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ABSTRACT 
There has been considerable interest in estimating causal cross-lagged effects in two-variable, 
multi-wave designs. However, there does not currently exist a strategy for ruling out unmeasured 
time-varying covariates that may act as confounders. In this paper, we propose a new strategy for 
testing whether an unmeasured time-varying covariate explains all covariation between the two 
“causal” variables in the data. That model, called the Latent Time-Varying Covariate (LTVC) model, 
can be tested with observations for two variables assessed across three or more measurement 
waves. If the LTVC model fits well, then a time˗varying covariate can explain the covariance struc
ture, which undermines the plausibility of causal cross-lagged effects. Although the LTVC model 
tends to be underpowered when causal cross-lagged effects are small, if testable stationarity con
straints on the LTVC model are imposed, adequate power can be achieved. We illustrate the LTVC 
approach with three examples from the literature. Additionally, we introduce the LTVC-CLPM 
model, which is identified given strong stationarity constraints. Also considered are multivariate 
and multi-factor models, the inclusion of measured time-invariant covariates in model, measure
ment of the stability of the LTVC, and the lag-lead model. These methods allow researchers to 
probe the assumption that an unmeasured time˗varying confounder is the source of all the X-Y 
covariation. Our methods help researchers to rule out certain forms of confounding in two-vari
able, multi-wave designs.
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There has been considerable interest in methods to infer 
causal cross-lagged effects in the multi-wave, two-variable 
(2VMW) designs (Usami et al., 2019; Zyphur et al., 2020). 
The two variables, denoted here as X and Y, are measured 
at three or more times, and persons are measured at the 
same times. Different structural models have been pro
posed to measure the causal effect of Xt on Ytþ1 and the 
effect of Yt on Xtþ1. Usami et al. (2019) discussed seven 
such models, and Zyphur et al. (2020) discuss three other 
models. All of these models presume a theory of causality 
(Huang & Yuan, 2017; Robins & Hern�an, 2009) that 
requires a series of assumptions. A key assumption, some
times called exchangeability (Greenland & Robins, 1986) 
specifies that there does not exist a confounder, a variable 
that causes both the putative cause and the outcome. 
Usami et al. (2019) state

(T)he crucial point for choosing the cross-lagged model 
is whether the model provides adequate control of time- 
varying and time-invariant confounders (p. 652).

They also state

However, if there are omitted time-varying variables … , 
these are not properly accounted for in these models, and 
this is likely to cause biased results (p. 643).

Grosz et al. (2020) have urged non-experimental 
researchers to talk openly about causal assumptions 
and their desire to make causal inferences. They recom
mend that researchers clearly articulate the assumptions 
underlying their analyses and identify potential con
founders and plausible threats to the internal validity of 
the study. A central difficult issue in causal inference 
from non-experimental data is ruling out the existence 
of an unmeasured confounding variable, i.e., a variable 
that causes both the causal variable and its presumed 
outcome. The current article outlines an approach for 
assessing the plausibility that an unmeasured time-vary
ing confounder may completely explain the causal 
cross-lagged paths with 2VMW data.
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To date there does not exist a general strategy for 
handling confounding due to a latent time-varying 
covariate. In this article, we suggest an innovative 
approach to manage this problem. The guiding idea is 
to model a latent time-varying covariate that com
pletely explains the X-Y covariation as a plausible rival 
hypothesis (Shadish et al., 2002) for the estimation of 
causal effects from 2VMW data. That is, we propose 
an analysis that potentially rules out the very plausible 
rival hypothesis that all the X-Y covariation is 
explained by a latent time˗varying confounder. We 
call this model LTVC.

In LTVC, there is a single latent variable, C, that 
explains all the X-Y covariation. This latent variable 
changes over time, and no constraints are placed on 
how C changes over time. The model equations are as 
follows:

Xit ¼ ftCit þ Eit (1) 

Yit ¼ gtCit þ Fit (2) 

where Ct is a standardized latent variable, whose over- 
time covariance matrix is free to vary.1 We do not 
constrain the loadings on C to be time invariant. All 
residual variables E (for X) are correlated with each 
other, and all residual variables F (for Y) are corre
lated with each other; however, neither the E residuals 
are correlated with the F residuals, and nor are the E 
or F residuals are correlated with C. A three-wave 
illustration of this model is presented in Figure 1.

The LTVC model has the following set of 
assumptions:

1. The standard linear model assumptions of nor
mality of latent variables and residuals, homogen
eity of variance, and independence of residuals.

2. A latent variable, C, simultaneously and com
pletely explains the covariation between X and Y 
at each time.

3. The residuals for X are uncorrelated with the 
residuals of Y and both sets of residuals are 
uncorrelated with all the C variables.

4. There are no paths from Xt to Xtþ1 and from Yt 
to Ytþ1.

Assumptions 2, 3, and 4 are discussed later in the 
article. Note too that CLPM or any other 2VMW 
models are not alternative models to LTVC. That is, 
having the LTVC be a poor fitting model does not 
imply any particular 2VMW model would have non- 

zero causal paths. We presume that if there were a 
causal effect between X and Y that the causation 
would not be instantaneous. If the casual lag were 
zero, then the LTVC would be a good-fitting model, 
with the cause having a standardized loading of one.

The LTVC model is under-identified because we 
are unable to recover unique estimates for all the 
model parameters. (As discussed in the 
“Understanding the structure of change in a latent 
time-varying covariate” section later in the article, the 
squared autocorrelations of the latent variable are 
identified.) The fundamental reason for this lack of 
identification is there are only two indicators of the 
latent factor at each time, and there is no third indica
tor that can be “borrowed” that has uncorrelated 
errors of measurement with those two indicators. 
Nonetheless, with three or more waves of measure
ment, the model imposes constraints on the variance- 
covariance structure for the data. The LTVC model 
with three waves has one over-identifying restriction, 
which is:

qX1Y2
qX3Y1

qX2Y3
¼ qX2Y1

qX1Y3
qX3Y2

, (3) 

Figure 1. Model of a latent time-varying confounder (LTVC). 
Note: C entirely explains the covariation between the meas
ured variables X and Y, whose loadings on C are f and g and 
whose residuals, E and F, are correlated across time; V() sym
bolizes variance, C() covariance, and r() correlation.

