggling with the fact that
the linear relationships were an approximation of
non-linear relationships. However, now we are deal-
ing with the additional problem that there are
essentially no dependencies anymore between subse-
quent time points, except the dependency implied
by the global characteristics. While the VAR(1)
parameters still reflect the global characteristics, it
would be a mistake to interpret its parameters as
“moment-to-moment” interactions at a short time
scale. In fact, the remaining relationships between
pairs of variables can be summarized in a simple
2� 2 table which shows that emotions of the same
valence are usually both high or both low, and
emotions with different valence are hardly ever both
high or both low. If such relations hold between
any pair of variable, then each variable is equally
predictive of any other variable. This is why all
parameters in the VAR(1) model in Figure 9 panel
(c) have roughly the same value.

To summarize, we showed that, in the present case
study, subsampling the data to a sampling frequency
typical for an ESM-study removed essentially all local
dependency from the time series. This means that it is
impossible to recover them with any type of model.
However, the linear lagged effects still provided some
information about the global characteristics. This
shows that important information can still be obtained
from time series models even if the data is sub-
sampled to the extent that all local dependencies are
lost. However, it is crucial to carefully interpret these
time series models. Interpreting them directly as
reflecting local dynamics would clearly be incorrect.
The example of the VAR(1) model illustrated this:
The relations do describe how the variables are
related, however, they provide an extremely poor esti-
mate of the local dynamics of the true system.

Threshold VAR(1)

Finally, we examine the degree to which the thresh-
old VAR(1) model is able to recover characteristics
of the bistable system based on data with a low sam-
pling frequency. Figure 10 displays the main results
of the estimated TVAR(1) model. As we might
expect based on the previous analyses, the TVAR(1)
model is able to recover some global characteristics
of the system. The estimated threshold value (again
using Cheerful as the thresholding variable) is ŝ ¼
2:796, quite close to the position of the unstable
fixed point position. Panel (a) of Figure 10 shows
that this threshold value succeeds in separating the
time series into healthy and unhealthy states respect-
ively, since the identification of these states is largely
driven by the means.

However, the recovery of local characteristics by
the TVAR(1) model runs into the same fundamental
problems as we encountered in the VAR(1) model:
The sampling frequency is so low that no local
dependencies are present in the data, and introducing
a threshold into our model is unable to solve this
problem. Panels (b) and (c) of Figure 10 display the
lagged parameters for each regime, as estimated by
the TVAR(1) model. Although we again recover
asymmetric between-valence relationships, as we did
in the ideal data setting, there are a number of differ-
ences in the lagged parameter estimates based on
ESM data, such as the positive relationship of
Cheerfult�1 with Sadt and Anxioust in the healthy
regime, and the large within-valence cross-lagged rela-
tionships of Anxious and Sad in the healthy regime
and between Cheerful and Content in the unhealthy
regime, respectively. As was the case for the VAR(1)
model above, these lagged parameter estimates are
produced by the global characteristics of this system
and should not be interpreted as reflecting local char-
acteristics directly.

To summarize, we again have seen that sub-sam-
pling the data to a sampling frequency typical for an
ESM-study removes all local dynamics from the time
series. However, even with a lowered sampling fre-
quency, the threshold VAR(1) model was still able to
recover global characteristics, again separating the
time series appropriately into the healthy and
unhealthy regimes. This suggests that time series mod-
els which are appropriately informed by theory,
though still misspecified, can be used to gain insights
into global characteristics of the system at hand, even
when the sampling frequency is to low to recover
local characteristics directly.
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Discussion

In this paper we discussed the two fundamental chal-
lenges of misspecification and insufficient sampling
frequence in recovering within-person dynamics from
psychological time series. To be able to illustrate
these general problems, we assumed a theoretically
interesting true system and attempted to recover this
system using popular time series analysis tools. First,
we studied the problem of misspecification. We were
able to obtain global characteristics of the true sys-
tem, such as that the system is bistable, the rough
nature of the two stable states and an estimate of
the switching frequency. However, we also showed
that we cannot make straightforward inferences from
the parameters of misspecified models to the local or
even the more coarse global characteristics of the
true system. Next, we investigated the problem of
insufficient sampling frequency. We showed that if
the sampling frequency is too low, the temporal
dependencies in the true system are not captured
anymore in the data. Consequently, no statistical
model was able to recover the local characteristics of

the true system. However, the global characteristics
could still be recovered, since they are not based on
dependencies across time.

We used our example system to illustrate that mis-
specification and insufficient sampling frequency pre-
sent fundamental challenges to making inferences
from time series models about within-person dynam-
ics. This raises the questions of how time series mod-
els can be used, despite those two fundamental
challenges, to learn about within-subjects dynamics
and to develop formal theories of such dynamics.

