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ABSTRACT
Despite its potentials benefits, using prediction targets generated based on latent variable (LV)
modeling is not a common practice in supervised learning, a dominating framework for devel-
oping prediction models. In supervised learning, it is typically assumed that the outcome to be
predicted is clear and readily available, and therefore validating outcomes before predicting
them is a foreign concept and an unnecessary step. The usual goal of LV modeling is inference,
and therefore using it in supervised learning and in the prediction context requires a major con-
ceptual shift. This study lays out methodological adjustments and conceptual shifts necessary
for integrating LV modeling into supervised learning. It is shown that such integration is pos-
sible by combining the traditions of LV modeling, psychometrics, and supervised learning. In
this interdisciplinary learning framework, generating practical outcomes using LV modeling
and systematically validating them based on clinical validators are the two main strategies. In
the example using the data from the Longitudinal Assessment of Manic Symptoms (LAMS)
Study, a large pool of candidate outcomes is generated by flexible LV modeling. It is demon-
strated that this exploratory situation can be used as an opportunity to tailor desirable predic-
tion targets taking advantage of contemporary science and clinical insights.
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Introduction

With growing interest in personalized medicine and the
use of machine learning in medicine, developing risk pre-
diction and prognostic models has been drawing renewed
attention. If these models come with good accuracy, they
may facilitate faster and better informed prognosis and
treatment decisions, and therefore improved patient care.
They may also lead to optimized use of resources by min-
imizing the number of cases that require closer examin-
ation and prognosis by clinical experts.

In developing prediction models to be used in clin-
ical practice, the usual goal is to predict a single out-
come, which is observed in the sample used for model
development, but is unobserved and to be predicted
among new patients. In the sample used in model
development, abundant information is often available
not only on the baseline side, but also on the outcome
side. That is, we may have rich multivariate and longi-
tudinal outcome information gathered through various
outlets such as research studies and health care serv-
ices. However, having a simple univariate outcome is
critical, especially in using supervised learning methods,

because it lets us focus on handling of a large pool of
possible predictors of the outcome without worrying
about the outcome itself. What is ignored here is that a
single observed measure can be unreliable and can be
far from a good representation of a particular patient’s
true outcome status. An ideal solution to this situation
would be to create more reliable and valid outcome
variables using multivariate outcome information with-
out losing the simplicity of a single observed outcome.

The current practice of building prediction models
has much room for improvement in terms of utiliza-
tion of valuable outcome data. How do we effectively
organize and simplify complex outcome data and still
preserve its rich information? We consider latent vari-
able (LV) modeling as a promising way to achieve
these seemingly conflicting goals. Characterizing indi-
viduals using latent subgroups is particularly attractive
in the clinical context as they can serve as clinically
meaningful and interpretable summary measures of
complex multivariate information (e.g., HbA1c pat-
terns in Bayliss et al., 2011; substance use patterns in
Beseler et al., 2012; systolic blood pressure patterns in
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Joo et al., 2020). LV models’ flexible nature is a big
advantage in organizing complex multivariate infor-
mation. However, the same flexibility can also make
resulting models esoteric and subjective, which is not
desirable in risk prediction in medicine. Further, LV
modeling has not been used as a common tool for
building prediction models in the supervised learning
framework, and therefore does not have established
conventions that guide the process.

There have been some developments to improve
LV modeling and structural equation modeling by
incorporating the concepts and strategies from pre-
dictive modeling and machine learning. Cole and
Bauer (2016) discussed the importance of examining
the individual-level predicted values in the longitu-
dinal context to improve understanding (inference)
about the predictive relationship in theory-driven
models. In Brandmaier et al. (2013), regression tree
methods were introduced to combine exploratory and
confirmatory approaches with the goal of improving
model building. Our proposed learning framework is
unique in that it not only aims to benefit from
machine learning strategies, but also aims to provide a
framework that will facilitate integration of LV model-
ing in machine learning. That is, we incorporate
machine learning strategies to accelerate and improve
exploration using LV modeling. The LV modeling
results are then validated and organized to provide
better prediction targets that are ready to be used in
any supervised learning contexts.

In our previous studies (Jo et al., 2017, 2018), we
explored the possibility of building prediction models
by utilizing a LV strategy known as growth mixture
modeling (GMM, Muth�en & Shedden, 1999). These
studies showed the benefits and possibilities of using
GMM in unsupervised and supervised learning,
although much work is ahead to shift the interest
from inference to prediction, not only in GMM, but
also in LV modeling in general. Not to mention, a
systematic framework needs to be established for this
transition to be successful. In this study, building on
our previous work, we explore systematic ways of
integrating LV modeling into the supervised learning
framework and discuss necessary adjustments in both
frameworks. We will focus on LV modeling of longi-
tudinal outcomes as a concrete example motivated by
clinical research and practice. To demonstrate the
generality of the proposed learning framework, we
will include an unsupervised learning method called
model-based clustering (Bouveyron et al., 2019;
Scrucca et al., 2016) in our investigation. We will also
include K-means clustering, which is not model based,

but is the most commonly used clustering method.
The overall pipeline of our approach is shown in
Figure 1, which will be detailed in following sections
(a beta version of the matching R program will be
made available upon request).

Motivating example: the LAMS study

One of the studies that motivated our investigation is
the Longitudinal Assessment of Manic Symptoms Study
(LAMS). LAMS was designed to investigate phenomen-
ology, psycho-pathologic evolution, related conditions
and predictors of functional outcomes in children with
elevated manic symptoms (Findling et al., 2010;
Horwitz et al., 2010; Youngstrom et al., 2008). Children
aged 6–12 years and their parents were recruited from
outpatient clinics. Their primary outcome was a parent-
completed measure of a child’s mood symptoms: Parent
General Behavior Inventory-10-item Mania Form
(PGBI-10M) (Youngstrom et al., 2008). The study’s
emphasis on dimensional symptoms of mania and their
changes over time fundamentally differentiates LAMS
from other studies that have focused on diagnosis of
bipolar disorder and its risk. The key outcomes, includ-
ing manic (PGBI-10M) and anxiety (SCARED-P) symp-
toms, were measured every six months for 10 years,
leading to rich longitudinal outcome data. In developing
prognostic models, such longitudinal information is
largely underutilized, which is an unfortunate situation
as it may contribute to improved prognosis and person-
alized care of future patients.