1For all structural equations in this article, we omit the mean or intercept 
from the equations as all exogenous variables in the model are presumed 
to have means of zero.
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with both terms equaling f1g1f2g2f3g3qC1C2
qC2C3

qC1C3 

where f1 to f3 and g1 to g3 are defined in Figure 1 and 
qC1C2, qC2C3, and qC1C3 are population parameters 
that replace the sample estimates rC1C2, rC2C3, and 
rC1C3, respectively. The general equation for the over- 
identifying restriction with 3 or more waves is

qXtYtþp
qXtþqYt

qXtþpYtþq
¼ qXtþpYt

qXtYtþq
qXtþqYtþp

(4) 

where p and q are integers and p< q. In general, for 
studies with T waves, there are (T − 1)(T − 2)(T − 3)/6 
constraints like Equation 4, of which (T − 1)(T − 2)/2 
are independent. (Throughout this article, we use T to 
denote the number of waves.) The degrees of freedom 
of the LTVC model are (T − 1)(T − 2)/2, the number 
of free overidentifying restrictions.

Even though the LTVC cannot be fully estimated, 
the model can be tested and shown to be inconsistent 
with the data. Thus, it is possible to rule out con
founding as the sole explanation of cross-variable 
covariation without specifying exactly how the time- 
varying covariate changes over time. To some readers, 
it may seem unusual to estimate a model that is not 
identified. Normally, the goal of an SEM analysis is to 
estimate the model’s parameters. However, an identi
fied model is not the goal here. Rather, the goal is to 
rule out the possibility that an unobserved time-vary
ing covariate is sufficient to explain all of the X-Y 
covariation. Given this purpose, the relative sizes of 
the factor loadings on X and Y (f and g) are of no 
theoretical interest. Rather, the key question is 
whether the data are inconsistent with the model. 
There are different strategies to determine if the data 
are inconsistent with the model. The traditional way 
is to test the null hypothesis that the proposed model 
is the true model using a chi-square test. 
Alternatively, we might use a fit statistic to measure 
how well the proposed model is consistent with the 
data, e.g., RMSEA or SRMR.

The estimation of under-identified models is not 
unprecedented in SEM. For instance, a two-factor 
model with all measures loading on both factors is 
not identified; nonetheless it is possible to test 
whether the covariance structure is consistent with the 
model. Another example is a post-treatment con
founder within a mediation analysis discussed by 
Moerkerke et al. (2015). Although not all the model’s 
parameters can be uniquely estimated, it is still pos
sible to estimate the direct and indirect effects, the 
key parameters of interest.

Given this lack of identification, estimating the 
LTVC by an SEM program presents difficulties. The 
SEM program Amos (Arbuckle, 2021) can estimate the 

model with the correct degrees of freedom if the user 
chooses the option “Estimate Under-identified 
Models.” Mplus (Muth�en & Muth�en, 1998-2017) typ
ically provides estimates, but reports that the model is 
not identified and gives no chi-square test or fit statis
tics. To obtain the chi-square and fit statistics, the 
model can be re-estimated, fixing one parameter to its 
estimated value from the initial run. We suggest fixing 
the estimate of the residual variance of X1 value from 
the first run and re-estimating the model. The LTVC 
model with four or more waves produces fit statistics 
in lavaan (Rosseel, 2012), but yields the wrong 
degrees of freedom, always one too few. With three 
waves, lavaan reports the model is not identified, but 
does provide estimates. As with Mplus, we suggest 
taking the estimate of the residual variance of X1 value 
from the first run, fixing the parameter to that value, 
and re-estimating the model, which yields the correct 
degrees of freedom for the model.

To prevent Heywood cases, we suggest constraining 
the residual variances for X and Y to be non-negative. 
Our reasoning is as follows: Imagine that CLPM is the 
correct model with large positive paths from Xt to Ytþ1. 
If we were to fit an LTVC model to this data structure, 
the loadings on Y would increase over time, but the 
loadings on X would decrease. If the X to Y path is large 
enough in the true model, when estimating LTVC, we 
would obtain Heywood cases for Y on later waves and 
for X on earlier waves. Allowing Heywood cases would 
enable impossibly large loadings.

Power analyses of the LTVC model

It is important to examine whether the LTVC model 
(see Equations 1 and 2, as well as Figure 1) can 
explain the pattern of X-Y covariances observed in the 
data. If the LTVC model can explain the pattern of 
covariances, then we cannot rule out the alternative 
hypothesis that an omitted latent time varying con
founder completely explains that covariation, which 
would undermine the plausibility of any X-Y causal 
effects. Alternatively, if the LTVC model is not a 
good-fitting model, we can rule out the possibility 
that omitted latent time-varying confounder can 
explain all the X-Y covariation.

The recommendation here is to estimate the LTVC 
model when conducting a 2VMW causal model to 
rule out the possibility of a latent confounder as an 
alternative explanation for the pattern of observed 
covariances. For this strategy to be viable, there would 
need to be sufficient power to reject the LTVC. If the 
power to reject the LTVC were low, then the test 
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would not be diagnostic. Therefore, we undertook a 
series of power analyses in which the true model was 
a causal model (e.g., CLPM) model, and the estimated 
model was an LTVC model. We then evaluated 
whether we had adequate power to reject the LTVC 
model under a variety of scenarios in which we varied 
the stabilities, the causal cross-lagged paths, the cross- 
sectional correlations, the sample size, and the number 
of waves. Because the LTVC model implies a non- 
trivial cross-sectional correlation between X and Y, we 
presume that the lowest value of that correlation 
is ±0.2.

We assumed that a given causal model (e.g., 
CLPM) is the true model, and we then generated a 
variance-covariance matrix using the parameters for 
that model. We then conducted a power analysis to 
determine whether the LTVC model would be rejected 
under those conditions. We also computed the 
RMSEA for the LTVC model. We interpreted power 
values of 0.80 and RMSEA values of 0.08 or above as 
indicative of a poor-fitting model.