Consequences for analyzing psychological
time series

We have demonstrated that making inferences from
time series models about the characteristics of an
unspecified and more complicated model is highly
problematic. For instance, for our toy system we found
that in the VAR(1) model the cross-lagged effects
across emotions with the same valence were stronger
than the cross-lagged effects across emotions with a

Figure 10. Panel (a) shows the first two weeks of the time series, with observations shaded in either gray or white as a function
of whether Cheerfult�1 is above or below the threshold ŝ ¼ 2:796: Panels (b) and (c) show the estimated VAR(1) parameters as
lagged networks in the healthy (white) and unhealthy (gray) regimes respectively.
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different valence (see Figure 5). However, the perhaps
intuitive interpretation of these parameters as evidence
for stronger reinforcing effects within-valence com-
pared to the suppressing effects between-valence in the
data-generating model would be incorrect. From the
true system we know that the suppressing effects are in
fact stronger (see Figure 1). Since all models are mis-
specified in practice, any kind of direct inference from
a time series model to some unknown underlying sys-
tem is potentially problematic.

Critically, however, this is not a criticism of the
time series models themselves, but rather the manner
in which some researchers attempt to interpret or
make inferences based on their parameters. Since in
the current paper we have essentially no sampling
error due to the large sample sizes, in a sense all stat-
istical models we have estimated here are correct, in
that they correctly capture some implication of the
data-generating model: For instance, that at short
time intervals, conditional linear dependencies within-
valence are stronger than those between-valence
(Figure 5) but that at very long time intervals those
linear dependencies are essentially equal in value
(Figure 9). These statements are true, and although it
may in some cases be a somewhat complicated pro-
cess, they could be derived from the data-generating
model without any need to simulate data as we have
done here. The problems arise when we try to reverse
this process, to take an implication of a model and
attempt to infer from it the model itself or other char-
acteristics of it. We have shown here the extreme dif-
ficulty of such inferences, and highlighted the caution
with which they must be approached.

So how can we hope to improve our ability to
make inferences from misspecified times series mod-
els? This problem can be mitigated to some extent by
informing the choice of time series model theoretic-
ally, and thereby reducing the degree of misspecific-
tion. For example, if we assume that the true system
has several stable states, and if we take time series
measurements from the system while it remains
around a single stable state, then we could fit a
VAR(1) model to obtain a linear approximation of the
dynamics close to that stable state. If we have other
time series capturing other states, taken from the
same or similar individuals, we are possibly able to
piece together these separate models to obtain a char-
acterization of the overall dynamics of the system. If
such local models are allowed to vary over time, it
might even be possible to detect critical transitions in
the stability landscape of the system, even though we
only observe a part of the landscape (e.g., Snippe

et al., 2017; Wichers, 2016). The crucial point here is
that if we use time series in this way, we do not make
naive inferences from parameters of the time series
models about characteristics of the true system.
Instead, we use our theoretical expectations to choose
the right time series model to extract a specific char-
acteristic of the true system. Eventually, all these char-
acteristics should be integrated in a formal theory of
the true system, which is what we turn to in the
next subsection.

In the second part of the paper we illustrated the
problem of insufficient sampling frequency. We
reduced the sampling frequency from every six sec-
onds to 90minutes and showed that all micro-dynam-
ics were removed from the time series data. Of
course, to illustrate the problem of insufficient sam-
pling frequency we chose the time scale of our system
such that the sampling frequency of a typical ESM
study would be insufficient to recover the true system.
This is not necessarily always the case. For example,
when investigating slow changing variables such as
mood, body weight, psychiatric symptoms, or proc-
esses that occur at regular intervals such as sleep, then
a few measurements a day may be sufficient.
However, we think that for many psychological
dynamics this is likely not the case. For example, it
seems unlikely that we can appropriately capture the
dynamics of emotions, which are defined on a time
scale of seconds and minutes (Houben et al., 2015),
by sampling every 1.5 hours. A quick survey of the lit-
erature reveals that the time scale of target processes
is often unspecified in empirical research. In
Appendix E we provide a review of 43 ESM studies
within the network perspective of psychopathology,
which shows that the time scale of variables is typic-
ally not clearly defined and that in all studies at least
one variable plausibly changes at a time scale of
minutes. This suggests that it is important to charac-
terize more clearly on which time scale the variables
of interest change, and to adapt the study design
accordingly. While intuitively we may consider the
highest possible sampling frequency to be optimal, in
practice questions of optimal design will depend on
the number of observations we are able to make, the
dynamics of the underlying system (such as the time-
scale of the target processes), and our analysis goals,
such as the characteristics we wish to learn about and
the way in which the design should be optimal (to see
the variety of different discussions on optimal design,
see for instance Adolf et al., 2019; Adolph et al.,
2008). Furthermore, while study designs can be
adapted to some extent, for example with higher
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sampling frequencies or measurement bursts (Adolph
et al., 2008; Nesselroade, 1991), there are of course
limits to how often a day individuals can be queried
with an ESM questionnaire. Then the question
becomes how we can still make use of time series
models based on data that was sampled with an insuf-
ficient frequency to allow, at least in principle, direct
recovery of the microdynamics. We think that this
problem can be addressed by adopting a way of con-
structing theories that puts formal theories at the cen-
ter of theory development.

Constructing formal theories of within-
person dynamics

We showed that we can use global characteristics to
obtain a rough description of the dynamics of interest;
and we suggested that, if guided by theory, relatively
simple time series models like the VAR(1) model
could be used to describe different aspects of the
within-person dynamics of interest. However, the goal
of idiographic modeling should not only be the accu-
mulation of empirical facts. Instead, we think that the
eventual goal should be to construct a formal theory
of the within-person dynamics which explains
those facts.