In providing care for pediatric patients who present
to outpatient clinical care with concerns in elevated
manic symptoms, it is of great clinical importance to
predict the long-term pattern of their symptoms.
Whereas calculating risk of conversion to bipolar dis-
order has been previously conducted (Birmaher et al.,
2018), such attempt has not been made for predicting
progression of manic symptoms over time. Ironically,
the first hurdle to this development is the richness of
longitudinal data. It is not self-evident how to formu-
late a simple prediction target that best captures indi-
viduals’ longitudinal symptom patterns. Our study has
been motivated by this situation, where constructing a
reliable and valid prediction target that captures longi-
tudinal symptom patterns is the critical first step in
developing useful prediction models.

We are particularly interested in predicting manic
symptom patterns within the first two years, which is
regarded as a clinically useful and reasonable range of
prediction. Within this prediction range, Table 1
shows sample statistics of repeatedly measured PGBI-
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10M. Previous studies (Findling et al., 2010; Horwitz
et al., 2010; Youngstrom et al., 2008) have suggested a
clinical threshold that sets PGBI-10M � 12 as having
elevated symptoms of mania (ESM). A currently rec-
ommended way to construct a summary measure is to
apply this established threshold to each repeated
measure of PGBI-10M. The resulting summary label,
Z, is coded as 1 if any ESM is observed during 6 to
24months (i.e., elevated risk) and 0 otherwise (i.e.,
low risk). Taking advantage of long-term observations
in LAMS, we can create another summary measure,

Q, by defining future risk (consequence) as having
any ESM between 30 and 48months, which is outside
the targeted prediction range. Table 1 also shows clin-
ically relevant baseline measures, W (bipolar diagno-
sis, depression by CDRS-R, anxiety by SCARED-P)
and some demographic measures.

Step 1: LV modeling of multivariate outcomes

The first step in the proposed learning approach is to
generate simple outcomes using LV modeling. The

Figure 1. A 3-step learning pipeline with latent variable modeling.
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goal here is to create more reliable and valid outcomes
using multivariate outcome information without los-
ing the simplicity of a single observed outcome. We
are particularly interested in LV modeling methods
that classify individuals into clusters or latent classes,
which has been motivated by clinical diagnosis and
prognosis in practice. We employed two LV modeling
strategies, growth mixture modeling and model-based
clustering, which have been developed and used in
different fields without much overlap or comparison
between the two. We used these two distinct methods
with the intention of demonstrating the generality of
the proposed learning framework. We are also includ-
ing K-means clustering, which is not based on LV
modeling, but is the most commonly used clustering
method. We will not discuss details of K-means clus-
tering as it is a commonly used method that is well
covered in machine learning text books.

Both growth mixture modeling and model-based
clustering utilize finite mixture modeling, which
makes it possible to use the common framework for
the two methods. Let us consider data with d multi-
variate measures for the ith unit (individual i in our
application). That is, Yi ¼ ðYi1,Yi2, :::,YidÞ, which
applies to both LV modeling strategies we consider.
In a finite mixture model, the probability distribution
of Yi with J mixture components ðj ¼ 1, 2, :::, JÞ can
be expressed as

pðYijh, pÞ ¼ p1f ðYijh1Þ þ p2f ðYijh2Þ þ � � � þ pJ f ðYijhJÞ,
(1)

where hj is a vector of model parameters for the jth

class or mixture component, and pj is the proportion
of the population from the jth component
with

PJ
j¼1 pj ¼ 1:

Growth mixture modeling (GMM)

One of the LV modeling methods we will use to sum-
marize multivariate outcome data is growth mixture
modeling (GMM, e.g., Muth�en & Shedden, 1999),
which is a popular method of discovering latent tra-
jectory types. We will use a simple GMM setting given
our intention to demonstrate proof of concept of the
proposed learning framework. Focusing on five
repeated measures of manic symptoms (PGBI-10M) in
LAMS, we used a quadratic growth specification. The
outcome Y for individual i (i ¼ 1, 2, :::,N) at time
point t (t ¼ 1, 2, :::, d) conditioned on trajectory class
Ci ¼ j can be expressed as

YitjðCi ¼ jÞ ¼ g1ij þ g2ij Tt þ g3ij T
2
t þ eijt , (2)

g1ij ¼ g1j þ a01 Xi þ f1ij, (3)

g2ij ¼ g2j þ a02 Xi þ f2ij, (4)

g3ij ¼ g3j þ a03 Xi þ f3ij, (5)

where there are J possible classes (j ¼ 1, 2, :::, J). There
are three intercept parameters to capture change: ini-
tial status (g1j), linear growth (g2j), and quadratic
growth (g3j) for trajectory class j. The time measure
Tt reflects linear and T2

t quadratic growth. The meas-
urement errors eij ¼ ðeij1, :::, eijdÞ are assumed to be
normally distributed with eij � MNð0,Re). For the
random effects associated with growth parameters, we
used two variations: models with random intercepts
only (Varðf2iÞ ¼ Varðf3iÞ ¼ 0) and models with no
random effects (Varðf1iÞ ¼ Varðf2iÞ ¼ Varðf3iÞ ¼ 0).
We assumed that f1i � MNð0,RfÞ: To maintain iden-
tifiability in models with larger numbers of classes, we
imposed restrictions that Re is diagonal and that Re

and Rf do not vary across classes. The relationship

Table 1. Sample statistics of manic symptoms (PGBI-10M) and clinical validators in the LAMS study (N¼ 616 based on everyone
who has at least one PGBI-10M measure).
Variable N Min Max Mean SD

Repeated outcome measures within the prediction range
PGBI-10M at baseline 609 0 30 12.60 7.14
PGBI-10M at 6m 538 0 30 10.52 6.73
PGBI-10M at 12m 520 0 30 8.60 6.55
PGBI-10M at 18m 479 0 27 8.43 6.10
PGBI-10M at 24m 464 0 30 8.15 6.60

Elevated risk within the prediction range based on a clinical cutpoint (concurrent validator Z)
Any PGBI-10M � 12 during 6� 24 m 607 0 1 0.53

Elevated risk outside the prediction range based on a clinical cut-point (consequence Q)
Any PGBI-10M � 12 during 30� 48 m 503 0 1 0.38

Clinically relevant baseline variables (antecedents W)
Bipolar diagnosis 616 0 1 0.23
Depression symptom (CDRS-R) 616 17 73 34.77 10.86
Anxiety symptom (SCARED-P) 607 0 69 17.82 13.50

Other baseline characteristics
Female 616 0 1 0.32
Medicaid 616 0 1 0.43
Age 616 6.1 13.2 9.39 1.92
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between the growth factors and covariates X is cap-
tured by the vectors of regression coefficients a1, a2,
and a3, which may also vary across trajectory classes.