We computed power, not by simulation, but by 
using a method developed by Satorra and Saris (1985; 
see Feng & Hancock, 2023). To compute power, we 
first determined the population variance-covariance 
matrix implied by a causal model (e.g., CLPM). We 
then used that covariance matrix to compute the non- 
centrality parameter (NCP). Using the NCP, df, and 
the proposed sample size, we determined the probabil
ity of a statistically significant chi-square statistic to 
estimate the power to reject the LTVC model when 
the generating model was a CLPM model. Using the 
NCP and the degrees of freedom (df), we also com
puted RMSEA.

The basic CLPM equations to generate the data 
are:

Xit ¼ aXiðt−1Þ þ dYiðt−1Þ þ Eit (5) 

Yit ¼ bYiðt−1Þ þ cXiðt−1Þ þ Fit (6) 

Note that E and F are uncorrelated with prior val
ues of X and Y but may be contemporaneously corre
lated. For simplicity, the total variances of X and Y 
were fixed to be one across all waves. In addition, the 
cross-sectional correlations between X and Y were set 
to the same value across all waves of data collection. 
To accomplish this, we varied the magnitude of the 
covariance of the residual terms in Equations 5 and 6.

We computed the power to reject the model with 
an alpha of 0.05 for sample sizes of 250, 500, 750, and 
1000 for the LTVC. We varied several factors, includ
ing the number of equally˗spaced waves (3, 4, and 5), 
the cross-lagged paths (c: 0.1, 0.2, 0.3, 0.4, 0.5 and d: 

0, 0.1, 0.2, 0.3, 0.4), the stability paths for X and Y (a 
and b: 0.4, 0.5, 0.6), the cross-sectional correlation 
between X and Y at time 1 (0.2, 0.3, 0.4, 0.5). We 
wrote the R program, Power_LTVC, to compute 
power for all of these cases, which is contained in 
Supplementary Material: Power_LTVC.

Table 1 contains the power and the RMSEA values2

when the population values for a CLPM model in 
which there the autoregressive (stability) paths for X 
(path a) and Y (path b) were both .5. The unidirec
tional cross-lagged path from X to Y, c, equaled 0.1, 
0.2, 0.3, 0.4, or 0.5, whereas the cross-lagged path 
from Y to X, d, was fixed to zero. The cross-sectional 
correlation between X and Y was fixed to 0.5.

None of the power estimates exceeded 0.80 when 
the cross-lag path or c was .1. With a unidirectional 
crosslag path of 0.20, we achieved acceptable power 
for 5-wave studies with at least 750 cases. With a uni
directional crosslag path of 0.30, acceptable power was 
achieved for 4 and 5-wave studies, even with sample 
sizes as low as 250. However, for 3-wave studies and 
c¼ 0.3, power was low, ranging from 0.22 with 250 
cases to 0.65 with 1000 cases, and RMSEA was 0.074. 
With a unidirectional crosslag path of 0.4, the 3-wave 
250 case had power of .73. For all other conditions, 
power exceeded 0.95 when the unidirectional crosslag 
path was .40. RMSEA was also above 0.16 when the 
crosslag path was .40. For an effect of 0.5, power was 
greater than 0.98 for all conditions, and RMSEA 
exceeded 0.25.

Table 1. Theoretical power and RMSEA estimates for CLPM 
estimated by LTVC with a lagged path from X to Y (c: 0.1 to 
0.5), 3 to 5 waves (T), no path from Y to X (d¼ 0), and both 
stabilities (a and b), and the X-Y cross-sectional correlation of 
0.5, and an alpha of 0.05, with bold values indicating power 
greater than 0.800 or RMSEA greater than 0.80.
Path Waves N

c T 250 500 750 1000 RMSEA

.1 3 .055 .061 .066 .071 0.014

.1 4 .056 .061 .067 .073 0.011

.1 5 .056 .061 .067 .074 0.010

.2 3 .084 .120 .156 .192 0.034

.2 4 .171 .314 .457 .585 0.048

.2 5 .425 .765 .927 .981 0.065

.3 3 .215 .379 .525 .647 0.074

.3 4 .814 .987 .999 1.000 0.123

.3 5 .985 1.000 1.000 1.000 0.133

.4 3 .725 .951 .993 .999 0.162

.4 4 .999 1.000 1.000 1.000 0.204

.4 5 1.000 1.000 1.000 1.000 0.206

.5 3 .984 1.000 1.000 1.000 0.260

.5 4 1.000 1.000 1.000 1.000 0.288

.5 5 1.000 1.000 1.000 1.000 0.292

2More detailed results from the power analyses using Power_LTVC are 
available at osf.io/k7mcj.
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Stationarity of parameters

The LTVC is a very general model: The loadings can 
take on any value and change over time and the 
covariance structure of the latent variable can take on 
any form. However, the power to rule out a time- 
varying covariate as an alternative explanation of the 
causal relationship between X and Y can be low, espe
cially with small samples and small effect sizes. One 
way to increase power is to assume stationarity, which 
is commonly done in the modeling of 2VMW data 
(Usami et al., 2019). To impose stationarity, the same 
parameter at different waves equals the same value. 
Stationarity assumptions reduce the complexity of the 
model and so increase the precision in the estimation 
of model parameters and power in rejecting the fit of 
the model. Conceptually, stationary models also pro
vide advantages for modeling explanatory processes 
and prediction. Anytime applied researchers use 
model parameters to make predictions, they implicitly 
assume stationarity—that the causal effect of the varia
bles does not change across time.

We consider two extensions of LTVC that impose 
stationarity constraints. To assist in the comprehen
sion, Figure 2 illustrates the set of T-by-T covariances 
between X and Y. The first model, LTVC-S, presumes 
that the common factor loadings of X and Y do not 
change over time and that the factor variance of the 
common factor, C, also does not change over time. 
Adding these stationarity assumptions to the LTVC 
model has two important consequences. First, the 
model implies equal cross-sectional covariances: 
C(X1,Y1) ¼ C(X2,Y2) ¼ C(X3,Y3), which are denoted 
as csc in the main diagonal in Figure 2. Additionally, 
the model implies equal cross˗lagged covariances. 
With three waves, the constraints are C(X1,Y2) ¼
C(X2,Y1), C(X2,Y3) ¼ C(X3,Y2), and C(X1,Y3) ¼
C(X3,Y1), that is lx1 ¼ ly1 and lx2 ¼ ly2 in terms of 
the symbols in Figure 2, but the two lx1 and the two 

ly1 covariances are not forced to be equal to each 
other.