We recently proposed a framework for how to con-
struct such formal theories, which consists of a three-
step methodology of generating an initial theory,
developing the theory, and testing the theory
(Haslbeck et al., in press). Here we only focus on the
theory development step, since it is most relevant for
the two problems studied in this paper. An initial the-
ory is developed by generating time series data from
it, and fitting a time series model that captures the
aspect of the formal theory that should be tested with
empirical data. This gives rise to a theory-implied
time series model. Next, we collect the corresponding
empirical time series data and fit the same time series
models to them. Finally, we compare the theory-
implied and empirical time series model. If they are
similar, we take this as tentative evidence for the
adequacy of our current formal theory; if not, we use
the discrepancy between the two to devise adaptations
to the current theory, such that it implies a time series
model that is closer to the empirical one. This proced-
ure is similar to the idea of predictive checks in
Bayesian analysis, where data are simulated from the
fitted model, and checks are performed on summary
statistics of the simulated data (Gelman et al., 2013;
Gelman & Hill, 2006).

While this approach clearly does not solve the fun-
damental problems of misspecification and insufficient
sampling frequency, it does allow us to deal with
those problems in a more flexible way. For example,
our current formal theory may predict a strong nega-
tive cross-lagged effect between variables Xt and Ytþ1:

We then collect the corresponding empirical data and
estimate this cross-lagged effect. If we find a strong
negative cross-lagged effect, we take this as evidence
that our theory correctly accounts for this empirical
phenomenon; if not, we try to think of ways to
change the formal theory such that it predicts the
cross-lagged effect we find empirically. Critically, in
this approach the VAR(1) model including the cross-
lagged effect between Xt and Ytþ1 does not serve as a
plausible true system, and we do not make naive
inferences from its parameters to the structure of the
true system. Instead, we consider it as a descriptive
model, which captures patterns in the data that need
to be reproduced by a successful theory. This provides
a much clearer process of theory development: instead
of having to make inferences about a completely
unknown and unspecified structure, we have a formal
theory which we can adapt to account for more and
more empirical phenomena captured by time series
models and other statistical models. Similarly, if we
have an insufficient sampling frequency to recover the
entire true system, we can still use the above
approach. We now downsample the time series gener-
ated from the formal theory to the empirical sampling
frequency, and create an implied time series model on
the level of this sampling frequency. While there is
clearly a loss in information due to the insufficient
sampling frequency, it is still possible to make predic-
tions with the formal theory on that level, and make
adaptions to the theory if its predictions do not line
up with the empirical time series model.

One way in which this approach could be applied
is to use global characteristics to select a class of
dynamical systems that is known to produce these
characteristics. For example, van der Maas and
Molenaar (1996) list a number of global characteris-
tics, which they refer to as “catastrophe flags”, which
indicate that a dynamical system based on catastrophe
theory could have generated the data. Next, one could
use additional data to narrow down the possibilities to
a smaller class of models, such as the cusp catastrophe
model. Finally, some parameters of this model could
be estimated directly from data (Grasman et al.,
2009). Another example is the formal theory of panic
disorder developed by Robinaugh et al. (2019). This
theory was developed by listing the core empirical
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phenomena of panic disorders and then using existing
verbal cognitive-behavioral theories to construct a for-
mal theory of the within-person dynamics that lead to
the development of panic disorder. In Haslbeck et al.
(in press) we provide a detailed discussion for how to
develop this method with the above outlined approach
both with time series data and cross-sectional data.

We argued that we need to adopt a more flexible
modeling approach to obtain formal theories of
within-person dynamics, which goes beyond fitting
statistical time series models alone. While such an
approach cannot resolve the fundamental problems of
misspecification and insufficient sampling frequency,
it allows us to deal more flexibly with these problems.
For a detailed account of the above proposed
approach to constructing formal theories of within-
person dynamics see Haslbeck et al. (in press). Our
approach is only one of several recently proposed
approaches that have identified the use of formal the-
ories and computational models as critical to develop-
ing theoretical understanding of psychological
phenomena (e.g., Borsboom et al., 2021; Burger et al.,
2020; Guest & Martin, 2020; Robinaugh et al., 2021;
van Rooij & Baggio, 2020).

Limitations of our approach

In the present paper we investigated to which extent
one can infer the characteristics of our bistable system
of emotion dynamics from a specific set of time series
models. Strictly speaking, we thereby only provided
evidence that misspecification and insufficient sam-
pling frequency are a problem in this specific setting.
However, we argue that it is reasonable to assume
that the psychological systems we are interested in are
more complicated than the simple bistable system
used in this paper (for a discussion see Haslbeck
et al., in press). And our intuition is that the problem
of misspecification will not disappear when studying a
more complicated system with the same time ser-
ies models.

