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ABSTRACT

The Gaussian graphical model (GGM) has become a popular tool for analyzing networks of
psychological variables. In a recent article in this journal, Forbes, Wright, Markon, and
Krueger (FWMK) voiced the concern that GGMs that are estimated from partial correlations
wrongfully remove the variance that is shared by its constituents. If true, this concern has
grave consequences for the application of GGMs. Indeed, if partial correlations only capture
the unique covariances, then the data that come from a unidimensional latent variable
model ULVM should be associated with an empty network (no edges), as there are no
unique covariances in a ULVM. We know that this cannot be true, which suggests that
FWMK are missing something with their claim. We introduce a connection between the
ULVM and the GGM and use that connection to prove that we find a fully-connected and
not an empty network associated with a ULVM. We then use the relation between GGMs
and linear regression to show that the partial correlation indeed does not remove the com-
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Introduction

In a recent article in this journal, Forbes et al. (2019b,
henceforth FWMK) voiced the concern that Gaussian
graphical models (GGMs) that are estimated from
partial correlations wrongfully remove crucial infor-
mation from the data: The variance that is shared by
its constituents. This concern is fundamental to their
evaluation of the use of network models in psycho-
pathology (see, for instance; Forbes et al., 2017,
2019a). FWMK are under the impression that if an
edge between two variables is estimated using a partial
correlation, “the edge is based on the variance shared
by each pair of [variables] after removing the variance
they share with all other [variables] in the network (p.
13, their italics)”." When the network comprises many
variables, a large part of the covariance between the
two focal variables is shared with other variables in
the network. As a result, the region of unique covari-
ance between the focal variables shrinks with the size
of the network, and estimated edges become
“unreliable” and primarily made up of “random and
systematic error” (p. 14). Here we show that the con-
cerns of FWMK are wrong.

We illustrate the concern of FWMK for a three-
variable network in Figure 1, which we will also use
later in partial correlations and explained variance in
section on regression. We aim to obtain the relation
between the variables X; and X; at the population
level. Their covariance comprises two parts; one part
that embodies the variance that is shared only by the
two variables X; and X;, and one part that embodies
the variance that is shared by the two variables X;
and X3 in conjunction with the other variable X,. In
Figure 1(a), we see a representation of the overlap in
variance between all three variables. In Figure 1(b),
we see the complete covariance between X; and X;. In
Figure 1(c), on the other hand, the overlap between
X; and X, has been removed (partialled out) and only
considers the unique contributions of X; and X, on
X;5. The concern of FWMK is that partial correlations
remove the overlap between X; and X, in estimating
the relation between X; and X;. We will demonstrate,
however, that this view is incorrect. That is, all the
variance of X; that X; and X, could explain is

explained using partial correlations, and so no
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Figure 1.

MULTIVARIATE BEHAVIORAL RESEARCH 995

:

A network of three variables (variables are nodes) or the regression of node X; on the predictors X; and X;. Part (a)

shows all variance that the predictors share with the dependent variable. Part (b) shows the contribution of X; to the explained
variance in regression (i.e.,, R%). Part (c) illustrates the variance that comes from each regressor separately. The shared variance is
removed from the contribution of the regressors to prevent bias in the associated coefficients.

information is lost. We provide two arguments that
show that no information is lost when using partial
covariances (or regression coefficients) with respect to
covariances. The first is that the partial covariance
matrix is a one-to-one correspondence (i.e., a bijec-
tion) with the covariance matrix. This implies that
you can go back and forth between the two worlds,
and that these partial covariance and covariance
worlds are basically the same. The second argument
uses the regression perspective and shows that the
explained variance (R?) contains all shared variance
from the predictors, and so nothing is lost.

FWMK’s conviction is that partial correlations only
capture the unique covariances (the shared variance
between X; and X3 that does not overlap with X,) but
not the shared covariances (the shared variance
between X, X,, and X3). If the partial correlation
indeed excludes the shared covariances, then the data
that come from a unidimensional latent variable
model (ULVM) should be associated with an empty
network (no edges), as there are no unique covarian-
ces in a ULVM. This result is crucial since we often
use instruments that are consistent with low-dimen-
sional or ULVM, such as IQ-tests, in psychology. If
partial correlations indeed only use the unique parts
of the covariances, networks based on the ULVM,
data of IQ-tests, for example, would at the population
level be empty and contain no edges. As a result, the

GGM is useless in the case of the ULVM, even at a
descriptive level, as it is unable to convey the most
basic observation in intelligence research, the positive
manifold. We agree that if this view is correct, the
future of GGMs applied to psychological data would
be dire.

It is hard to overstate the severity of the above con-
clusion about GGMs. However, it also suggests that
its premises must be wrong, as it is well-known that if
the data come from a unidimensional latent variable
model, the estimated network is going to be fully-con-
nected and not empty. That these networks are fully-
connected was theoretically and empirically shown in
the case of binary variables, using a connection
between binary latent variable models and binary net-
work models (Epskamp et al, 2018; Marsman et al,
2018, 2015), and was also proven in the general case
by, for example, Holland and Rosenbaum (1986). At a
minimum, this implies that there is an essential elem-
ent missing in the understanding of GGMs and partial
correlations, and this article aims to fill that gap.

The remainder of this article comprises three parts.
In the first part, we formally introduce the ULVM
and GGM and consider the role that partial correla-
tions play in the estimation of a GGM. In the second
part, we will analyze the theoretical relationship
between the GGM and the ULVM and show that one
indeed does expect to obtain a fully-connected
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Figure 2. The left panel shows a unidimensional latent variable model with observed variables X;, X5, X3 and X,, a scalar latent
variable #, and loadings 11, 2, 43 and A4. The e; on the left are the error terms for the observed variables. The right panel shows
the associated network model with partial covariances. All observed variables are connected to each other with partial covariance
parameter o4;/;, where —o! = T4 +1 (see Eq. (9) and further for details on the weights).

network from data that come from the ULVM. In the
third part, we revisit the relationship between linear
regression, the GGM, and partial correlation to prove
that the GGM estimated from partial correlations
indeed conveys the shared variance.