The LTVC-S model, like the LTVC, is not identi
fied because there are only two indicators per factor. 
However, the covariance matrix implied by the 
LTVC-S can be uniquely estimated using an SEM pro
gram. The equivalent model has no common factors, 
but instead, there are constraints on X-Y covariances: 
T equal cross-sectional covariances and T(T − 1)/2 
equal cross-lagged covariances. Although the model, 
expressed in terms of factor loadings and factor cova
riances, is not identified, an equivalent model of the 
LTVC-S implied covariances is identified.

Table 2 presents key information about the LTVC 
and LTVC-S models. LTVC has no constraints on 
covariances, whereas LTVC-S has T equal cross-sec
tional covariances and T(T − 1)/2 pairs of equal cross- 
lagged covariances. To test the stationarity assumption 
in LTVC-S, we create a new model, S-Only that has 
equal cross-sectional covariances (the main diagonal 
in Figure 2), but not equal cross-lagged covariances. 
To test the equality of the cross-lagged covariances of 
LTVC-S model, we compute the chi-square difference 
between the LTVC-S model and the S-only model. If 
the LTVC-S model fits as well as the S-Only model 
(i.e., chi-square difference between the LTVC-S model 
and the S-Only model is not statistically significant), 
then we can conclude a latent time-varying covariate 
is sufficient to explain the covariation in our data. 
Instead of using a statistical test, one might alterna
tively examine the RMSEA, based on the chi-square 
difference. We adopt the approach of Savalei et al. 
(2024) of computing the RMSEA using the difference 
in chi squares, which they denote as RMSEAD.

We can make a further stationarity assumption that 
the processes that govern change are time invariant. 
For instance, the X-Y covariances are the same 
between waves 1 and 2 as between wave 2 and 3. 
Such an assumption implies equality of all covariances 
of the same lag length and presumes the distance 
between adjacent waves is the same. We call this 
model LTVC-2S, as it imposes a second set of statio
narity constraints. LTVC-2S imposes all the same con
straints as LTVC-S and additionally constrains all 
crosslag covariances of equal lag length to be equal, 
e.g., C(X1,Y2) ¼ C(X2,Y3) ¼ C(X3,Y4). As illustrated 
in Figure 2, all the three lx1 covariances are set equal 
and equal to the ly1 covariances. Similarly, the two lx2 

covariances are equal and they equal the two ly2 cova
riances. Finally, the lx3 covariance equal the ly3 covari
ance. In a study with T waves, there are (T − 1)(T − 2) 

Figure 2. Stationarity constraints on the cross-covariance 
matrix with four waves. 
Note: Cross-sectional covariances (csc) and the minor diagonals 
being the lagged (l) covariances with either x or y as the ear
lier measured variable and the numeric subscript (1 to 3) 
being the lag length.
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such constraints. As with the LTVC-S, the LTVC-2S 
model’s covariances are identified.

To test the assumption of time-invariant change, 
we estimate the 2S-Only model that contains equal 
same-length lagged covariances, separately for X and 
Y, as well as equal cross-sectional covariances, but no 
equal cross-lagged covariances. In Figure 2, the lx1 
covariances and lx2 covariances are set equal to each 
other, as well as the ly1 and ly2 covariances, but the lx 
and ly covariances are not be set equal to each other. 
To test this second stationarity assumption, we com
pare the fit of the 2S-Only model to the S-Only 
model. If the 2S-Only model fits as well as the S-Only 
model, we can impose the second set of stationarity 
constraints. Then we evaluate the equality of cross- 
lagged covariances allowing for equality of over-time 
processes by comparing the fit of LTVC-2S model to 
the fit of 2S-Only model, which has T − 1 degrees of 
freedom.

Power and RMSEAD for LTVC-S and LTVC-2S 
models

Earlier we showed that the power and RMSEA to 
reject an LTVC model was acceptable only when the 
causal path was moderate to large and sample size 
was large. Here we examine whether power and 
RMSEAD increase when stationarity constraints are 
imposed. We examine both CLPM and RI-CLPM, 
when each is tested using LTVC-S and LTVC-2S. To 
simplify the presentation, we primarily focus on 
RMSEAD, using 0.08 for the cutoff for a poor-fitting 
model.

CLPM

In general, we found that power and RMSEAD were 
greater for the LTVC-S model than for the LTVC 
model, and power was greater for the LTVC-2S model 

than for the LTVC-S model, though improvements 
when moving from the LTVC-S model to the LTVC- 
2S model were generally not as dramatic as the 
improvements when moving from the LTVC model to 
the LTVC-S model.

Table 3 contains bidirectional models with equal 
stabilities and gives the RMSEAD for the model. The 
path from X to Y, c, varied from 0.1 to 0.5, the path 
for Y to X, d, from 0 to 0.4, and the cross-sectional 
correlations were set to .5. Importantly, the a and b 
stabilities were set equal to 0.5, an assumption that is 
later relaxed.

When the two causal paths, c and d, were equal, 
RMSEAD was always zero. As the difference between 
the two paths increased by the same amount, 
RMSEAD increased as the paths’ sizes increased. For 
instance, consider a 3-wave dataset estimated using 
LTVC-S. RMSEAD would be 0.077 when c¼ 0.1 and 
d¼ 0, but when c¼ 0.5 and d¼ 0.4, RMSEAD 
increases to 0.125. Thus, for a fixed value of c—d, the 
bigger the values of c and d, the greater the value of 
RMSEAD. Additionally, when the absolute difference 
between c and d is 0.1, the smallest value of RMSEAD 
is 0.060 and when the c — d difference is 0.2, it is 
.122. With a difference in coefficients of just 0.2, we 
should be able to rule out the LTVC-S or LTVC-2S 
models.