If the true system is more complex, why don’t we
simply fit more complex time series models? Much
progress has been made in broadening the dynamic
modeling toolbox in psychology in recent years, with
new tools allowing for the estimation of a variety of
more complex auto-regressive and moving average of
time series models (e.g Asparouhov et al., 2018) and
linear as well as non-linear differential equation mod-
els (e.g. Driver et al., 2017; Ou et al., 2019) directly
from data. These developments allow researchers to
overcome many practical issues typically faced in

psychological time series studies, such as accounting
for the presence of unequal time-intervals between
measurement occasions (for a discussion, see Kuiper
& Ryan, 2018; Ryan & Hamaker, in press; Voelkle &
Oud, 2013, amongst many others) and allowing for
the use of multi-level models to regularize parameter
estimates. However, the use of more complex statis-
tical models to recover within-person dynamics is still
subject to the same fundamental problems we have
highlighted in this paper. First, even with more com-
plex time series models we will never know when and
to what extent the model will be misspecified, and
consequently, we cannot trust straightforward infer-
ences from the time series model to the measured sys-
tem. Second, it is unclear whether in psychological
settings we ever have the data to fit such models.
Either because the sampling frequency is too low, or
because the time series is too short. Although the use
of multilevel models may enable us to estimate time
series models using less observations per person, the
barrier of attaining sufficient sampling frequency is
more difficult to overcome. While integral solution
based (Voelkle & Oud, 2013) and Kalman filter based
(Chow et al., 2007) methods of estimating differential
equation models (such as implemented in the dynr
and ctsem packages Carpenter et al., 2017; Driver
et al., 2017; Ou et al., 2019) may require less frequent
observations than difference-based methods (e.g.
Boker et al., 2010), these methods still have the funda-
mental limitation that, to recover dynamics at a cer-
tain frequency, information on those dynamics must
still be present in the dataset at hand.

In addition, we choose a parameter configuration
for our toy model such that we observe a high num-
ber of switches between states in the simulated data-
sets. The premise of our approach here is that, if we
wish to recover the full bistable system, or as many
characteristics of that system as possible, having a
dataset in which we observe multiple switches is ideal.
However, it may be the case that for many psycho-
logical phenomena, it is not possible to collect single-
individual time series data in which a large number of
transitions are observed. For example, depressive epi-
sodes may last a number of months or years and tran-
sitions from healthy to depressive episodes or vice
versa may only occur once in a lifetime (American
Psychiatric Association, 2013; Freeman, 1996; Post,
1992). With this in mind, many recent ESM studies in
psychology have begun to collect such long time series
in the hope of capturing those transitions (e.g.,
Helmich et al., 2020; Kuranova et al., 2020; Smit et al.,
2019). From a theoretical viewpoint, many discussions
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of bistable systems as they relate to psychological phe-
nomena indeed focus on so-called cusp-catastrophe
models, where the system exhibits one stable state for
a long period of time, before the system becomes a
bistable system (Cramer et al., 2016; Wagenmakers
et al., 2005; Wichers et al., 2015). While we believe
that it is possible in principle to learn about bistable
systems from datasets where, for instance, we only
observe a single state per individual, or a single transi-
tion for some individuals, we suspect that this is more
difficult than attempting to make inferences from the
type of dataset we study in the current paper. This
would likely require additional assumptions about
complicating factors such as the homogeneity or het-
erogeneity of individuals and counterfactual behaviors
which may not be directly captured in the dataset.

Throughout the paper we used a very large sample
size of n¼ 201600 to be able to study the effects of
misspecification and insufficient sampling frequency
without confounding them with the effects of sam-
pling variance. Typical sample sizes in applied
research are of course much lower and one has to
deal with sampling variance, which poses an add-
itional challenge to recovering within-person dynam-
ics from time series data. Another idealization in our
setting was that we were able to sample all variables
in the true system. This means that there are no
spurious statistical relationships that can be explained
by the presence of unobserved common causes. In
addition, we were able to measure all variables directly
and without any distortion in the measurement pro-
cess. Both idealizations are unrealistic, which renders
system recovery more challenging in practice.

Conclusions

Idiographic modeling of within-person dynamics is an
exciting area in psychological science, both because it
avoids known problems associated with making infer-
ences to within-person processes based on cross-sec-
tional data and because of the rapidly increasing
availability of within-person time series data.
However, in this paper we showed that it is difficult
to make direct inferences from time series models to
underlying within-person systems. The reasons are
that arguably all time series models are misspecified
and that the sampling frequency is possibly insuffi-
cient. To deal with these problems we suggest to
adopt a framework to construct theories of within-
person dynamics that goes beyond estimating statis-
tical time series models alone and puts formal theories
at the center of theory development.
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A Additional HMM results ESM time series

Figure 11 displays the predicted states from the HMM
model fit to the low sampling frequency ESM time series.

B Continuous-Time VAR(1) results

Multiple researchers have pointed out that when data are
generated from a differential equation model, the signs,
sizes and relative orderings of lagged parameters of VAR(1)
model parameters depend on the sampling frequency in the
dataset (Kuiper & Ryan, 2018; Ryan & Hamaker, in press;
Voelkle et al., 2018). In practice this means that direct infer-
ences from VAR(1) parameters to differential equation
parameters is challenging due purely to this time-interval
dependency. In the main text we have demonstrated that it
is difficult to make inferences about local characteristics
such as the relative size of suppressing and reinforcing
effects from the VAR(1) model parameters due to the prob-
lem of model misspecification. Primarily, the VAR(1) model
is misspecified in that it allows only for linear relationships
between processes, but strictly speaking, we could also say
that the VAR(1) model is misspecified in the sense that it is
a discrete-time autoregressive model rather than a continu-
ous-time differential equation model, of which the true sys-
tem is a special case.