The probability of subject i belonging to a certain
trajectory class (pij ¼ PrðCi ¼ jÞ) may depend on the
influence of covariates. The multinomial logit model
of pij conditioned on baseline covariates Xi is
described as

logitðpij j XiÞ ¼ c0j þ c01j Xi (6)

for j ¼ 1, 2, :::, ðJ � 1Þ, where c1j is a vector of multi-
nomial logit regression coefficients. In the current
example, we focus on models without covariates,
although we keep Xi in all equations for the generality
in our presentation. The array of candidate models
will simply expand in our framework as we include
covariates and/or consider various model specifica-
tions with regard to random effects, residual varian-
ces, trajectory shapes, and other auxiliary variables.

For estimation of GMM models, we used max-
imum likelihood (ML) estimation via the expectation
maximization (EM) algorithm (Dempster et al., 1977;
McLachlan & Krishnan, 1997). For ML-EM estima-
tion, we used Mplus program (Muth�en & Muth�en,
1997–2017), a popular latent variable modeling pro-
gram. Estimating GMM models with ML-EM is a
well-established practice, especially with the common
models used in our application. For interested readers,
directly relevant details can be found in our previous
papers (Jo et al., 2017, 2018).

In the proposed learning framework, the only
information we will actually use from GMM estima-
tion is the posterior class probabilities generated in
the E step, where latent trajectory class Ci is handled
as missing data. The posterior class probability of

subject i belonging to class j conditioned on observed
data ðY i,XiÞ and the current estimates of model
parameters ðc�, a�, g�j ,R�

f ,R
�
e Þ in the iterative proced-

ure is expressed as

pijðc�, a�, g�j ,R�
f ,R

�
e Þ

¼ pijðc�Þf ðY i j Ci ¼ j, Xi, a�, g�j ,R
�
f ,R

�
e ÞPJ

j0¼1pij0 ðc�Þf ðY i j Ci ¼ j0, Xi, a�, g�j0 ,R
�
f ,R

�
e Þ
, (7)

where gj ¼ ðg1j, g2j, g3jÞ, a ¼ ða1, a2, a3Þ,
PJ

j¼1 pijðcÞ ¼
1 for i ¼ 1, :::,N, and pijðcÞ ¼ PrðCi ¼
jjXi, c01, c11, :::, c0J , c1JÞ: Once the ML-EM procedure
reaches the optimal status, the above posterior class
probability of subject i belonging to class j can be
seen as valuable summary information that character-
izes each individual.

Using the full LAMS data, we estimated a series of
GMM models with varying numbers of classes. We
increased the number of classes until any of the Re

and Rf estimates in any of the classes was not positive
definite or any of the classes had less than 10 individ-
uals based on their most likely latent class member-
ship. We used ample starting values to avoid potential
convergence at local maxima. Excluding one-class
models, a total of 13 models with (6 models with 2–7
classes) and without (7 models with 2–8 classes) ran-
dom intercepts met these conditions. An example of
GMM results (mean trajectories) with 8 classes with-
out random effects is shown in Figure 2.

Model-based clustering (MBC)

Another method of LV modeling we will use to sum-
marize multivariate outcomes is model-based cluster-
ing (Bouveyron et al., 2019; Fraley & Raftery, 2002;

Figure 2. Examples of clustering-based risk labels and their parent models.
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Scrucca et al., 2016). Model-based clustering (MBC) is
a line of method that focuses on identification of
latent classes (clusters) based on finite mixture model-
ing of multivariate normal distributions. In principle,
GMM is also a type of model-based clustering.
However, GMM has not been incorporated into the
tool box of unsupervised learning strategies, and
therefore, it is not well known or commonly used in
machine learning. MBC is a more widely known tool
for unsupervised learning, although it is not com-
monly used in psychological and behavioral sciences.
Whereas the signature feature of GMM is modeling of
longitudinal trends, the signature feature of the cur-
rently known MBC is the use of geometric constraints
on the covariance matrix of multivariate data. Other
than this difference, GMM and MBC basically share
the same analytical (finite mixture modeling) and esti-
mation (ML-EM or Bayesian) strategies.

In MBC, without any parameters to model the lon-
gitudinal trend, the multivariate data Yit

(t ¼ 1, 2, :::, dÞ conditioned on class Ci ¼ j can be sim-
ply expressed as

YitjðCi ¼ jÞ ¼ gjt þ eijt , (8)

where various geometric constraints on the variance/-
covariance matrix of eijt are the key to the identifica-
tion of latent classes (clusters). If the distribution is
univariate, gj is interpreted as the mean for the jth
mixture component, and r2j as the associated variance.
For the covariance matrix (Rj) of multivariate data,
there are several types of geometric constraints that
can be imposed on volume (equal, variable), shape
(equal, variable), and orientation (equal, variable, axis-
aligned) of the ellipsoidal distribution. Such param-
eterization is based on an eigen-decomposition of the
form Rj ¼ kjDjAjD0, where kj is a scalar controlling
the volume of the ellipsoid, Aj is a diagonal matrix
specifying the density contours, and Dj is an orthog-
onal matrix which determines the orientation of the
ellipsoid (from Scrucca et al., 2016). More details on
these types can be found elsewhere (Bouveyron et al.,
2019; Lebret et al., 2015; Scrucca et al., 2016). Recall
that we used relatively simple constraints for the
covariance matrix for the GMM model described in
(2)–(5). Instead, we used multiple intercept (or mean)
parameters (i.e., g1j, g2j, g3j) to explicitly model the
longitudinal trend.

For ML-EM estimation of MBC models, we used R
package mclust (Scrucca et al., 2016), which has 14
types of constraints on the covariance matrix (EEE,
EEI, EEV, EII, EVE, EVI, EVV, VEE, VEI, VEV, VII,
VVE, VVI, VVV). The posterior class probability of

subject i belonging to class j conditioned on observed
data ðY iÞ and the current parameter estimates ðg�j ,R�

j Þ
in the iterative procedure can be expressed as

pijðg�j ,R�
j Þ ¼

pijf ðY i j Ci ¼ j, g�j ,R
�
j ÞPJ

j0¼1pij0 f ðY i j Ci ¼ j0, g�j0 ,R
�
j0 Þ

: (9)

Using the LAMS data, we estimated a series of
MBC models using all 14 types of geometric con-
straints allowing up to 19 classes. We obtained a total
of 135 MBC models with 2–19 classes. Figure 2 shows
an example of MBC results with 2 clusters with the
VVI restriction, where VVI stands for a diagonal dis-
tribution with varying (V) volume across classes, vary-
ing (V) shape, and coordinate axis-aligned (I)
orientation.