Once we allow for unequal autoregressive paths, a 
and b, the story becomes more complicated. The abil
ity to reject LTVC-S and LTVC-2S depends on the 
difference between the cross-lagged covariances. 
When the variables are all standardized and station
ary, the crosslag difference equals c — dþ r(b — a), 
where r is the cross-sectional correlation. As we saw 
in Table 3, the difference, c — d, in lagged coefficients 
affects RMSEAD. But RMSEAD also depends on the 
difference between the two autoregressive paths. 
Assuming c — d is positive, as b gets larger than a, 
RMSEAD increases, but as b gets smaller than 

Table 2. Typology of LTVC models.a

Model Name Stationarity
LTVC Over-Identifying 

Restrictions Model df Stationarity df LTVC df

LTVC None Equation 4 (T − 2)(T − 3)/2 0 (T − 2)(T − 3)/2
S-Only Equal Cross-Sectional 

Covariances
None T − 1 T − 1 0

LTVC-S Equal Cross-Sectional 
Covariances

Equal Cross-Lagged 
Covariances

(T − 1)(Tþ 2)/2 T − 1 (T − 1)(T − 2)/2

2S-Only S-Only and Equal 
Same-Length 
Lagged Covariances

None (T − 1)2 (T − 1)2 0

LTVC-2S S-Only and Equal 
Same-Length 
Lagged Covariances

Equal Cross-Lagged 
Covariances of the 
Same Lag Length

T(T − 1) (T − 1)2 (T − 1)

aAll degrees of freedom (df) assume that the lag intervals between all adjacent waves are the same.
Note: LTVC, LTVC-S, and LTVC-2S are models that presume a latent time-varying covariate explains the X-Y covariation, but they differ in their stationarity 

assumptions (see column 2). The S-Only and 2S-Only models are used to test those stationarity assumptions.
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a, RMSEAD decreases until it equals zero when 
c − d¼ r(b − a), and then it increases as c − dþ r(b 
− a) becomes more negative. Note too that even 
when both c and d are zero, RMSEAD is non-zero 
when a and b are unequal. This result indicates that 
CLPM is not the alternative model for LTVC. Rather, 
estimating LTVC models allows us to rule out the 
plausible rival hypothesis that a latent time-varying 
covariate completely explains X-Y covariation.

The RMSEAD for LTVC-S declines slightly as the 
number of waves increases from 3 to 5. This is surpris
ing given that power increases as the number of waves 
increases. Perhaps this occurs because the difference 
between cross-lagged covariances declines as the lag 
length increases. Because models with more waves have 
longer lagged covariances, RMSEAD declines. In con
trast, RMSEAD for the LTVC-2S model does increase as 
the number of waves increases.

Generally, holding everything else constant, increas
ing the cross-sectional correlation, denoted here as r, 
does appear to increase the power of the LTVC-S and 
LTVC-2S models slightly, but the effect is quite mod
est. For instance, when c¼ 0.1, d¼ 0, and a and b 
equal 0.5, LCTC-S is estimated with 3 waves, and 
r¼ 0.2, RMSEAD is 0.068, when r¼ 0.5, it is 0.077. 
We suspect this is due to increased precision with 
larger correlations.

RI-CLPM

RI-CLPM is CLPM with the addition of a random 
intercept that acts as a trait factor (Hamaker et al., 
2015). Stable intercepts are added to both X and Y, 
and the autoregressive (a and b) and cross-lagged (c 

and d) paths represent paths among residuals of X 
and Y, after removing the stable intercept variance.

To more easily compare power values of CLPM to 
those from RI-CLPM, we started with the CLPM with 
standardized variables and added an intercept to that 
model. For simplicity, the intercept variance was the 
same for X and Y. We also allowed the two intercepts 
to be correlated.

Here we consider the model with a unidirectional 
cause (d¼ 0) and equal stabilities (a¼ b¼ 0.5), and a 
cross-sectional correlation of .5. For RI-CLPM, we 
add random intercepts explaining between 10 to 50% 
of the total variance of X and Y and correlating 0.5 
with each other. Focusing on LTVC-S and LTVC-2S, 
the general pattern of results for RI-CLPM were very 
similar to those for CLPM, which is not too surprising 
as the model is a modified version of CLPM. 
However, on average, the RMSEAD values were lower 
for RI-CLPM than for CLPM and this trend increased 
as the percentage of variance due to the random inter
cepts increased.

The RMSEAD was affected by the correlation of the 
intercepts. Again, using the same values for the parame
ters and examining LTVC-S and LTVC-2S, the 
RMSEAD increased as the correlation of the intercepts 
increased, although these increases were small. Again, 
in RI˗CLPM, power increased under the assumption of 
stationarity, and power was generally higher for 2S 
models than for S models.

Decision tree for ruling out a time-varying 
confounder

When estimating causal cross-lagged effects (e.g., RI- 
CLPM), the researcher can evaluate the plausibility of 

Table 3. RMSEAD values with stabilities and cross-sectional correlation at 0.5, and X to Y path, c, varying from 0.1 to 0.5, Y to X 
path, d, varying from 0.0 to 0.4 with values larger than 0.080 in bold.