In order to remove this latter source of model misspeci-
fication, one can instead fit a continuous-time VAR(1)
model to data. This model is the integral form of (and thus
equivalent to) a first-order stochastic differential equation
with only linear relationships between variables, and so is
still critically misspecified with respect to the true system.
The parameters estimated by fitting a continuous-time
VAR(1) model fit to the ideal data, using the stan function-
ality in the R-package ctsem, (Driver, Oud, & Voelkle,
2017), are displayed in network form in Figure 12 (cf. Ryan
& Hamaker, in press). Inspecting the drift matrix in panel
(a), that is, the linear dependencies in the estimated differ-
ential equation model, we can see that we reach very similar
conclusions as we did when interpreting the parameters of
the DT-VAR(1) model: The model yields negative moment-
to-moment dependencies of approximately equal strength
between-valence, with stronger positive dependencies, also
of approximately equal strength, within valence. The diffu-
sion matrix in panel (b), which is the continuous-time ver-
sion of a residual covariance matrix, shows weak negative
residual dependencies between each process, similar to the
discrete-time residual dependencies (for more detail on the
interpretation of this model see Ryan & Hamaker, in press;
Ryan et al., 2018; Voelkle & Oud, 2013). The similarity of
the CT- and DT-VAR(1) models in this case is likely due to
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the high sampling frequency present in the ideal data: As
was the case for the discrete-time model, the problematic
aspect of model misspecification in the current situation is
the approximation of non-linear relationships with linear
dependencies, a problem which cannot be solved by fitting
a linear continuous-time model to the data.

One may also wonder whether continuous-time models
could help to overcome the problem of insufficient sampling
frequency discussed in the main text. In principle, continu-
ous-time models can aid in making parameter estimates
from different studies comparable, by mapping lagged
dependencies at different time-intervals back to the same
moment-to-moment dependencies in a differential equation
model (Kuiper & Ryan, 2018; Voelkle & Oud, 2013).
However, this will only work if the sampling frequency is
sufficiently high such that some information on the
moment-to-moment dependencies is present. To explore
this, we also fit the continuous-time VAR(1) model to the
ESM time series described in the main text. The estimated
parameters are shown in Figure 13.

As we can see from Figure 13a the estimated drift matrix
parameters are quite different to those obtained from the

ideal time series. Although we again obtain negative
between-valence and positive within-valence relationships,
the latter have an even greater difference in absolute value
than in the ideal case. Furthermore, there is quite some
variation in the size of the between-valence relationships,
with the smallest effect (from Anxious to Content �0.06)
more than half the size of the largest effect (from Content
to Sad �0.16). Furthermore, although the qualitative pat-
terns of relationships obtained here are somewhat different
from those obtained from the discrete-time VAR(1) model
(Figure 9), no greater clarity or insight into the underlying
dynamics is obtained from the continuous-time model.

That no direct inferences can be made from the continu-
ous-time VAR(1) parameters at a longer time-interval is
hardly surprising, since the model is still misspecified. What
is instructive however is that the continuous-time VAR(1)
parameters here do not capture the same linear approxima-
tion of the moment-to-moment dynamics as the
continuous-time VAR(1) parameters obtained from the
high-sampling frequency dataset. In this sense, misspeci-
fied continuous-time models do not allow us to overcome
the time-interval dependency problem in this setting. This

Figure 11. Time series of the four emotion variables, also shown in panel (a) of Figure 2, with background color indicating
whether a given time point is assigned to the first or second component of the mean-switching HMM estimated from the
ESM dataset.

Figure 12. Parameter estimates from the CT-VAR(1) model fit to the ideal time series. Panel (a) shows the estimated drift matrix
parameters, the linear relationships between in the first-order differential equation model. Panel (b) shows the diffusion matrix,
the residual covariance matrix of the continuous-time model.
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may be entirely due to model misspecification, but we
also suspect that this can be explained by the extremely
low sampling frequency chosen for the latter dataset: Even
if the continuous-time model was to be correctly specified,
there is likely to be some limit to how large the time-
intervals between observations can be in order to still
enable model recovery in practice, since at long enough
time-intervals the implied dependency between observa-
tions approaches zero for most systems.

C Simulated data from estimated time
series models

In this appendix we present data generated from models
estimated on the ideal dataset and presented in the main
text. This kind of simulation based model checking can be
used to check the appropriateness of a model by allowing
us to visually inspect which characteristics of the original
time series a particular model can reproduce.

C.1 First-order vector autoregressive model
Figure 14 displays a time series of two weeks gener-

ated from the VAR(1) model in the main text. The

generated data does not show bistability, which is
expected because the VAR(1) model exhibits only a sin-
gle fixed point. What looks approximately like oscillat-
ing behavior is a result of the high auto-regressive
effects present in the estimated VAR(1) model: given a
stochastic input, the high auto-regressive effects ensure
that the system is slow to eventually return to equilib-
rium. This oscillating behavior is also evident in the
eigenvalues of U, which consist of one complex conju-
gate pair (Strogatz, 2015).