Models

In this section, we introduce the unidimensional latent
variable model (ULVM) and the GGM. We show how
the assumptions about the ULVM’s regression from
the latent variable to the observed variables leads to a
particularly simple form of the population covariance
matrix. We will use the expression that we obtain for
the covariance matrix to relate the ULVM to the
GGM in the next section. There, we will also show
that for the ULVM, observed partial correlations
would all be positive. That this proves our first point
that the GGM applied to data coming from a ULVM
will be fully-connected and not empty, relies on the
fact that estimating the edges in a GGM is equivalent
to computing the non-zero elements in the matrix of
partial correlations. We will show that determining
the matrix of partial correlations is equivalent to
obtaining the independence relations between varia-
bles in the network in this section, and provide a
small example to illustrate the principle.

The unidimensional latent variable model

The ULVM assumes that there is a single latent vari-
able 1 (a random variable) that can explain away the
correlations between the observed random variables
X1,X3,...,Xp. In other words, we have that X; and X;
are independent conditional on the latent variable 7.
This conditional independence implies that the correl-
ation between X; and X; is 0 given . This assumption

is often called local independence and is written as
Xi1uX;|n, where the symbol u stands for statistical
independence (Dawid, 1979). The relation between
each observed variable X; and the latent variable 7 is
often assumed linear, that is,

X; = /1,'114-61‘ (1)

where /; is the loading (regression coefficient) for the
relation between the observed- and latent variable,
and e; is the error (or residual if there is misspecifica-
tion). See Figure 2, left panel, for a graphical illustra-
tion of the model. We assume that both the observed-
and latent variables are continuous and have a joint
Gaussian distribution.

By considering covariances between the variables
given the linear model above we find intuitive notions
about what to expect from such a model. Suppose
that the mean and variance of the latent variable # are
t, and g, =1, respectively, and that the mean and
variance of the error e; are 0 and 1, respectively. We
assume that the errors of different variables are uncor-
related and that the errors are also uncorrelated with
the latent variable. These assumptions are

(a) E(e;) =0 and for i # j E(eie;) = 0,E(e}) = 1
(¢) E(n) = p, and E(y — )" =1

With these assumptions we find the following expres-
sion for the marginal covariance of variables X; and
Xj, i #J,
COV(X,‘,X]') = ]E(X, — )L,ﬂn)(X, — ;LJM”)
=E(4i(n — 1) + e)(4i(n — wy) + ) = Zidj.

If i=j, then we obtain var(X;) =/, +1. In other
words, the covariance matrix of the random variables
in the p vector x = (XI,XZ,...,XP)T is equal to the
p X p matrix

(3)



2 =ATE(n — )’ +E(ee’) = 44T +1, (4)

where I, is the pxp identity matrix and 4=
()vl,...,ﬂbp)T and e = (ey,....e,) are p vectors. In an
empirical analysis the interest is in estimating the
parameters A4 by fitting this expected variance matrix
to the sample variance matrix.

When we condition on the latent variable # we obvi-
ously obtain a different covariance matrix. We fix 5 to
any particular value (conditioning) and then determine
expectations. We find the following expression for the
conditional covariance of variables X; and Xj, i # j,

cov(X;, Xj | n) = E[(Xi — 2m)(X; — Ain) | n]
= E(eiej | 1) =0 5)

and the value 1 if i=j. This shows that conditional
on the latent variable # the correlations between any
of the observed variables is indeed equal to 0.

The Gaussian graphical model

What do we mean by a network or graphical model?
In the case where all variables have a joint Gaussian
(multivariate normal) density, we speak of a GGM. A
GGM refers to the correspondence between a picture
of a network and conditional independence relations.
In particular, the nodes of the network G = (V,E) in
V ={1,2,...,p} are associated with random variables
X1, X3, ..., Xp, and the edges of the network in E =
{(i,j) € V. x V :i—j} indicate that whenever varia-
bles i and j are neighbors (adjacent), i.e., i - j, then X;
is dependent on X; given all remaining variables
Xv\(ij3» where the set V\{i,j} is the set of nodes
1,2,..,p with the nodes i and j removed. For
Gaussian random variables, it turns out that determin-
ing that two variables are independent given all other
variables, is the same as checking if the partial correl-
ation between these two variables is equal to 0
(Lauritzen, 1996, Section 5.1.3). It turns out that the
matrix of partial covariances of all variables corre-
sponds exactly to the inverse of the (co)variance
matrix X of all variables X;, X;, ..., X,,. The partial cor-
relations can be obtained from the inverse covariance
matrix ' = ® and multiplying each off-diagonal
element by —1 and then dividing this by the product
of corresponding diagonal elements, i.e., the partial
correlation is

_®i'
COI'(X,',XJ' | Xv\{l’]}) = — 7 (6)

V@i
The inverse ' = O is often referred to as the con-
centration matrix. So, in a multivariate Gaussian
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distribution all we need to do is to determine the
zeros in the concentration matrix and we have found
our conditional independencies. Lauritzen (1996,
Proposition 5.2) showed that a zero in the concentra-
tion matrix corresponds to a conditional independ-
ence relation, i.e.,

Q;=0 = X;uXj|Xyyj- @)

Note that we condition on all remaining variables
in V\{i,j}. And so an edge i - j will be in the net-
work G if and only if X; is dependent on X; condi-
tional on all other variables in V\{i,j}. We could also
say that, given the set of variables in V, we can find
no alternative explanation for the dependence between
X; and X; (Pearl, 2001).