Reorienting LV modeling for prediction

Behavioral and social sciences have a long history of
using LV modeling as a flexible tool for building the-
oretical models focusing on inference. In this trad-
ition, using LV models in developing prediction
algorithms and deploying them in actual clinical prac-
tice has not been a common goal. Focusing on predic-
tion instead of inference implies a significant shift in
LV modeling, requiring a system that effectively con-
nects LV modeling with supervised learning, a domi-
nating approach for developing prediction algorithms.

In this article, we intend to outline a foundational
framework that will facilitate integration of LV model-
ing in supervised learning. In particular, we are inter-
ested in the utility of LV modeling as a way of
generating improved prediction targets (outcomes,
responses, outputs). Focusing on this utility, we lay
out necessary adjustments to reorient LV modeling
for supervised learning. Specifically, we aim for (1)
generation of simple outcomes and (2) systematic val-
idation and selection of generated outcomes.

Simple latent outcomes

A promising role of LV modeling is to generate sim-
ple outcomes that effectively summarize complex
multivariate information. In the examples shown in
Figure 2, various latent class solutions differently sum-
marize repeated outcome measures. However, even
this level of organization may not be enough in devel-
oping prediction models. For example, in LAMS, sep-
arating out patients who would maintain moderate
levels of symptoms (low risk) early on is critical in
planning optimal treatments, better allocating resour-
ces, and reducing patient burdens. In this context,
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categorizing patients into fine-grained symptom tra-
jectory patterns and predicting them is neither prac-
tical nor necessary. Therefore, this step may require
further targeting and simplification so that the gener-
ated outcomes are better aligned with practical pur-
poses. Not to mention, such simplification will make
the generated outcomes easier to handle in supervised
learning.

In line with LAMS, we will focus on dividing indi-
viduals into two coarsened groups of trajectory classes.
For example, in the 8-class GMM solution in Figure
2, the top six classes can be coarsened into one group
and the bottom two classes into the other group. The
total number of possible two-group splits
(s ¼ 1, 2, 3, :::, S) in each GMM or MBC model
(m ¼ 1, 2, 3, :::,M) can be simply calculated as S ¼
2J�1 � 1, where J is the number of classes in the
model.

At the individual level, splitting or coarsening of
clusters is straightforward when each person belongs
to only one cluster. When using K-means, each per-
son can be categorized into one of the coarsened
groups his or her cluster belongs to. When using a
cutpoint, each person can be categorized by simply
applying a cutpoint (e.g., PGBI-10M � 12 as elevated
risk in LAMS) to one of the observed outcome meas-
ures (e.g., at 24months), or to the maximum or aver-
age of all targeted outcome measures (e.g., at 6, 12,
18, and 24months). When using LV modeling or
model-based clustering, splitting of clusters can be
done using the posterior class probabilities from (7)
or from (9). For example, in a 8-class model, person i
has a set of posterior class probabilities
ðpi1, pi2, pi3, pi4, pi5, pi6, pi7, pi8Þ that can be grouped into
two in 127 ways (S ¼ 28�1 � 1 ¼ 127). Based on
model m and splitting method s (s ¼ 1, 2, 3, :::S), let
pms
i stand for the coarsened posterior probability of
person i belonging to the first group (e.g., pi3 þ pi4 þ
pi5 þ pi6 þ pi7 þ pi8 in gmm-8 in Figure 2) and 1�
pms
i for the second group (e.g., pi1 þ pi2 in gmm-8 in
Figure 2).

One simple way to utilize coarsened posterior class
probabilities is to create a binary label Lms

i by dichoto-
mizing pms

i : That is,

Lms
i ¼ 1 if pms

i � 0:5
0 if pms

i < 0:5 :

�
(10)

which results in S binary variables that can be used as
output variables in subsequent supervised learning
and in building prediction models. We will use this
strategy to simplify comparisons across soft clustering
(GMM, MBC), hard clustering (standard K-means),

and cutpoint-based categorization methods. However,
when using soft clustering, it is in principle possible
to account for uncertainty in cluster assignment (Jo
et al., 2017).

Step 2: Systematic validation with explicit
validators

The targeted utility of LV modeling in our context is
to generate simple outcomes to be used in prediction.
The results of LV models can be further organized in
line with our clinical intention (e.g., low vs. elevated
risk), leading to simple and practical outcomes.
Having simple output variables is a big step toward
supervised learning. However, being simple does not
guarantee the validity of the outcomes, which in fact
applies to both observed and LV-based outcomes. As
shown in the LAMS example, LV modeling can gener-
ate a large pool of candidate outcomes in the absence
of known truth, which can be viewed as a big draw-
back. However, the same situation can be viewed as
an opportunity to tailor the most desirable prediction
targets based on multiple criteria. Observed and cut-
point-based measures do not possess such flexibility,
which is exactly why we propose the use of LV mod-
eling as a way of generating improved output
variables.

Combining supervised learning and psychometrics
traditions

In supervised learning, a large number of candidate
models are systematically evaluated in terms of direct
measures of success such as prediction or classifica-
tion accuracy (Hastie et al., 2009). This is possible due
to the simple structure of considered models (predic-
tors and the predicted). It is typically assumed that
the outcome to be predicted is clear, simple, and read-
ily available, which lets us focus on the predictor side
and assessing how accurately and stably various com-
binations or subsets of predictors predict the outcome.
What is different about our scenario is that we are
trying to validate outcomes generated based on LV
modeling. From the perspective of supervised learn-
ing, validating outcomes before predicting them is a
foreign concept and an unnecessary step.

In psychometrics, it is a long tradition to question
the validity of measured outcomes. Many different
concepts of validation have been developed in psycho-
metrics to enhance validation of tests or measures
that are intended to capture true status of outcomes
that are hard to quantify such as intelligence, aptitude,
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and various psychiatric outcomes. An LV-based out-
come can be simply thought of as a new test or a
measure that needs validation before it gets presented
as a competitive alternative. Validation is particularly
important here as it gives LV-based outcome meas-
ures concrete meanings by connecting them with sci-
entifically or clinically meaningful validators. Further,
validation can serve as a selection tool, which is crit-
ical in sorting out the best among the large pool of
candidate outcomes. However, using validation as a
selection tool is not a common practice in developing
new tests because we do not normally develop many
tests at the same time. In our context, a large pool of
LV-based outcomes are generated, creating a new situ-
ation for the traditional validation practice in
psychometrics.

In the new validation framework, we combine the
traditions of supervised learning and psychometrics.
The relationship between clinical validators and LV-
based outcomes fits well in the prediction framework,
meaning that we can approach outcome validation as
a supervised learning task. What is nice about this
approach is that it naturally uses validation as a selec-
tion tool, which is critical in our scenario with a large
pool of candidate outcomes. Selecting the best out of
many possible output variables is not a typical use of
supervised learning, which focuses more on the pre-
dictor side. However, with some conceptual shifts, the
existing machinery of supervised learning is basically
ready for validation of LV-based outcomes. Making
the validation process automation-ready is also
important in that it will encourage outcome validation
and the use of LV-based outcomes in building predic-
tion models and in supervised learning in general.