C.2 Threshold vector autoregressive model
Figure 15 displays a time series of two weeks generated

from the threshold VAR(1) model in the main text. As
expected, the generated data shows bistability as governed
by a univariate threshold. We can also see that the combin-
ation of lagged regression parameters and residual covari-
ance matrices unique to each state succeeds in reproducing
the characteristic that emotions show a lower variability
when they are in the low state (i.e., the healthy state for
negative emotions, unhealthy state for positive emotions)
than when they are in the high state (i.e., the unhealthy
state for negative emotions, healthy state for posi-
tive emotions).

Figure 13. Parameter estimates from the CT-VAR(1) model fit to the ESM time series. Panel (a) shows the estimated drift matrix
parameters, the linear relationships between in the first-order differential equation model. Panel (b) shows the diffusion matrix,
the residual covariance matrix of the continuous-time model.

Figure 14. A time series of two weeks generated from the VAR(1) model estimated in the main text.
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D Assumption checking, diagnostics and the
Box-Jenkins approach

In this appendix we present the results of applying standard
time series diagnostics and model assumption checking to the
ideal dataset discussed in the main text. Our analysis here is
based on applying what is known as the Box-Jenkins approach
(Box & Jenkins, 1976; Hamilton, 1994), a standard approach to
investigate and tackle model misspecification in a time series
setting. The main tools used in this approach are the correl-
ation and partial correlation functions, which allow us to visu-
alize the marginal (qðXt ,XtÞ, qðXt ,Xtþ1Þ:::qðXt ,XtþTÞ) and
partial correlations (qðXt ,Xtþ1Þ, qðXt ,Xtþ2jXtþ1Þ, :::
qðXt ,XtþT jXtþ1:::XtþT�1Þ) in the time series respectively, as a
function of the lag between measurements. The auto correl-
ation and partial correlation functions depict the dependency
of a time series variable on itself, and the cross-correlation and
partial correlations depict the dependencies between variables.
Due to the symmetries in the true system, we will here con-
sider only two variables since the patterns observed between
those two variables generalize to all within-valence and
between-valence relationships.

Essentially, the Box-Jenkins approach involves using time
series plots and the correlation functions in an iterative way in
order to a) establish the need to remove a trend or seasonal
effect from the data such that the transformed data is

stationary, b) choose an appropriate ARIMA model to fit to
the (possibly transformed) data, and c) check the residuals of
the chosen model for evidence of model misspecification. We
begin by plotting the correlation and partial correlation func-
tions based on the raw data, shown in Figure 16. In panel (a)
we can see that the auto-correlation function of the Cheerful
variable decays to zero very slowly, and oscillates between
somewhat strong negative and positive values at longer lags.
An identical pattern occurs for the cross-correlation function
of the opposite-valence variable (in this case Anxious). In
panel (b) however we see that the partial auto-correlation and
partial cross-correlations are non-zero at a lag of 1, but are
approximately zero at longer lags: When we control for the
value of Xtþ1, there is no longer any relationship between Xt

and Xtþ2 or Xtþ3 and so forth. Note that although we plot the
partial correlations only for a lag of 10, no strongly non-zero
partial correlation appears at longer lags.

Taken together, what might we infer from these diagnos-
tics? Usually, a correlation function that oscillates between
positive and negative values is taken to be suggestive of
either a) some kind of trend or seasonal effect, or b) an
indication of a higher-order autoregressive process.
However, this second possibility is ruled out by the partial
correlation function: If a higher-order lagged relationship
was present, we would see this with some non-zero partial
correlation at that longer lag. With this in mind, inspecting

Figure 15. A time series of two weeks generated from the Threshold VAR(1) model estimated in the main text.

Figure 16. Correlation and Partial Correlation Functions for the raw time series. Here we plot only the auto-(partial)-correlations
for Cheerful and the (partial) cross-correlation functions of Cheerful with Anxious.
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the raw time series (Figure 2) we may conclude that there is
indeed some kind of cyclic or seasonal effect present. The
time series overall appears to be non-stationary, in that the
mean of each process is not constant across our window of
observation. In the true system, we know that this is the
case because the system switches between two stable fixed
points, a key characteristic produced by the microdynamics
of the system. From a Box-Jenkins perspective, however,
this suggests that, in order to fit an appropriate ARIMA
model, we must first transform the data by removing this
apparent source of non-stationarity.

Given this conclusion, the best we could hope to achieve
would be to center the observed time series around a time-
varying mean which exactly captures the position of the
nearest stable fixed point. This produces a new transformed
time series which is Gaussian, mean-stationary and appears
to be at least approximately (co)variance-stationary, dis-
played in Figure 17 panel (a). The correlation and partial
correlation functions calculated from this transformed data
are shown in Figure 17 panels (b) and (c) respectively. We
can see from this that the auto-correlation function now
decays quickly to zero at longer lags, and no longer shows
the oscillatory pattern of the raw data. Instead, the auto-
and cross-correlations look similar to what we would expect

a first order (lag 1) system to produce. The partial correla-
tions look qualitatively similar to those produced by the
raw data. Taken together, these diagnostics (correctly) sug-
gest that a lag-1 model would be appropriate for the trans-
formed data. As such, a natural choice of model based on
these diagnostics is the first order vector autoregressive
(VAR(1)) model.