To illustrate the role of partial covariance (and cor-
relation) in the GGM, we consider a small example
with three nodes V ={1,2,3} and two edges E =
{1 —=2,1—3}. Suppose that we have the following
variance matrix ¥ and concentration matrix ® = X!

2 -1 -1 1 05 05
X=|-1 15 05 and ®@=105 1 0
-1 05 15 05 0 1

We notice that the variables X, and X3 have covari-
ance 0.5 (correlation p,; =0.5/1.5=1) but are not
correlated conditional on variable X; (partial correl-
ation p,3; = 0). The conditional independence can be
interpreted as having found an alternative explanation
for the correlation between variables X, and Xj,
namely their relation to variable X.

Thus, a GGM provides information on possible
alternative explanations for correlations. In other
words, if we find a zero partial correlation, then we
know that there is no unique connection between the
variables; if there is non-zero partial correlation, then
we know that no other variables can explain away the
obtained correlation.

3. The relation between the GGM and ULVM

An obvious question for any researcher considering
both networks and latent variable models is: What are
the similarities and how can I characterize them?
Here we consider the case of a ULVM and determine
what network corresponds to such a model. That is, if
a ULVM holds for the observed variables, then what
does this imply for a network of only observed varia-
bles? The answer is that we would obtain a complete
network in which all nodes are connected to each
other (see Marsman et al.,, 2018, for binary observed
variables). The associated network is shown in
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Figure 2, right panel. This result may seem counterin-
tuitive, especially if FWMK are correct that partial
correlations remove the variance that is shared among
variables in the network. In the ULVM, there is, in
principle, no unique variance, and all variance can be
attributed to a single (latent) variable. We will review
this idea later in more detail.

We only require the following standard assump-
tions about the latent variable model (Junker, 1993) to
obtain our result. The random variables # and X are
such that they satisfy

1. local independence: X; 1 X; | n forall i #jeV,

2. unidimensionality: n is a scalar, and

3. monotonicity: if n, > n, then P(X;|n;) > P(X; |
n,) forallje V.

Using these assumptions we obtain a marginal distri-
bution of the variables Xi,X),...,X, with variance
matrix (see the Appendix for a proof)

L= +1, (8)

which is exactly the same as the variance matrix that
we observed for the marginal distribution under the
ULVM in the unidimensional latent variable model
section. As we saw in the Gaussian graphical model
section, a network is obtained by taking the inverse of
Y, that is X! = ®, which we refer to as the concen-
tration matrix. The concentration matrix is (see the
Appendix)
1 T
0=I P IM . 9)

We now see that an off-diagonal element ®;; for i # j
is olidj, where —o ! = ATA+1. Hence, for the
ULVM ©; is in general non-zero. If ®; =0, then
A = 0 for some i € V and then the variable X; cannot
be an indicator variable for the latent variable. Hence,
we do not have a ULVM.

We illustrate Egs. (8) and (9)
(1,0.5,0.5)T. Then we obtain

2 05 05

using A=

=105 125 0.25 and
0.5 0.25 1.25
0.6 —-0.2 -0.2
e = —0.2 0.9 —0.1
—0.2 —-0.1 0.9

Computing the element ®;, using Eq. (9) with
ATA=1%+0.5240.5% = 1.5 gives
0.5

1-05=—-——=-02
1541 2.5

O()Llj,z = —

which is equivalent to element ®;, = —0.2 in the
inverse covariance matrix above. This also shows that
for any of the partial covariances ®;; to be 0, one of
the A; has to be 0. But, obviously, then indicator i is
not part of the ULVM.

This result is in line with that of Holland and
Rosenbaum (1986, Theorem 6). Holland and
Rosenbaum showed that a ULVM induces non-zero
partial correlations. Suppose that a latent variable
model satisfies 1-3 above, then Theorem 6 of Holland
and Rosenbaum (1986) shows that for any partition of
the nodes any two nodes are conditionally associated
given the other partition. This implies that the partial
correlations are all non-zero. Junker and Ellis (1997)
explain this by saying that the monotone and unidi-
mensional latent variable # induces so much “internal
coherence” among the observed variables, that the
covariation must be larger than 0. These results
underscore our concerns with the ideas of FWMK
about partial correlation networks.

Another result, given in Junker and Ellis (1997),
shows that when the number of variables that is con-
ditioned on is countably infinite, the covariation van-
ishes (vanishing conditional independence). This is
because an infinite set of highly related variables is an
exact (almost sure, in fact) representation of the uni-
dimensional latent variable (or the sigma-field associ-
ated with the set of variables conditioned on). In
other words, the latent variable # can be represented
by an infinite set of variables that are on equal footing
with all other variables (i.e., variables that have a simi-
lar relation to the latent variable as all others). This
result implies that only a network with an infinite
number of variables, where all variables would fit the
ULVM, will be empty, since in that case the condi-
tioning variables become a representation of the latent
variable. This can be seen from the matrix ® above,
since if there are infinitely many observed variables
and ), A7 does not converge, then the term
ATA — o0, and so © will tend to I, as p gets large
(see also Guttman, 1953, equation (7), for a simi-
lar result).