In line with the psychometrics tradition, we will
use well-structured validation with multiple criteria.
Specifically, we will use clinically meaningful valida-
tors (e.g., antecedent, concurrent, and consequent vali-
dators) selected by experts in clinical and
psychometrics fields. There are several advantages of
validating and selecting outcomes based on these clin-
ically meaningful validators. Given the exploratory use
of LV modeling in our context, using explicit valida-
tors is probably the simplest and fastest way to evalu-
ate and narrow a large pool of constructed outcomes.
The selected LV-based outcomes will be closely
aligned with contemporary science and clinical prac-
tice, leading to easy interpretation and clear commu-
nication across all involved parties (outcome
developers, prediction model developers, clinical
researchers, practitioners, and patients). Focusing on
the LAMS context, we chose three types of validators

targeting to identify latent outcomes that well capture
long-term progression of manic symptoms.

i. Concurrent validator (Z): This is a primary vali-
dator that ensures that developed measures are
closely related to what is currently used and
well-accepted. In developing new tests or meas-
ures, it is a typical practice to first examine the
concurrent validity by correlating a new test
(e.g., a geriatric depression test) with a widely
used test (e.g., a general depression test). In the
LAMS example, we created a concurrent valida-
tor (Z in Table 1), by applying an established
clinical cutpoint (any or maximum PGBI-10M �
12 as elevated risk) to all repeated measures
within the prediction range (6 to 24 months).

ii. Consequence (Q): Consequences are future out-
comes that are supposed to be correlated with
the developed tests or measures. In our LAMS
example, this is distal future risk beyond the
timeframe of prediction interest. To create this
variable, we applied the same clinical cutpoint
(any or maximum PGBI-10M � 12 as elevated
risk) to all repeated measures between 30 to 48
months (Q in Table 1).

iii. Antecedents (W): These are clinically relevant
variables that precede and are supposed to be
correlated with the measures or tests that are
being validated. In the LAMS example, our clin-
ical experts identified three variables (bipolar
diagnosis, anxiety by SCARED-P, depression by
CDRS-R, shown in Table 1) as directly relevant
clinical antecedents, which will further validate
candidate risk labels.

Toward automation

In developing prediction models, using LV-based out-
comes is not a well-accepted practice despite its great
potentials. The flexible nature of LV modeling is a big
advantage in organizing complex multivariate infor-
mation, although can also make resulting LV-based
outcomes look subjective and esoteric. Having a struc-
tured validation plan using explicit clinical validators
dramatically changes this situation. Integrating this
validation concept from psychometrics into supervised
learning further solidifies the possibility of systematic
validation of LV-based outcomes. This means that
automation of the validation process is possible
guided by experts’ knowledge and clinical practice.

The association between an LV-based output vari-
able from (10) and each set of validators can be put
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in the prediction framework using logistic regression
as

logitðpLms
i ðZiÞÞ ¼ ams

Z0 þ ams
Z1 Zi, (11)

logitðpLms
i ðQiÞÞ ¼ ams

Q0 þ ams
Q1 Qi, (12)

logitðpLms
i ðWiÞÞ ¼ ams

W0 þ ams
W1 W i, (13)

where pLms
i ðZiÞ ¼ PrðLms

i ¼ 1jZiÞ, pLms
i ðQiÞ ¼ PrðLms

i ¼
1jQiÞ, and pLms

i ðW iÞ ¼ PrðLms
i ¼ 1jW iÞ denote the

probability of person i belonging to the first category
of binary label Lms

i as a function of Zi, Qi, or W i:

With a single clinical cut-point (PGBI-10M � 12 as
elevated risk), both Zi and Qi are binary (1¼ elevated
risk, 0¼ low risk). For simplicity, we put Qi on the
right side of equation like the other validators. In
principle, Qi should be predicted by Lms

i , although
which one becomes the predictor does not matter
here as we are looking at one to one association.

The estimated pLms
i ðZiÞ from (11) can be categorized

to form a predicted binary label for individual i as

L̂
ms
i ðZiÞ ¼ 1 ðelevated riskÞ if p̂Lms

i ðZiÞ � 0:5
0 ðlow riskÞ if p̂Lms

i ðZiÞ < 0:5,

�

(14)

where we can now label the two categories as low and
elevated risk. This is possible because of the use of a
concurrent validator (Z) based on observed outcomes.
In the same manner, we can also formulate L̂

ms
i ðQiÞ

from (12) and L̂
ms
i ðW iÞ from (13).

Then, we can calculate the degree of agreement
between the candidate label from (10) and the esti-
mated label from (14). We used Cohen’s j (Cohen,
1960) as a conservative measure of agreement between
two binary variables taking into account the agree-
ment occurring by chance, which is particularly
important when evaluating candidate labels with con-
siderably different proportions. To enhance our valid-
ation, we used K-fold cross-validation (CV) to take
into account generalization error (variation across
samples), which is a common practice in supervised
learning, although has not been used until recently in
the psychometric validation context (Jo et al., 2017,
2018). Combining these traditions, cross-validated
Cohen’s j for a candidate label Lms using Z as a vali-
dator can be calculated averaging across K folds
(f ¼ 1, 2, 3, :::,K) as

CVZms
j ¼

XK
f¼1

jZms
f =K : (15)

where jZms
f is Cohen’s j for the f th fold when we use

Z as a validator. In the same manner, we can calculate
CVQms

j and CVWms
j when using Q or W as a validator.

Specifically, in the LAMS example, we used 10-fold
CV. The full sample is randomly divided into 10 equal
size subsamples (f ¼ 1, 2, 3, :::, 10). We set aside one
subsample (f th fold) to be used as a validation sample.
The rest of the subsamples (training data) are used to
estimate the association between each set of clinical
validators and each candidate label, shown in (11)–
(13). The parameter estimates (logit coefficients) were
then applied to the validation sample (f th fold) to
obtain each person’s predicted label when the model
estimates using the training data are applied to a data
set that is not used to get those estimates. The degree
of agreement between a candidate label from (10) and
the estimated label from (14) was measured using j.
This process is repeated and averaged over K (¼10)
folds as shown in (15).

The associated standard error for (15) can be calcu-
lated considering the variance across K folds as

SEZms
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðjZms

1 , jZms
2 , :::, jZms

K Þ
q

=
ffiffiffiffi
K

p
, (16)

where jZms
K is Cohen’s j for the Kth fold when using

model m, splitting method s, and validator Z. In the
same manner, SEQms

j and SEWms
j can be calculated

when using Q or W as a validator. It is also possible
to account for the uncertainty in cluster assignment
when soft clustering methods, such as GMM and
MBC, are used (Jo et al., 2017).