Figure 18 displays the lagged relationships and VAR(1)
model obtained from the centered time series. As we can
see, although the VAR(1) model appears to meet the neces-
sary assumptions based on the transformed data, the result-
ing model gives us no greater insight into the underlying
system than obtained previously. For instance, we would
still conclude that the within-valence relationships are
stronger than the between-valence relationships. In this
model, we would even be unsure whether any between-
valence relationships exist at all due to their small absolute
value. Thus, although we have followed standard procedure
and obtained a model whose assumptions appear to be met,
we do not obtain an appropriate insight into the underlying
mechanism of interest. Of course, the Box Jenkins method
can be continued in an iterative way from this point forward,
though our analysis of this approach ends here. Researchers
may investigate the considerable autocorrelation still present

Figure 17. Panel (a) shows the ideal time series of the four emotion variables Cheerful, Content, Anxious and Sad, centered
around the position of the nearest stable fixed point. This represents the best case scenario for a combination of de-trending and
removing seasonal effects from the time series that we could hope to achieve. Panels (b) and (c) show the correlation and partial
correlation functions for the transformed dataset, with the auto-correlation based on the Cheerful variable, and the cross-correl-
ation based on Cheerful and Anxious.
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in the residuals of this model, and use this to guide further
model building: For instance, by including lag-2 effects, a dif-
ferent functional form for the lagged relationships, or a dif-
ferent time series model entirely. Of course, some of these
model building choices may eventually lead to the choice of
an appropriate model, such as the threshold VAR(1) dis-
cussed in the main text. We suspect however a large number
of models which could result from this process (such as any
model which involves transforming the data to adjust for
non-stationarity) would appear to be more or less appropri-
ate based on these model diagnostics while failing to capture
the key characteristics of the true system.

E Literature review of ESM studies within the
network approach to psychopathology

The goal of the literature review was to obtain an overview
of the time scales of variables and the primary time series
analyses used by empirical studies using ESM data that oper-
ate within the network approach to psychopathology. To do
so, we compiled all empirical papers that analyzed ESM data
and cited at least one of the following eight key papers on
the network approach to psychopathology according to
Google Scholar in May 2019: Borsboom (2017), Borsboom

and Cramer (2013), Borsboom et al. (2011), Bringmann
et al. (2013), Cramer et al. (2016), Hosenfeld et al. (2015),
Schmittmann et al. (2013); Wichers, Wigman, and Myin-
Germeys (2015). This procedure yielded the 43 papers
shown in Table 1.

For each study we coded the main analysis and the main
target process under investigation. We define the target pro-
cess as the process that is captured by the ESM-questions.
For example, Fang et al. (2019) capture daily dynamics in
rumination and affect with ESM-questions, and then evalu-
ate whether those dynamics predict depressive symptoms at
a follow up. In such cases, we treat the variables captured
by ESM as parts of the target process.

We then tried to categorize the target process in terms
of its characteristic time scale, which we define to be small-
est time scale at which meaningful change can be observed.
We use the five categories: seconds, minutes, hours, days,
and weeks. In none of the 43 papers we were able to clearly
identify the time scale, and we therefore assigned all time
scales that seemed plausible based on how those processes
are typically discussed in the substantive field. In some
studies the ESM questions include variables with clearly dif-
ferent time scales, like emotions and symptoms. In these
cases we collapsed to coding of all variables into a single
coding for all variables captured.
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Figure 18. This figure replicates the VAR(1) analysis in the main text using the centered time series. Panel (a) shows the relation-
ship between Content and Cheerful, two emotions with the same valence, spaced one time point apart (at a lag of one). The red
line indicates the best fitting regression model. Similarly, panel (b) shows the relationship between Anxious and Content two emo-
tions with different valence, at a lag of one in the centered time series. Panel (c) displays the matrix of lagged regression parame-
ters, estimated from a VAR(1) model, as a network, and panel (d) displays the partial correlation matrix of the residuals of the
VAR(1) model as a network. This latter network is often referred to as the contemporaneous network.
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Many studies assert that they aim to study “moment-to-
moment” mental states or relations. While this seems to
refer to a time scale of seconds, we are unsure whether
authors take “moment” literally and therefore also assign
the time scale of minutes to these studies. Whenever a study
investigates emotion dynamics, we assign a time scale of
seconds to minutes, since emotions are defined on such a
time scale to differentiate them from mood (e.g., Houben
et al., 2015). Next to the target process and the intuitively
coded time scales we also report the type of main analysis
how many measurements were taken each day.

A few things in Table 1 stand out. With respect to the
time scale of variables, we were not able to identify a single
time scale for the studied processes in any of the 43 papers.
For 58% of the papers we assigned two time scales, and for
the remaining three or more. In addition, we identified a

time scale of minutes for all of the 43 papers. In relation to
the problem of insufficient sampling frequency, the results
of our small literature review are interesting for at least two
reasons: first, it is often unclear on which time scale the
processes of interest are evolving. And second, most proc-
esses seem to evolve at a time scale of seconds and minutes,
which are possibly difficult to capture with ESM measure-
ments with a frequency in the order of hours.

Many ESM studies (47%) use 10 measurements a day,
but a lot of studies also use substantially less. While there
was a large variety in analyses performed, the main analysis
was usually a linear regression model at the same time
point, or a lagged linear regression model, usually in a
multilevel setting. The most ubiquitous main analysis was
the multilevel VAR(1) model, which was used in 49% of all
papers as the main analysis.