The GGM as a series of regressions

A GGM can be estimated by a series of regressions.
The reason is that the regression coefficients can be
written in terms of the concentration matrix (inverse
covariance matrix) of the nodes. Recall that ©;
denotes the partial covariance between variables X;
and X; with all other variables partialled out, and also
recall that if ®; = 0 this implies that X; and X; are



independent conditional on all other variables under
consideration. The regression coefficient fi,] can be
written in terms of the concentration matrix as
(Lauritzen, 1996, Section 5.1.3)
_ 9

Clearly, if ®; =0, then f; =0 as well. And so, by
inspecting the regression coefficients we can deter-
mine the conditional independencies that also hold
for the concentration matrix ®. In the Appendix we
provide a small example with three nodes to show
that these relations hold. Here, we use these relations
to show that the regression coefficients indeed explain
the dependent variable, which implies that the partial
correlations do use the shared variance.

The procedure of using a series of regressions to
obtain a GGM was first shown to lead to correct net-
works in Meinshausen and Bithlmann (2006) and is
more elaborately discussed in Bithlmann and van de
Geer (2011, Chapter 13). We start at any node i, and
use the associated random variable X; and then call
this node Y. Then we estimate the non-zero regression
coefficients f3;; for all other remaining nodes in V\{i}.
The notation f;; means we are thinking of the connec-
tion i« j in the network. So, we have a multiple
regression, where Y is variable X; and the other varia-
bles Xy (;y are the predictors

Y =fo+ fuXy + PpXot+ -+ B Xp + e (11)

where we exclude the predictor X; because we have
made that node the dependent variable Y. The non-zero
coefficients f3;; tell us which nodes j are in the neighbor-
hood of variable i, i.e., to which other nodes variable i
is connected. We do this for all nodes in V and then
combine the results because we have used both f; and
Bji» once with variable j being the predictor and once
with variable j as the dependent variable. We can use
the and rule or the or rule. In the and rule we say that
the edge i — j is present in the network whenever both
Bij # 0 and f; # 0. In the or rule we identify the edge
i - j whenever either f3; # 0 or f8; # 0.

The idea of estimating the inverse covariance
matrix can also be motivated by looking to identify
the joint probability distribution of the variables
X1, X,...,X,,. This requires aggregating across all con-
figurations of the random variables, which is compu-
tationally difficult. One way to make this easier is by
reducing the joint distribution into smaller parts and
instead of considering all variables simultaneously we
only have to consider joint distributions of a smaller
number of variables at a time. In the extreme case we
use a product of univariate conditional distributions.
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p(x) o< pr(x1 | xv\j1))p2 (32 | xv\j23) -+ Pp (% | X\ (p))
(12)

This is known as the pseudo-likelihood, because it is
proportional to the likelihood (Hyvarinen, 2006;
Nguyen, 2017). Each univariate conditional distribu-
tion then implies a multivariate regression. To see
this, let Y = X; as before and consider the conditional
expectation of Y given all remaining variables Xy

E(Y | Xy\(iy) = Bo + BuXa + BpXa + -+ + BpXp
(13)

This is clearly the regression equation which we con-
sider for each node i € V. Hence by considering all
univariate conditional distributions we are in fact
determining the pseudo-likelihood which is propor-
tional to the joint density. This idea is related to the
coupling of the cliques in the graph and the factoriza-
tion of cliques, and is called the Hammerlsey-Clifford
theorem (see, e.g., Lauritzen, 1996; Wainwright, 2019).

Partial correlations and explained variance
in regression

Since the GGM coincides with a series of regressions,
each node is explained by the remaining nodes in the
network. Specifically, at the population level, each
node is explained by its neighbors, and the others are
irrelevant in the sense that the other variables are
independent, given the neighbors. The reason that we
can consider the series of regressions the same as a
Gaussian graphical model is because of the relation
with the conditional covariances, as we saw in the
previous section. We first explain the relation between
the regression coefficients and the partial correlation
more precisely here. Then, we decompose the R
measure and then show with a small example and
some simulated data how the explained variance can
be (re)distributed among the predictors.

In regression the coefficients are often obtained by
ordinary least squares (see the Appendix) and R* is
calculated using these coefficients. Suppose we have
three variables X;, X, and X3, as in the example from
the introduction corresponding to Figure 1. We con-
sider X5 as the dependent variable in a regression, so
that X; and X, are predictors. If we assume that all
three variables have mean 0 and variance 1, then

we obtain the regression coefficient (see the
Appendix)
X )X - X ,X Y,X
ﬁ31:cor( 1,X3) — cor(Xy, Xp)cor(Y, X3) (14)

1 — cor(Xy, X,)*

where cor() is the correlation and 1 — cor(X;,X,)” is
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Table 1. Regression output of the small simulation with three
random variables.

standard (type II) projected (type I)

estimate std. error Cov(X;, X3) estimate std. error cov(X;, X3)
Xy 1.05327  0.09482 1.62573 143143 0.09310 1.62573
X, 207496  0.09863 5 2.39005 2.07496  0.09863 5 2.09377

ov(X;, X;) = 0.21633,R” = 0.8739 cov(Xy, X5) = 0.01290,R” = 0.8739

the conditional variance of X; given X,. This gives the
relation between the regression coefficient and the
partial correlation (see the Appendix and Anderson
(1958))

1 — cor(X1, X,)*

B3 >
1 — cor(X3,X5)

X1, X3) — X1, X X3, X
_cor( 1, X3) — cor(Xy, X;)cor(X;, X5) - (15)

\/1 — cor(Xl,Xz)z\/l — cor(Xs,X;)°

So the regression coefficient is a rescaling of the par-
tial correlation, where it is clear that both the regres-
sion coefficient and the partial correlation use the
conditional covariance between X; and X; given X,. It
is also clear from this formulation that in the coeffi-
cient the part of X, is taken out of the correlation
between X; and X;.