d

0 .1 .2 .3 .4

C T S 2S S 2S S 2S S 2S S 2S

.1 3 0.077 0.095 0.000 0.000 0.078 0.096 0.160 0.196 0.249 0.305

.1 4 0.067 0.095 0.000 0.000 0.069 0.097 0.142 0.202 0.225 0.319

.1 5 0.060 0.095 0.000 0.000 0.062 0.098 0.129 0.205 0.206 0.327

.2 3 0.156 0.191 0.078 0.096 0.000 0.000 0.082 0.100 0.170 0.209

.2 4 0.136 0.192 0.069 0.097 0.000 0.000 0.074 0.104 0.157 0.222

.2 5 0.122 0.193 0.062 0.098 0.000 0.000 0.067 0.107 0.145 0.230

.3 3 0.239 0.293 0.160 0.196 0.082 0.100 0.000 0.000 0.090 0.110

.3 4 0.210 0.297 0.142 0.202 0.074 0.104 0.000 0.000 0.085 0.120

.3 5 0.189 0.299 0.129 0.205 0.067 0.107 0.000 0.000 0.079 0.126

.4 3 0.330 0.404 0.249 0.305 0.170 0.209 0.090 0.110 0.000 0.000

.4 4 0.293 0.415 0.225 0.319 0.157 0.222 0.085 0.120 0.000 0.000

.4 5 0.266 0.421 0.206 0.327 0.145 0.230 0.079 0.126 0.000 0.000

.5 3 0.435 0.537 0.354 0.435 0.277 0.340 0.202 0.248 0.125 0.153

.5 4 0.393 0.564 0.327 0.466 0.262 0.373 0.197 0.280 0.127 0.179

.5 5 0.362 0.579 0.304 0.484 0.247 0.392 0.188 0.298 0.123 0.194
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whether a latent time-varying covariate successfully 
explains the observed covariation between the two vari
ables. Figure 3 contains a decision tree that details the 
steps to evaluate whether the LTVC model fits well. 
What is meant by the “model fitting well” depends on 
some explicit empirical cutoff for a poor fitting model, 
such as a p value from the v2 test or, especially when 
sample sizes are large, a good-fitting model might be 
defined by being below a pre-set RMSEA or SRMR 
value. Additionally, theory, prior knowledge, and study 
characteristics would affect the decision as to what is a 
good model. We strongly urge researchers to preregister 
their criteria for model rejection. Moreover, we note 
that because tests of S-Only and 2S-Only evaluate the 
plausibility of strong stationarity assumptions, it would 
be advisable to set either to set higher alphas and lower 
RMSEA values to retain those models.

Note that testing for confounding with the LTVC 
model is very different from the more familiar tests of 
model assumptions, e.g., a test of normality. When 
those familiar tests fail, it signals that the researcher 
needs to change the analysis, e.g., by transforming the 
outcome to satisfy the normality assumption. Also, 
researchers typically hope that the familiar test shows 
that the estimated model fits well, e.g., no evidence of 
nonnormality. However, in testing the LTVC model, 
likely the researchers would hope that the LTVC is 
not a good-fitting model. Moreover, even if the LTVC 
model is deemed to be a good-fitting model, the 
researcher would still estimate the specified causal 
cross-lagged model. Nonetheless, the LTVC model 
provides important context: The possibility that a 
latent time-varying covariate might be the source of 
all of the causal effects cannot be ruled out.

We begin at the top of Figure 3 by testing the 
plausibility of stationarity assumption of equal cross- 
sectional covariances, the S-Only model. If S-Only 
does not fit well, we must rely on the test of the 
LTVC model. If we do not reject the LTVC model, 
the data are consistent with a latent time-varying 
covariate being able to explain the covariation in the 
data. Alternatively, if we reject the LTVC model, then 
LTVC cannot explain the pattern of covariances in 
the data.

If the S-Only model does fit well, we proceed to see 
if the 2S-Only model also fits well, relative to the S- 
Only model. If the S-Only model fits well, but the 2S- 
Only model does not (i.e., the fit of the 2S-Only model 
is substantially worse), we compare the fit of LTVC-S to 
the fit of S-Only model. If we reject the LTVC-S model, 
we can rule out LTVC. If we fail to reject LTVC-S, then 
an LTVC could potentially explain our covariance 
structure. Alternatively, if the 2S-Only model fits as 
well as the S-Only model, indicating that covariances of 
the same lag length can be assumed to be equal, then 
we use the LTVC-2S model to evaluate the plausibility 
of the LTVC. To do so, we estimate the LTVC-2S model 
and compare it to the fit of 2S-Only model.3

As we discussed earlier, ruling out the LTVC model 
does not mean that CLPM or any other causal model 
is the correct model. It simply means that the LTVC 
model is unable to explain the observed pattern of 
covariation. The rejection of the LTVC model does 
not indicate the nature of the causal effect, nor does it 
“prove” that there is a causal relationship between X 
and Y.

Illustrations

To demonstrate how these models could be used in 
practice, we include three examples. For the first 
example, it is likely that there are no causal lagged 
effects; the second and third examples are from pub
lished papers with lagged effects. Also, the third 
example includes unequal spacing of the time lags. 
For each example, we present fit values for all the 
possible models: LTVC, LTVC-S, LTVC-2S, S-Only, 
and 2S-Only models. We also present a summary of 
results from the analyses using the flowchart in Figure 
3. All analyses in this article used Mplus (Muth�en & 

Figure 3. Decision tree for LTVC models. 
Note: Begin with “S-Only Fits” and end with “LTVC Model Can 
Be Ruled Out” or “LTVC Model Cannot Be Ruled Out”; see 
Table 2 for definitions of the LTVC, S-Only, and 2S-Only 
models.

3Note that the test of stationarity refers to equality of parameters in the 
original metric. There might be cases in which stationarity holds using 
the standardized metric. In this case, the standardized loading of X and Y 
on the common factor does not change over time. Kenny (2005a) shows 
how to estimate the standardized LTVC models using SEM. For all three 
of the examples, the model fit improves with standardized instead of 
unstandardized stationarity.
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Muth�en, 1998-2017), and the setups and outputs for 
these and subsequent analyses are available as 
Supplemental Material: Mplus Setups and Outputs. To 
identify the LTVC model, we first estimated the 
model with no constraints. Using the residual variance 
of the time 1 measure of X from the first run, we 
fixed its residual variance to that value in a second 
run. All statistical tests used 0.05 as the value for 
alpha.

Depression in adolescence

We chose the first example to be one in which there 
are not likely any lagged effects, as the two variables 
are two subscales of a construct. Dumenci and Windle 
(1996) measured depression on 433 adolescent women 
every 6 months 4 times. Depression is measured using 
the Center for Epidemiologic Studies Depression Scale 
or CES-D, which has four subscales, two of which we 
analyze: Positive Affect (reversed) and Interpersonal 
Problems.

Table 4 provides the results for all the LTVC mod
els and relevant model comparisons. Using the flow
chart in Figure 3, we find the following: Because both 
S-Only (v2(3) ¼ 4.846, p¼ 0.183, RMSEA ¼ 0.038, 
SRMR ¼ 0.029) and 2S-Only (v2(9) ¼ 8.302, 
p¼ 0.504, RMSEA ¼ 0.000, SRMR ¼ 0.028) are good- 
fitting models, we estimated the LTVC-2S model. 
When we compared that model to the 2S-Only model, 
we obtained a good˗fitting model, v2(3) ¼ 2.066, 
p¼ 0.559, RMSEAD ¼ 0.000. The data were consistent 
with the view that a latent time-varying covariate 
could successfully and completely explain the covari
ation between the two measures of depression. This is 

what we expected to find as these two variables are 
presumed to have a common unmeasured confounder: 
depression.