Validation results in the LAMS example

We applied the proposed validation method to the
LAMS example, where GMM generated 367 binary
outcome labels with the intention of capturing low
and elevated risk trajectory types. Based on MBC with
14 types of covariance constraints, 954,755 binary out-
come labels were generated. Based on K-means clus-
tering with up to 13 clusters, 6,142 labels were
generated. Additionally, we validated four cutpoint-
based labels including the concurrent validator Z. We
used three sets of validators (Z,Q,W) to triangulate
good outcome labels that are aligned with expert
knowledge and intended clinical utility. In LAMS, we
are particularly interested in separating out low-risk
patients early on.

Given the defining role of the concurrent validator
(Z), we first selected 10 best candidate labels from
each method based on their association with Z (i.e.,
CVZms

j ). Then, we eliminated those that are worse
than the best based on all accounts (i.e., association
with Z, Q, and W). Using this simple rule, we selected
two best outcome labels from each method. An alter-
native would be to average association measures
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across three validators with equal weights. Another
alternative would be to focus more on Q (future risk),
which will lead to selection of labels that are good
predictors of distal outcomes. The choice among these
rules depends on the intended utility of generated
labels. In the LAMS example, we focus more on Z
given our interest in generating outcome labels to be
used as output variables in developing prognostic
models and algorithms.

The validation results are shown in Table 2. First
of all, the results clearly show the benefits of using
clustering, both LV-based (GMM, MBC) and K-
means-based. The cutpoint-based labels generally
show weaker association with all clinical validators.
Even the primary validator (Z) shows weaker associ-
ation with the rest of validators (Q,W). It is also
shown that cutpoint-based labels categorize much
fewer patients as elevated risk. The difference in the
proportion is 20% or more from the primary validator
Z, indicating that too many patients are categorized as
low risk. Given the goal of safely separating out low-
risk patients, cutpoint-based labels are considerably
misaligned with the clinical intention, implying missed
opportunities for proper early treatments. As dis-
cussed earlier, LV modeling and clustering methods
can generate a large pool of candidate labels, which
makes it possible to select tailored labels that are well-
aligned with clinical validators. Cutpoint-based labels
lack such flexibility.

Table 2 also shows that the validation results are
remarkably comparable across different clustering
methods despite their distinct approaches. Based on
the top binary labels (gmm-8, vvi-2, kmeans-10), the
agreement between GMM and MBC is 94.6%,
between K-means and GMM is 94.6%, between MBC
and K-means is 96.1%. Across the three methods,
92.7% of individuals are consistently labeled (either
as elevated or as low risk). Such agreement is not
surprising given that the labels shown in Table 2
have been already selected out of a very large pool
of candidate labels based on the same clinical valida-
tors (Z, Q, and W). One may still attempt to choose
one best label for the intended purpose, perhaps by
examining how mean trajectories are divided into
low and elevated risk (as shown in Figure 2), or by
examining individual patients that showed any dis-
agreement in labeling across methods (7.3% of the
LAMS sample).

Table 3 shows some examples of disagreement
across different methods. We also included experts’
opinion, which is based on the majority vote from
three clinical experts. Patients A and B are labeled as
elevated risk by all methods except in the cutpoint-
based method using the average PGBI-10M. Their
averages are less than 12 even though some scores are
well over 12. Their scores are also trending up, which
is a concerning pattern from the experts’ point of
view. Patients C and D are labeled as low risk by all

Table 2. Validation of risk labels based on their association with clinical validators.

Clustering- or cutpoint-based %Elevated
Association with clinical validators (j�)

risk labels�� risk Z: concurrent Q: consequent W : antecedent

GMM-based
gmm-8 (6 vs 2 classes) 50.8 0.77 (0.75, 0.80) 0.47 (0.44, 0.50) 0.33 (0.31, 0.36)
gmm-7 (5 vs 2 classes) 46.4 0.75 (0.72, 0.78) 0.51 (0.48, 0.54) 0.31 (0.28, 0.34)
MBC-based
vii-2 (1 vs 1 class) 53.2 0.80 (0.78, 0.82) 0.46 (0.43, 0.50) 0.33 (0.30, 0.36)
vei-9 (5 vs 4 classes) 48.7 0.77 (0.75, 0.78) 0.50 (0.47, 0.53) 0.30 (0.27, 0.34)
K-means-based
kmeans-10 (5 vs 5 classes) 50.0 0.76 (0.73, 0.78) 0.48 (0.45, 0.51) 0.33 (0.30, 0.37)
kmeans-2 (1 vs 1 class) 44.3 0.70 (0.68, 0.73) 0.50 (0.47, 0.53) 0.33 (0.29, 0.37)
Cutpoint-based
PGBI-10M at 12m � 12 31.7 0.57 (0.51, 0.62) 0.41 (0.36, 0.45) 0.18 (0.13, 0.23)
PGBI-10M at 24m � 12 26.5 0.44 (0.42, 0.46) 0.40 (0.35, 0.45) 0.11 (0.06, 0.15)
Z† (any PGBI-10M, 6–24m � 12) 53.0 . 0.41 (0.37, 0.45) 0.26 (0.21, 0.32)
average ‡ PGBI-10M, 6–24m � 12 30.3 0.56 (0.53, 0.59) 0.48 (0.44, 0.52) 0.18 (0.15, 0.22)
� Cohen’s j was calculated as a measure of association according to (15) by averaging across 10 folds (CVZms

j , CVQms
j , CVWms

j ). In parentheses are shown
CVZms

j ± SEZmsj , CVQms
j ± SEQmsj , and CVWms

j ± SEWms
j :��Parent GMM (growth mixture modeling) models used to generate risk labels were estimated using the Mplus program (Muth�en & Muth�en, 1997–2017).

For estimation of parent MBC (model based clustering) models, we used R package mclust (Scrucca et al., 2016). For K-means clustering, we used
the kmeans function in R. In parentheses are shown how the latent classes or clusters are split into two categories to generate binary risk labels. For
example, gmm-8 (see Figure 2) means a label generated based on a GMM model with 8 classes, and 6 vs. 2 classes means that the 8 classes are split
into two groups with 6 classes in one group (elevated risk) and 2 classes in the other. In the cutpoint-based methods, individuals are simply divided
into two groups by applying a single cutpoint to their observed scores or to an average of observed scores. The best two labels from each method
based on their association with a priori clinical validators are presented.