The fact that the partial covariances are obtained
from the covariances by taking its inverse provides
the first argument that shows that no information is
lost when using the partial covariances (or correla-
tions) to describe the relations between the variables.
This is because the covariance and partial covariance
are in one-to-one correspondence with each other.
That is, for each pair of variables with partial covari-
ance a (point in the space of the partial covariances)
there is a unique pair of variables with covariance b
(point in the space of covariances). Hence, we can go
back and forth from the space of partial covariances
and covariances (see the Appendix for a more formal
discussion of this).

The second argument that shows that no informa-
tion is lost by considering the partial covariances (or
partial correlations) comes from considering a GGM
as a series of regressions, and the associated multiple
correlation measure R* used in regression and in net-
works (Haslbeck & Waldorp, 2018). The definition of
R? is (see the Appendix)

Y P X, Y
T I

In other words, we can decompose the explained vari-
ance R’ into a term for each predictor separately.
From this decomposition and Eq. (14) it is clear that

the coefficient represents the unique contribution of
the predictor, but that the covariance between the pre-
dictor and the dependent variable (not a partial
covariance) co-determines the explained variance
in regression.

We consider the three node example of Figure 1.
Suppose that we take X; as Y, the dependent variable,
with the predictors X; and X,. Then we see that R? is
made up of the scaled covariance between each of the
predictors and the dependent variable
cov(X;, X3)/var(X3) multiplied by its respective regres-
sion coefficient f3;;. The explained variance part of X;
is therefore composed of the complete overlap
between Y and X (scaled by var(X3), c.f. Figure 1(b))
and the coefficient f85;. The contribution to R? of each
predictor is therefore proportional to its covariance
(overlap) with the dependent variable. Hence, if we
were to take out (partial out) the part of X; out of X,
we will not change R* but only redistribute the contri-
bution to R? of each of the predictors.

We illustrate the principle of R* and its decompos-
ition in Eq. (16) further with a small simulation. We
generate data according to

X5 =B Xa + BpXate

where we set the coefficients to ff;; =1 and f;, = 2,
respectively, and the error variance to 1. To introduce
a correlation (i.e., overlap) between the regressors X;
and X,, we express X, in terms of X, and an add-
itional error term

Xz = 0.2X1 + e

where the second error’s variance is also set to 1, so
that cor(X;,X;) = 0.2 because cov(X;,0.2X; +e;) =
0.2var(X;) + 0 because var(X;) = 1. We have simu-
lated n =100 cases from this model.

We start with standard regression, which is the
default in most statistical packages. The results for
the standard regression of X; on X; and X, are
shown on the left side of Table 1 (the R-syntax for
the simulation is in the Appendix). From Table 1
(left column), we see that the coefficients approxi-
mate the population values, and that the predictors
explain 87.39% of the response variable. We can
now verify the decomposition of Eq. (16). For this
example with three variables we have the decompos-
ition

ov(X,X3) 5 cov(Xa Xs)

31 \73\1'<X3) 32 @(X?,)

With the values in Table 1 and var(X;) = 7.63438,
we obtain

~2 ~




1.62573 2.39005
7.63438 7.63438
= 0.22429 + 0.64960 = 0.8739

R® = 1.05327

+ 2.07496

We see the different contributions of each of the pre-
dictors to R?, which depends on the combination of
the covariance (size of the overlap between predictor
and dependent variable) and the regression coefficient.
Each regression coefficient has the effect of other vari-
ables partialled out, and the contribution of the pre-
dictor to R? is determined by the overlap (without
anything partialled out) between X; and X; (and
scaled by the variance of X; in this example).

Next, we do the same but now we first partial out
the variance (overlap) of X; from X, before we enter
it in the regression. This corresponds to Figure 1(b).
We consider the regression of X3 on X; and X%,
where the projected variable ensures that
cor(Xy, X)) = 0. If we believe that R? leaves out com-
pletely the overlap between X; and X, (Figure 1(c)),
then the use of the projected predictor would increase
(or remain the same if there were no overlap) the per-
centage of explained variance, since X; now contains
this overlap. This type of regression is sometimes
referred to as type I sum of squares, while the former
(standard) regression is referred to as type II sum of
squares (Ip, 2001; Kennedy, 2002). The results for the
projected regression are shown on the right of Table 1
and reveals a higher coefficient for the first predictor
but the same percentage of explained variance. The
coefficient for X; is higher because we removed any
overlap between X; and X, from X,, and so we now
allow all variance of X; to be explained by Xj, as in
Figure 1(b). From Eq. (14) we clearly see that because
cor(X, X)) = 0, the coefficient (with the specific set-
tings of means of 0 and variances of 1) is the same as
the correlation between X; and X3; nothing of X} is
left to subtract from cor(X;, X3).

We verify the decomposition of the explained vari-
ance of Eq. (16)

A2 1.62573 2.09377
R =1.43143 ——— +2.07496 -————
7.63438 7.63438

= 0.30482 + 0.56910 = 0.8739

From this decomposition with X} instead of X, we
notice two things. First, the coefficient [331 increased
because the covariance (overlap) between X; and X‘g is
approximately 0 (see Table 1). From Eq. (14) this
implies that (almost) nothing is subtracted from the
covariance between X; and X; because cov(X;,X%) =
0.01290. So, the coefficient increased from 1.05327 to
1.43143. So, X; is allowed to explain more of the vari-
ance of Xs;. The second difference in the R?
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decomposition is that the covariance cov(X5,Xs) is
reduced from 2.39005 to 2.09377 because the common
part with X; is taken out of X, giving the variable X}.
These two changes lead to different decompositions in
R?. But, obviously, we have not changed the total vari-
ance (area) of X; explained by the predictors X; and
either X, or XJ. The only thing that has changed is
which predictor gets to explain the variance of X;.