Depression and self-esteem in college: the BLS 
study

The second example includes two variables that were 
hypothesized to be in a causal relationship. Orth et al. 
(2008), see also Orth et al. (2021), claimed to find an 
effect from Self-esteem to Depression. The title of 
their paper is Low self-esteem prospectively predicts 
depression in adolescence and young adulthood. In 
Study 1 of Orth et al. (2008), the Berkeley 
Longitudinal Study (BLS), there are 404 United States 
college students measured four times, once each year.

Table 5 contains LTVC model-fit information for 
the BLS study. Using the flowchart in Figure 3, we 
find the following: Because both the S-Only (v2(3) ¼
6.097, p¼ 0.107, RMSEA ¼ 0.051, SRMR ¼ 0.054) 
and the 2S-Only (v2(9) ¼ 10.168, p¼ 0.337, RMSEA 
¼ 0.018, SRMR ¼ 0.061) are good-fitting models, we 
estimated the LTVC-2S model. When we compared 
the LTVC-2S to the 2S-Only model, we obtained an 
equivocal fit with a statistically significant chi square 
(v2(3) ¼ 10.628, p¼ 0.014) but an RMSEA below 0.08 
(RMSEAD ¼ 0.079). The decision as to whether the 
LTVC-2S model fits the data is ambiguous. 
Ordinarily, unless the sample size was large (N> 500), 
we would rely on the chi square test. Moreover, 
because all three LTVC models have p values less 
than 0.05, we would reject the LTVC model. Even if 
we reject the LTVC model, we know nothing about 
the correct causal mechanism. Later in this article, we 

Table 4. LTVC models for the Dumenci and Windle (1996) study.
Model v2 df p RMSEA SRMR C. Modela v2 diff df p RMSEAD

LTVC 2.508 3 .474 0.000 .007
S-Only 4.846 3 .183 0.038 .029
LTVC-S 8.909 9 .446 0.000 .031 S-Only 4.063 6 .668 0.000
2S-Only 8.302 9 .504 0.000 .028 S-Only 3.456 6 .750 0.000
LTVC-2S 10.368 12 .584 0.000 .028 2S-Only 2.066 3 .559 0.000
aComparison Model.
Note: See Table 2 for model definitions.

Table 5. LTVC models for the BLS study.
Model v2 df p RMSEA SRMR C. Modela v2 diff df p RMSEAD

LTVC 8.210 3 .042 0.066 .014
S-Only 6.097 3 .107 0.051 .054
LTVC-S 17.751 9 .038 0.049 .053 S-Only 11.654 6 .070 0.048
2S-Only 10.168 9 .337 0.018 .061 S-Only 4.071 6 .667 0.000
LTVC-2S 20.796 12 .053 0.043 .058 2S-Only 10.628 3 .014 0.079
aComparison Model.
Note: See Table 2 for model definitions.

MULTIVARIATE BEHAVIORAL RESEARCH 981



explore a non-causal model in which Depression is a 
leading indicator of a latent variable and Self-esteem 
lags by more than year.

Academic self-concept and achievement

We tested the LTVC models using the data from 
N�u~nez-Regueiro et al. (2022) who tested a series of 
models on a sample of 933 French high school stu
dents to examine the reciprocal effects between 
Academic Self-Concept and Academic Achievement. 
The students were measured during their first and 
second years of high school. During each year they 
were measured three times a year, trimesters, but 
because students were on internship during the 5th tri
mester, data were not collected for that trimester. For 
the 10 time-differences in pairs of measurements, 3 
were 1 unit, 3 were 2 units, 2 were 3 units, 1 was 4 
units, and 1 was 5 units. Because of this pattern, the 
formulas for degrees of freedom in Table 2 cannot be 
used. N�u~nez˗Regueiro et al. included several covariates 
in their analyses; our analyses did not include them 
here, but we do discuss them in a later section. We 
note that N�u~nez-Regueiro et al. in their article made 
no claims of any causal effects.

Table 6 contains model-fit information for the 
N�u~nez-Regueiro et al. study. Using the flowchart in 
Figure 3, we find the following: Because both the S- 
Only (v2(4) ¼ 5.114, p¼ 0.276, RMSEA ¼ 0.017, 
SRMR ¼ 0.034) and the 2S-Only (v2(14) ¼ 16.975, 
p¼ 0.258, RMSEA ¼ 0.015, SRMR ¼ 0.039) are good- 
fitting models, we estimated the LTVC-2S model. 
When we compared that to the 2S-Only model, we 
obtained a good-fitting model, v2(5) ¼ 0.619, 
p¼ 0.987, RMSEAD ¼ 0.000.

Thus, we cannot rule out the possibility that some 
unmeasured time-varying covariate completely 
explains the covariation between the two variables. 
The hypothesis that Academic Self-Concept and 
Academic Achievement were caused by the same vari
able, perhaps Academic Ability, remains. However, as 
we discussed and showed in Table 3, the power to 
reject the LTVC with reciprocal effects is poor. 
N�u~nez-Regueiro et al. (2022) expected and found 

evidence for reciprocal effects in most of their analy
ses. In sum, we are left with two competing explana
tions for the results: reciprocal causal or a latent time- 
varying confounder.

Model extensions

Here we consider six extensions to our model. First, 
we develop an observation-level LTVC model that is a 
blend of LTVC and CLPM. We next consider multi
variate models, beyond the bivariate model that we 
have previously discussed. We also consider the case 
that the latent variable is a not a single variable, but 
rather that there are multiple latent variables. Next, 
we discuss the inclusion of covariates into the LTVC 
model. Next, we consider modeling the process of 
change of the latent time-varying confounder, C. 
Lastly, we relax the assumption that the latent time- 
varying confounder simultaneously causes X and Y.