†Z is the concurrent validator. A clinical cutpoint is applied to each PGBI-10M score within the prediction range (6, 12, 18, and 24months). The label
takes the value of 1 if any PGBI-10M � 12 and 0 otherwise.

‡PGBI-10M scores are first averaged across 6, 12, 18, and 24months, and then a cutpoint is applied to the average score. The label takes the value of 1 if
the average � 12 and 0 if < 12.
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methods except by Z. These patients have one PGBI
measure at the cutpoint, although the rest are safely
below the cutpoint. Patients E and F show examples
of disagreement between kmeans-10 and the other
risk labels. Patient E is labeled as low risk by all meth-
ods except by kmeans-10. Patient F has two scores
that are 12 or greater, although labeled as low risk by
kmeans-10. Patients G and H show examples of dis-
agreement between vvi-2 and the others. Patient G is
labeled as elevated risk only by vvi-2, which seems
overly conservative even with some missing measure-
ments. Patient H has one score above the cutpoint at
baseline, and has several missing measurements. Only
vvi-2 and experts conservatively labeled this patient as
elevated risk. Patients I and J show that vvi-2 is not
necessarily the most conservative of the three cluster-
ing methods.

Utilizing multiple clustering methods provides an
opportunity to identify a small portion of patients
that are difficult to classify. This strategy effectively
narrowed the LAMS sample (7.3% based on 3 cluster-
ing methods), which makes careful examination by
clinical experts feasible. The results of such examin-
ation can be incorporated to improve the validation
process, for example, by formulating a more elaborate
Z, or by modifying the labeling process based on
experts’ ratings. In the LAMS example, a GMM-based
label (gmm-8) turned out to be somewhat better
aligned with experts’ labeling. One possible explan-
ation would be that clinical experts will consider not
only the clinical cutpoint (PGBI-10M � 12), but also
how the scores change over time, which is a key mod-
eling component in GMM. However, note that the
three methods were largely consistent in labeling the
patients (92.7% agreement across three clustering
methods). This is an area that needs further investiga-
tion in various application contexts.

Step 3: Prediction of generated risk labels

Once the best label is selected based on clinical valida-
tors and practical utilities (Step 2), we can focus on
developing prediction models in Step 3. There are
many well-established supervised learning strategies
for predicting a known outcome with a large pool of
possible predictors (e.g., Hastie et al., 2009). In prin-
ciple, a selected label from Step 2 can be used as a
known input or output variable with any supervised
learning methods. However, note that the validation
step is closely aligned with the intended clinical utility.
In the LAMS example, we focused on a concurrent
validator (Z) given our interest in generating a risk
label to be used as an output variable in developing
prognostic models and algorithms. In other words, it
is not ideal to use the best label from Step 2 as a pre-
dictor (input) variable in Step 3. If generating risk
labels as input variables is the goal, the validation pro-
cess should put more emphasis on Q (a consequent
validator) than on Z.

Let U represent the set of baseline variables to be
used as predictors. In the clinical context, U is
expected to provide not only good prediction, but also
good interpretation (i.e., using them as predictors of
risk should make sense clinically). In that sense, U
can be thought of as an expanded version of W (ante-
cedents). In our previous studies (Jo et al., 2017,
2018), we in fact conducted validation using U , and
then used the concurrent validator (Z) more qualita-
tively after narrowing candidate labels. From the auto-
mation point of view, we find the currently proposed
framework more straightforward, where the validation
step (Step 2) only uses a minimal set of core valida-
tors (W) carefully selected by clinical experts. Once
the validation step is completed and the best risk
labels are selected, one can explore with a wider array
of possible predictors in Step 3.

Table 3. Examples of disagreement across risk labels.
PGBI-10M Risk labels

Patient 0m 6m 12m 18m 24m gmm-8 vvi-2 kmeans-10 Z† average ‡ � 12 Experts �

A 21 9 7 14 17 1 1 1 1 0 1
B 18 6 3 10 15 1 1 1 1 0 1
C 7 12 7 5 0 0 0 0 1 0 0
D 6 7 12 1 1 0 0 0 1 0 0
E 9 6 8 9 10 0 0 1 0 0 0
F 7 7 12 13 6 1 1 0 1 0 1
G . . 1 9 8 0 1 0 0 0 0
H 14 10 . . . 0 1 0 0 0 1
I 19 14 . . . 1 0 0 1 1 1
J 19 6 4 12 . 1 0 0 1 0 1
†Z is the concurrent validator. A clinical cutpoint is applied to each PGBI-10M score within the prediction range (6, 12, 18, and 24months). The label
takes the value of 1 if any PGBI-10M � 12 and 0 otherwise.

‡PGBI-10M scores are first averaged across 6, 12, 18, and 24months, and then a cutpoint is applied to the average score. The label takes the value of 1 if
the average � 12 and 0 if < 12.

�Based on the majority vote from three clinical experts who independently rated the patients.
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Prediction results in the LAMS example

In the LAMS context, the developed prediction model
is expected to aid 2-year outcome prognosis (elevated
or low risk patterns within 2 years) for pediatric
patients who present to outpatient clinical care with
concerns in elevated manic symptoms. In addition to
the antecedents used in the validation step (anxiety,
depression, bipolar diagnosis), four more variables
were included in U : They are baseline PGBI-10M and
key demographic variables that are typically correlated
with psychiatric outcomes including age, sex, and
health insurance as a proxy for socio economic status.
We used simple logistic regression, the same method
used in the validation step. Prediction performance
measures including AUC (area under the curve) and
their standard errors were calculated in the same way
described in (15) and (16). We used 70% of the full
data (Data A) to train prediction models using 10-fold

cross-validation. The rest 30% of the data was used as
a test data (Data B) to examine whether the prediction
algorithm built based on Data A would be generaliz-
able outside Data A.

Table 4 and Figure 3 show some preliminary
results on how well we can predict clustering-based
risk labels used as outcome (output) variables. We
also included our primary validator (Z) as a reference
outcome label that is not based on clustering methods.
Note that the goal of Step 3 is not to compare differ-
ent labels, but to develop prediction models using
already validated and selected labels from Step 2. Also
note that the results shown here should be considered
preliminary. Fuller investigation with a larger pool of
input variables using various supervised learning strat-
egies is in order to formally develop prediction mod-
els that are ready to be deployed in clinical practice.
Table 4 show that the results are highly comparable
across different clustering-based labels, both LV-based

Figure 3. Prediction of clustering-based risk labels by baseline covariates.