Since in the projected regression we took out of X,
anything that was in common with X, and R* is
exactly the same, we must conclude that a standard
regression indeed explains all the variance that can be
explained by the predictors. That is, no shared vari-
ance is taken out.

Regularized regression and the GGM

Although the relation between regression, GGM and
networks is clear from the previous sections, in prac-
tice, regression is often performed with some alterna-
tive way that may change the relation with the
original network. Here we will focus on the least abso-
lute shrinkage and selection operator (lasso, or
¢y-norm) in regression. This regularization technique
takes the sum of the absolute values of the parameters
B as a penalty, ie., le |B;|. Because this function
is also minimized, the lasso shrinks the parameter val-
ues toward zero, or sets them to zero, depending on
the regularization parameter (Tibshirani (1996), but
see Blihlmann and van de Geer (2011) or Hastie et al.
(2015) for an excellent overview). It has been shown
that, given a set of assumptions, the lasso is consist-
ent, meaning that the correct parameters are obtained
in a specific asymptotic framework (e.g., Meinshausen
& Biihlmann, 2006; Wainwright, 2009; Bithlmann &
van de Geer, 2011; Waldorp et al.,, 2019). One of the
assumptions of the lasso is that the network is sparse,
i.e, in the situation of a network where nodes are
added at each step, the number of edges will always
remain bounded (the number of edges is in the order
of the number of nodes). For a dense network, how-
ever, the parameters will be poorly
(Waldorp et al, 2019). As a consequence for dense
networks, the regression parameters of the lasso are
inappropriate to use as scaled partial correlations
because many of the edges will have been set to 0,
while they should be part of the network. In the
extreme case discussed in this manuscript, the ULVM
corresponds to a fully-connected network, and so, the
lasso will incorrectly set several edges to 0. Although
this does not change the results of the previous

estimated



1002 L. WALDORP AND M. MARSMAN

sections, it does warrant careful consideration if the
network to be estimated is sparse or dense.

Concluding comments

In this article, we have refuted the belief that partial
correlations remove the shared variance in estimating
GGMs, as recently voiced by FWMK, and have shown
that all variance of the focal node that can be
explained by other nodes is explained. First, we
showed that if the data come from a ULVM, and
there is no unique variance, the estimated network is
fully-connected, and not empty, as FWMK would
make us believe. Secondly, we have revisited the rela-
tion between GGMs, partial correlations, and regres-
sion to show that partial correlations indeed do not
remove shared variance from the explained variance.

We have also established a formal connection
between the latent variable model and the GGM,
which is further evidence for broad connections that
exist between graphical models and latent variable
models. A particular consequence of these relations is
that reliability and replication issues for one model,
an unrestricted GGM, say, are also likely to be an
issue for the other. It is interesting to observe that the
critique of FWMK has focused on one of the two
models while advocating the other, which seems
contradictory given these formal results.

This incongruity leaves us with what we believe is
the most relevant issue, not mentioned by FWMK,
but certainly present between the lines: The network
model is wrong. The network model may indeed be
wrong, and this is worth discussing and investigating
scientifically. We believe that one of the most import-
ant ways to approach such a debate is by considering
what predictions a model makes and how this can be
verified or falsified empirically.
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Appendix

Here we provide the mathematical details and proofs for
the claims that have been made in the main text. We pro-
vide these details in the same order as in the main text.
First, we formalize the ideas about the marginal density of
variables under the ULVM. Then, we provide some details
regarding the relation between GGMs and regression. And
finally, we provide the details about the projection matrices.

The Marginal Distribution under the ULVM

We show that the marginal of the observed variables
over the latent variable is a fully-connected graph. We use
the assumptions and its consequences for the marginal dis-
tribution over the observed variables X, X5, ..., X, given in
the main text. This has already been shown for binary data
modeled by the Ising model (Marsman et al., 2018). Here
we show a similar result for Gaussian data. We do this by
assuming that what we observe is the marginal distribution
p(x) = [p(x| n)p(n)dn which results in all observed varia-
bles in x being connected.

We assume that there is a unidimensional latent variable
n that is Gaussian distributed with mean 0 and variance 1
(for convenience). This is Assumption 1 in the relation
between the GGM and ULVM section. Assumption 2 states
that conditional on # the p random variables in x are multi-
variate normal with mean Ay, where the vector A are the
loadings, and variance matrix I, (isotropic variance matrix).
Assumptions 3 from the relation between the GGM and
ULVM section (monotonicity) is not strictly necessary for
this derivation, but according to Junker and Ellis (1997)
monotonicity is required in order for the model to be
‘useful’, which we agree with. These assumptions together
imply that the conditional density of the observed values x;,
j=12,..,p is equal to

exp (5 (x= )" )

plx|n) = :

1
@n?
and that the prior distribution for the latent variable is
equal to

o) = @n) exp (~3)

The joint distribution p(x,%) = p(x | n)p(n) is then

1 1 1
) =———exp  — 3 (x— anx— )~ 1)
(27‘[)p+1
We use the unidimensional Gaussian integral

[ exp (—ax? + bx + ¢)dx = (27)"/? exp (b/4a + c).
Rewriting the joint distribution as

1 1 1
———exp| —=(ATA+ D +x"ip—-x"x
(2n)p+l 2 2

p(x,n) =

such that in the Gaussian integral a =1(ATA+1),b=x"4

and ¢ = —1x"x. Applying the Gaussian integral gives
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LRP(X» n)dn

1 1
S —— (;Ju&[z(ﬂz +1)]7" - ExTx>
rP(ATA+1)
Taking terms in the exponential function together yields the
marginal

1
Q) (ATA+1

1
p(x) = exp (— =x"(L,—(ATA+1)""24")x
) ( 2 ? )

This is a normal distribution for x with mean 0 and vari-
ance matrix ¥ = AAT + I, with inverse

LYy

MT+) =1, —
( 2 LY

which can be obtained by the Sherman-Morrison theorem
(e.g., Bilodeau & Brenner, 1999). It is easy to check that
this is the inverse
(AT + 1) (AT +1,) =
1 T A g
VRS VRS

.
I, + 447 —

and taking the last two elements together yields

ATi+1

I+ iA" — =1
r ATA+1 ’

The variance matrix ¥ = AAT +1, is positive definite
since we have the square term 4A". The determinant of X
is ATA+ 1.