Table 1. ESM-measurements per day, main analysis, target process and coded time scale of the target process for 43 empirical
ESM studies working within the network approach to psychopathology.
Paper M/day Main Analysis Target Process Seconds Minutes Hours Days Weeks

Wichers (2016) 10 PCAþ VAR(1) Momentary mental states 1 1 0 0 0
Vrijen et al. (2018) 3 ML VAR(1) Emotions 1 1 0 0 0
Lee et al. (2017) 6 ML regression Emotional, pain, sleep 1 1 0 0 0
van Winkel et al. (2017) 10 ML VAR(1) Loneliness, social contact, appraisal 0 1 1 1 0
Bringmann et al. (2013) 10 ML VAR(1) Positive/Negative Emotions 1 1 0 0 0
Wigman et al. (2015) 10 ML VAR(1) Momentary mental states 1 1 0 0 0
Bak et al. (2016) 10 VAR(1) in subsets Psychotic symptoms, emotions 0 1 1 1 0
Snippe et al. (2017) 10 ML VAR(1) Momentary affect and cognitions 1 1 0 0 0
Klippel et al. (2017) 10 ML mod/mediation Emotions and psychotic experience 1 1 0 0 0
De Vos et al. (2017) 3 ML VAR(1) Emotions 1 1 0 0 0
Hasmi et al. (2017) 10 ML VAR(1) Emotions 1 1 0 0 0
Oreel et al. (2019) 9 ML VAR(1) Emotions, physical symptoms 0 1 1 1 0
Wigman, Collip, et al. (2013) 10 Lagged effects Momentary mental states 1 1 0 0 0
Wigman, van Os, et al. (2013) 10 Hypothesis tests Momentary mental states, psychosys liability 1 1 1 0 0
Kroeze et al. (2017) 5 (lagged) correlations Mood, physical activity, social context 1 1 1 0 0
Geschwind et al. (2011) 10 Hypothesis tests Momentary positive emotions 1 1 0 0 0
Levinson et al. (2018) 4 ML VAR(1) Eating disorder cognitions and behaviors 0 1 1 0 0
Pe et al. (2015) 7 ML VAR(1) Positive/negative emotions 0 1 1 0 0
Pavani et al. (2017) 5 moderated ML VAR(1) Positive/negative affect, rumination, appraisal 1 1 1 0 0
Lutz et al. (2018) 4 ML VAR(1) Momentary affective states 1 1 0 0 0
Beck and Jackson (2020) 4 VAR(1) models Personality traits at state level 0 1 1 1 0
Poerio et al. (2016) 3 Mediation model Daydreaming, mood, and dissociative symptoms 0 1 1 0 0
Klippel et al. (2018) 10 ML VAR(1) affect, daily stressors, psychotic experiences 1 1 0 0 0
Greene et al. (2018) 2 ML VAR(1) PTDS related intrusions, avoidance, mood 1 1 1 1 0
Yang et al. (2018) 6 VAR(1) models Emotions, depression symptoms 1 1 1 1 1
Bringmann et al. (2016) 10 ML VAR(1) Emotions, stress 1 1 1 0 0
Aalbers et al. (2019) 7 ML VAR(1) Momentary depr. symptoms, social media usage 0 1 1 0 0
Fisher et al. (2017) 4 ML VAR(1) Mood, anxiety 0 1 1 1 0
van de Leemput et al. (2014) 10 AR(1) and Var Emotions 1 1 0 0 0
Clasen et al. (2015) 5 Lagged effects Feeling well, self-esteem 1 1 1 0 0
Brose et al. (2017) 10 Cross-lagged model Indicators of micro-level stress 0 1 1 0 0
Hoorelbeke et al. (2019) 6 ML VAR(1) Positive affect, rumination, positive appraisal 1 1 1 0 0
Snippe et al. (2018) 3 ML VAR(1) Prosocial behavior, positive affect 1 1 1 0 0
Bernstein et al. (2019) 5 ML VAR(1) Present emotion, physical activity 1 1 1 0 0
Spanakis et al. (2015) 10 ML VAR(1) Emotion, eating behavior 1 1 1 0 0
Fang et al. (2019) 8 State space analysis Affect, rumination 1 1 0 0 0
van der Velden et al. (2018) 10 VAR(1) Motor symptoms, mood states 0 1 1 0 0
Hasmi et al. (2018) 10 ML VAR(1) Emotions 1 1 0 0 0
van Os et al. (2014) 10 ML regression Psychotic experiences, affect, psychotic symptoms 1 1 1 1 1
Wichers et al. (2015) 10 Lagged effects Affect, appraisal of social context, physical activity 0 1 1 0 0
Crist�obal-Narv�aez et al. (2016) 8 ML regression Psychotic-like experiences, stress reactivity 0 1 1 0 0
Wolf et al. (2015) 4 Lagged ML regression Loneliness, clinical pain 0 1 1 0 0
Uink et al. (2018) 5 ML AR change model Emotions, daily stress 1 1 1 0 0

A one indicates that for at least one of the studied variables it seems reasonable that it evolves at the given time scale.
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