Table 4. Clustering-based risk labels used as prediction output.
Risk label Data � Sensitivity Specificity Accuracy AUC †

Each clustering-based risk label predicted by 7 baseline covariates‡

gmm-8 A 0.83 (0.81, 0.85) 0.80 (0.78, 0.81) 0.82 (0.81, 0.83) 0.81 (0.80, 0.82)
B 0.83 0.78 0.81 0.81

vvi-2 A 0.80 (0.78, 0.82) 0.77 (0.75, 0.78) 0.78 (0.77, 0.80) 0.78 (0.77, 0.79)
B 0.80 0.75 0.77 0.77

kmeans-10 A 0.79 (0.76, 0.82) 0.78 (0.76, 0.80) 0.79 (0.77, 0.80) 0.79 (0.77, 0.80)
B 0.78 0.75 0.76 0.76

Z A 0.74 (0.71, 0.76) 0.70 (0.67, 0.73) 0.72 (0.71, 0.73) 0.72 (0.70, 0.73)
B 0.70 0.84 0.76 0.77

�Data A (70% of the full data) was used to train prediction models with K-fold cross-validation. Data B (30% of the full data)
was used as a test data to examine whether the prediction results are generalizable.

†Prediction performance measures including AUC (area under the curve), sensitivity, specificity, and accuracy were calculated
using the same method in (15) by averaging across 10 folds. In parentheses are shown their values ±1 standard errors calcu-
lated using the same method in (16). In the test step using Data B, standard errors are not reported because K-fold cross-valid-
ation was not used.

‡Prediction input variables include seven baseline patient measures (manic symptoms by PGBI-10M, anxiety by SCARED-P, depres-
sion by CDRS-R, bipolar diagnosis, age, sex, and health insurance).
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(GMM, MBC) and K-means-based, which was
expected given their good agreement due to our valid-
ation method. All three clustering-based labels also
show stable results between the train and test data,
which is an important property in prediction. The
GMM-based label (gmm-8) is slightly better predicted
in the test data (see Figure 3), although the differences
are small and the results may change as we introduce
more covariates and use various supervised learning
methods. Overall, prediction based on clustering-based
labels showed promising results with AUC around
0.8, which is practically meaningful.

The results in Table 4 and Figure 3 also show how
well we can predict our primary validator (Z). The
differences between Z and clustering-based labels are
quite noticeable. This does not necessarily mean that
Z is a worse label, although knowing that Z will be
harder to predict is certainly useful. The goal of Step
3 is not in validating and comparing different labels
based on how well they are predicted. However, one
thing we could compare here is how well the predic-
tion results can be generalized. Table 4 shows that the
prediction results for Z are more variable between the
train and test data, especially in terms of specificity,
implying possible difficulties in applying prediction
models developed based on Z. Recall that the valid-
ation results in Step 2 (see Table 2) supported the use
of clustering-based risk labels instead of Z. Although
preliminary, the results from Step 3 seem to further
support this decision.

Conclusions

Using LV-based outcomes in developing prediction
models is not a well-accepted concept either in LV
modeling or in supervised learning. This is an unfor-
tunate situation because LV strategies will facilitate
utilization of rich outcome data collected from
research and health services, which may lead to
improved prognostic or diagnostic models for future
patients. As a way of improving this situation, this
study proposed a learning framework that combines
the traditions of LV modeling, psychometrics, and
supervised learning. At the core of this framework is
the structured use of clinical validators, which makes
systematic validation of LV-based outcomes possible
guided by experts’ knowledge and clinical practice.
The proposed framework, if successfully adopted, will
help position LV modeling as a key contributor in
developing prediction models and in supervised learn-
ing in general.

To demonstrate possible strategies of systematic
outcome validation and selection, we applied the pro-
posed method to the LAMS data. We used two clus-
tering methods based on LV modeling (GMM and
MBC). To show the generality of our approach, we
also included K-means clustering, which is not based
on LV modeling, but is a better known clustering
method. Using these three clustering methods, a large
number of binary risk labels were generated. In the
proposed framework, this exploratory situation is
viewed as an opportunity to tailor desirable prediction
outputs using multiple clinical validators. Cutpoint-
based labels lack such flexibility. The example showed
the possibility that, with structured sets of validators,
a large pool of candidate risk labels can be swiftly
validated and selected. This means that it is possible
to make the validation process automation-ready,
which is important in that it will encourage the use of
LV-based outcomes in building prediction models and
in supervised learning.

In the LAMS example, the validation results sup-
ported the use of clustering-based risk labels instead
of cutpoint-based labels including the currently used
best label (i.e., concurrent validator Z). Among the
different clustering methods, the validation results for
the selected labels were remarkably comparable des-
pite their distinct approaches (92.7% agreement across
3 methods). Such agreement is not surprising given
that a large number of candidate risk labels went
through the validation process based on the same
selection rules with the same clinical validators.
Utilizing multiple clustering methods also provides an
opportunity to identify a small portion of cases that
are difficult to classify (7.3% disagreement across 3
methods), dramatically narrowing the pool of patients
that need to be carefully examined by clinical experts.
These cases with disagreement across clustering meth-
ods (see Table 3) also show the value of including
LV-based methods (GMM, MBC) even though the
common K-means clustering does a comparable job.

The validated and selected risk labels are ready to
be used in developing prediction models using any
types of supervised learning methods. The preliminary
results in the LAMS example, based on a minimal set
of baseline predictors and logistic regression analysis,
showed promising results with AUC around 0.8. Note
that our interest in the LAMS example was to gener-
ate risk labels to be used as output variables in devel-
oping prognostic models and algorithms. Given that,
the risk labels were validated and selected focusing
more on the concurrent validator (Z). However, if the
goal is to generate risk labels to be used as prediction
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inputs, the focus should be shifted. For example, if we
focus more on Q, a distal outcome, different risk
labels will be selected (other than those listed in
Tables 2–4). The choice among the validation rules
depends on the intended utility of generated labels.
We see this flexibility as an advantage of our
framework.

The proposed approach can be fine-tuned and
expanded in many different ways. Some immediate
extensions include the use of three-category labeling
(e.g., low, medium, high risk), joint prediction of mul-
tiple outcomes (e.g., manic symptoms and anxiety),
and incorporation of broader unsupervised and super-
vised learning methods. To focus on the conceptual
framework of the proposed approach, we ignored the
uncertainty surrounding the cluster membership.
Extending the previous work (Jo et al., 2017), we are
actively exploring practical strategies to smoothly con-
nect LV-based soft clusters with various supervised
learning methods. There is much to explore in terms
of various application possibilities. We focused on
prediction, although using simplified and validated
latent variables can be an attractive and practical strat-
egy to deal with complexities in building theoretical
models. Applying the proposed framework in develop-
ing algorithms to help clinical diagnosis (instead of
prognosis) also seems to be a promising direction.
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