We immediately see that the observed variables are all
correlated if all of the connections from the latent variable
1 to the observed values x in A are non-zero. In some spe-
cial cases (with measure 0) values in (}JVT—i—Ip)f1 could
cancel and become zero (e.g., Bihlmann & van de Geer,
2011, Chapter 13). It can also be seen that whenever the
number of variables increases to infinity, then the partial
covariances (and hence correlations) will become 0. Of
course, if this sum converges to y, say, then we find that
the partial covariance is 1 — (y + 1)71/1,-11» for the variables i
and j. For this to happen, infinitely many A7 will have to be
arbitrarily close to 0. This implies that the relation between
the latent variable and the indicator is 0, and so it cannot
be a ULVM.

Obtaining a GGM by Regressions

We can estimate the coefficients B; = (B, B> Bip)>
without f8;, of course, by using least squares. We often omit
the index i for node i € V because the procedure is generic
for all i in V. Then we minimize the squared residuals
(ordinary least squares)

lly = XBII> =D (n —xxB)’
P

where x; denotes the vector of p—1 predictors of nodes
V\{i} and the intercept (constant) for observation k, i.e.,

row k of the nxp matrix X. We then obtain the well-
known ordinary least squares estimate (see, e.g., Bilodeau &
Brenner, 1999, Chapter 5)

B=x"x)"'X"y
We subtract the main effect of the predictors in X and vy,
so that their means are 0, but keep the same names. We

can then immediately see that this estimate f§ can be rewrit-
ten as

B = var(X) 'cov(X, y)

where var(X) is the p X p variance matrix of the predictors
in X and cov(X,y) is the px 1 vector of covariances
between y and each x; for j € V\{i}. It is convenient to
think of the least squares estimate in this way because we
will couple the estimate to Gaussian graphical models
later on.

We assume that we modeled correctly, so that the resid-
uals e; are uncorrelated and have the unit variance across
observations, i.e.,

E(y | Xwiy) = Bo + BuXi + BoXe + -+ + BipXp

In a GGM we are interested in ® = X!, because if we
find @; = 0 then we have that X; u X; | Xy\(;; (Lauritzen,
1996). In fact, we have that Bij = —0;/0;. And so, if ﬁij =
0 then obviously, we must have that ®; =0, and vice
versa. So, by inspecting the regression coefficients, we are in
fact considering the concentration matrix.

For the random variables X; and Y and the predicted
value Y = 327 | X;By,, the squared multiple correlation R?
can be defined by

_ var(Y)
var(Y)

R* = cor(Y,Y)*

The variance of the predicted values can be written as
var(Y) = cov(>2?_ | XiBy;, Y). And  this gives the
decomposition

p
cov(X;,Y)
R = E b )
— Bri var(Y)

This and other decompositions are given in e.g,
Genizi (1993).

Relation between partial correlation and regression

Suppose we have three variables X;, X, and X;5. We con-
sider X5 the dependent variable, so that X; and X, are pre-
dictors, and we are mostly interested in the situation where
we partial out X,. If we assume that all three variables have
0 mean and variance 1, then we have that the conditional
variances are

var(X; | X;) = var(X;) — cor(X1,X;)* = 1 — cor(X;, X)
andvar(X; | X,) = var(X;) — cor(X3)X2)2 =1- cor(X3,X2)2
And the conditional covariance between X; and X; given
X2 is
cov(Xy, X5 | Xz) = cor(Xy, X3) — cor(Xy, Xp)cor(Xs, Xz)

We can now write the partial correlation in the well-
known version



o o COV(Xl,Xg, ‘ Xz)
312 =
2 ar(X, | Xo)\/var(X; | Xa)
_cor(Xy, X3) — cor(X;, Xy )cor(X, X;)
\/1 — cor(Xl,Xz)z\/l — cor(X3,X;)
and the regression coefficient fi;5 as

_cor(X,X3) — cor(Xy, X;)cor(Xs, X,)

31 —

1 — cor(Xy, X;)?

It is clear that the regression coefficient and the partial
correlation use the same information from the conditional
covariance cov(Xj,X; | X;) but that the scaling in the par-
tial correlation is also with respect to the conditional vari-
ance var(Y | X,).

Proof that 7! = ® is a one-to-one correspondence
with X

We discuss here that a random variable in R? can be
mapped from the space associated with partial covariances
to the space associated with covariances. Suppose we have a
standard normal random variable z € R?, i.e., it has mean
0 and variance matrix I,. For the the positive definite vari-
ance matrix X take its symmetric square root X'/ (e.g,
12 — UAY2UT, where AY? = diag(i}/z, ‘..,/l}l,/z) is the
diagonal matrix with the square roots of the eigenvalues
and U contains the p eigenvectors). Since X is positive def-
inite, all eigenvalues are > 0 and the inverse exists. And so
the inverse of T'/2 also exists. Let x = /22 such that
var(x) = X! are the partial covariances. Then y = Zx is a
normal random variable with variance matrix var(y) = X.
Hence, if ¥ is a one-to-one correspondence for variables x
associated with the partial covariances and y associated with
the covariances, then there is a unique relation between any
such points in those spaces and the two spaces are basically
the same (an isomorphism). We make this more precise in
the following.

Let V,W C R” be two linear subspaces. Then there is a
one-to-one correspondence (isomorphism) between V and
W obtained by the symmetric, positive definite linear trans-
formation X (a bijection). This implies that for each elem-
ent v € V there is a w € W, and you can go back and forth
between them using w = Zv and v = X 'w. In the frame-
work of networks, the matrix X is identified with the cova-
riances and X! =0© is identified with the partial
covariances. But because there is an isomorphism between
the spaces V and W obtained with the bijection X, the
spaces V and W can be considered the same (upon relabel-
ing points). A characterization of V and W being the same
(are isomorphic) is that they have the same dimension (i.e.,
same number of basis vectors). We associate V with the
partial covariances and W with the covariances. In the
example of the previous paragraph we may write x =
Y 122¢V and y=3xe€ W. If ¥ is a bijection that
respects the structure (see below), then the spaces V and W
are isomorphic; informally, the spaces are the same and
contain the same information.

We show that having an inverse ! = © (left and right
inverse) implies that X is a bijection between V and W and
vice versa, and for this linear transformation the structure is
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preserved, ie., Z(u+v) =Zu+ Zv and Z(av) = a(Zv) for
some o € R.

Suppose X is a bijection. Then it is injective, ie., if Zv =
v then v=V/, and it is surjective, ie., for each we W
there is a v € V such that v = w. We define a function ©
such that for any v € V with Zv=w we obtain Ow =v
(left inverse). Note that since X is injective, there is only
one such v. We also define ®' such that for any v € V with
v'Z = w' we obtain w'®' = v (right inverse). We imme-
diately find that ® = ©’ because

Ow=0(=v)=0EW o)) =O2)(we) =0'w

Now suppose we have a unique ® such that Ow =
w'®)" =v (left and right inverse). Then we have that
Ow = Ow implies w=X(Ow) = Z(Ow) =w/, showing
that X is injective. To show that X is surjective, choose any
w € W with ®w = v for some v € V. Then v = X(Ow) =
w showing that X is surjective.

The fact that the structure under the mapping X is pre-
served (homomorphism) is a direct consequence of linear
transformations. This completes the proof.

Projected Predictors and R?
The value used for regression R? is defined as

¥'Quy

'y
where Qy = I, — Px = X(X'X) 'X" is a projection matrix
(see, e.g., Bilodeau & Brenner, 1999; Schott, 1997). A pro-
jection matrix has the property that PxPx = Px (idempo-
tent) and P}T(:PX (symmetric). It can be verified that
Qx =1, — Px is also a projection matrix and is orthogonal
to Px, ie, PxQyx = 0.

The procedure introduced in partial correlations and
explained variance in regression section has the predictors
ordered so that we start with the first predictor x; and leave
that intact. Then we insert a new predictor x; = Q,x, such
that cor(x;,x5) =0, where Q, =1, —x;(x," x-lr and
Q, = I,,. We continue including new predictors x; such that
for each pair cor(x;,x;) = 0, for all predictors x; with i € I
and i<j in terms of entering the regression. This can be
defined recursively by Q;;; = Q;Q;_, - - - Q. This procedure
corresponds to the type I sum of squares (Ip, 2001;
Kennedy, 2002). Figure 1(b) shows that the area of x
remains as is, and that all of x; is taken out of x, by Q,x,.
This can be achieved in general by

(Q1,Qy, - Qp)diag(x1, X, ..., X)) = Qd(X)

where diag(x;, ..., x,) = d(X) is the np x p matrix with x;
on the diagonal and Q is the n x np matrix with the orthog-
onal projections Q; described above. With this notation we
can write the error as Qyy = Qye, where e is the residual
and Qy =1, — Qd(X)[d(X)"Q'Qd(X)] 'd(X)"Q" is the

n X n projection matrix orthogonal to X. We then have that

E(y'Qxy) = E(e'Qye) = tr(QuE(ee’)) = n —p

because we assumed that E(ee") = I,,. So for any reasonable
projection such that the rank of the predictors does not
change (i.e., X"X must be nonsingular, no predictors can be
correlated too highly), we obtain that the value for R?
remains the same for the projected and non-projected
regressions.

RP=1- 17)
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R-Syntax for the simulated data

n <-100
betal <-1
beta2 <- 2
sigma2 <- 1

set.seed(34)
noise <- rnorm(n)

x1 <- rnorm(n,sd=sigma2)
x2 <- 0.2*x1+rnorm(n,sd=sigma2)
y <- betal*xl +beta2*x2 +noise

fit <- Im(y ~ -14+x1+x2) #1.05327*x14+2.07496%x2
summary (fit) # R2 is 0.8738

(1.05327*cov(x1l,y) + 2.07496%cov (x2,y)) /var (y) # R2 decomposed 0.8738892

X <- cbind(x1)
Xc.proj <-diag(l,n) - X
x2p <- Xc.proj

cor(xl,x2) #0.201

cor(xl,x2p) #0.012

cor (cbind(y,x1,x2))

inv.cor <- solve(cor(cbind(x1l,x2)))
sgrt (diag(diag(inv.cor)))

fitp <- Im(y ~ -1+ x1 +x2p) # 1.43143%x1+2.07496%x2
summary (fitp) # R2 is 0.8738

(1.43143%cov(x1,y) + 2.07496%cov (x2p,y)) /var (y) # R2 decomposed 0.8738905
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