The LTVC-CLPM model

In this section, we develop an observation-level LTVC 
model that is a blend of LTVC and CLPM. Unlike 
CLPM, there is no cross-sectional correlation between 
residuals (E and F in Equations 5 and 6), but rather 
there is a latent-time varying confounder, which 
changes in an autoregressive fashion. We refer to this 
model as the LTVC-CLPM (see Figure 4). The model 
has a latent variable, C, that causes X and Y at each 
wave and changes in a first-order autoregressive fash
ion and the variables X and Y also have autoregressive 
paths, a and b, as well as cross-lagged paths, c and d. 
One major advantage this model has over the previous 
LTVC model with correlated residuals is that this 
model explicitly includes the possibility of an alterna
tive model, i.e., c and d being non-zero. This allows 
the latent time-varying confounding to explain some 
but not all of the X-Y covariation. Note that CLPM is 
a special case of this model in which the autoregres
sive path for the latent time-varying confounder, e, 
equals zero (Dwyer, 1983, p. 362).

Generally, for observation-level models with latent 
variables, all the wave-one variables, including C1, are 

Table 6. LTVC models for the N�u~nez-Regueiro et al. (2022) study.
Model v2 df p RMSEA SRMR C. Modela v2 diff df p RMSEAD

LTVC 1.334 6 .970 0.000 .004
S-Only 5.114 4 .276 0.017 .034
LTVC-S 13.167 14 .513 0.000 .035 S-Only 8.053 10 .624 0.000
2S-Only 16.975 14 .258 0.015 .039 S-Only 11.861 10 .294 0.014
LTVC-2S 17.594 19 .550 0.000 .038 2S-Only 0.619 5 .987 0.000
aComparison Model.
Note: See Table 2 for model definitions.
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treated as exogenous, as we have done in Figure 4. 
To identify the model, we make assumptions of statio
narity. The structural equations are:

Cit ¼ eCi, t−1 þ Uit (7) 

Xit ¼ fCit þ aXi, t−1 þ dYi, t−1 þ Eit (8) 

Yit ¼ gCit þ bYi, t−1 þ cXi, t−1 þ Fit (9) 

As shown in Figure 4, we set equal the factor load
ings of f and g, the autoregressive paths of a, b, and e, 
the cross-lagged paths of c and d, and the residual 
variances of E for X, F for Y, and U for C. As we did 
for LTVC, we standardize C1. Lastly, to make the 
model fully stationarity, we need to constrain the var
iances and covariances of the exogenous variables, X1, 
Y1, and C1.

To make those constraints with an SEM program, 
we chose to reparametrize the model in the same way 
as Usami et al. (2019). We created a separate phantom 
variable for each of the 2 T measures. Each Xt measure 
has a phantom variable of LXt (e.g., X1 ¼ sXLX1), and 
each Yt measure has a phantom variable (e.g., LYt and 
Y1 ¼ sYLY1. Two new parameters are added to the 

model, sX and sY, but we lose two parameters by fix
ing the variances of LX and LY to one. In this new 
model, in Figure 4, as well as Equations 7, 8, and 9, 
we replace X with LX and Y with LY. This formulation 
turns the parameters of f, g, a, b, c, d, and e into beta 
coefficients, and sX and sY are the standard deviations 
of X and Y, respectively.

The nonlinear constraints that need to be imposed 
to create stationarity variance covariance matrix are:

sU
2 ¼ 1– e2 (10) 

rcx ¼
dgeþ f ð1 − beÞ

ð1 − aeÞð1 − beÞ − cde2 (11) 

rcy ¼
cfeþ gð1 − aeÞ

ð1 − aeÞð1 − beÞ − cde2 (12) 

rxy ¼ e fbrcy þ garcx þ fcrcx þ gdrcy
� �

þ fg þ acþ db
� �

= 1 – cd – abð Þ (13) 

sE
2 ¼ 1 – a2 þ d2 þ 2adrxy þ ef arcx þ drcy

� �
þ frcx

h i

(14) 

sF
2 ¼ 1 – b2 þ c2 þ 2bcrxy þ eg brcy þ crcx

� �
þ grcy

h i

(15) 

The total number of model parameters is 9, regard
less of the number of waves. To validate that the 
model is identified, we generated several population 
covariance matrices, then conducted an SEM analysis, 
and each time the program successfully recovered the 
population parameters. Note that if C has zero stabil
ity, e¼ 0, the model is the same as CLPM, but paths f 
and g are not identified.

The full set of stationarity constraints imply all the 
previously discussed 2S constraints, (T − 1)2, as well 
equal lagged covariances of the same lag length for 
both X and Y, (T − 1)(T − 2), and equal variances 
across time for X and for Y, 2(T − 1), resulting in the 
total number of stationarity constraints equals 
(2 T − 1)(T − 1).

We illustrate the estimation of the LTVC-CLPM 
using the earlier discussed Dumenci and Windle 
(1996) study. To test stationarity, we imposed 21 dif
ferent constraints on the variance˗covariance matrix. 
The fit for this stationarity model is v2(21) ¼ 26.986, 
p¼ 0.171, RMSEA ¼ 0.026, SRMR ¼ 0.060, a good- 
fitting model. Fitting the LTVC˗CLPM, we obtain 
v2(27) ¼ 85.714, p< 0.001, RMSEA ¼ 0.071, SRMR ¼
.073. When we remove the test of stationarity, we 
obtain v2(6) ¼ 58.728, p< 0.001, RMSEAD ¼ 0.142. 
Both the chi square test and the RMSEA suggest that 
LTVC-CLPM is not a good-fitting model.

Figure 4. The LTVC model with observation-level autoreges
sive paths: LTVC-CLPM. 
Note: X and Y are measured variables at 3 Times, C a latent 
time-varying confounder with an f path to X and a g path to 
Y, a the autoregessive path for X, b the autoregessive path for 
Y, c the path from X to lagged Y, d the path from Y to lagged 
X, and E and F the residuals for X and Y, V() a variance, and 
C() a covariance.
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Even if we believed LTVC-CLPM were a good 
model, the model estimates are difficult to interpret. 
The standardized loading of X on C is 0.995 and of Y 
on C is .554. Examining the beta weights, the autore
gressive coefficient for C or e is 0.859, the autoregres
sive effect for X (absence of Positive Affect) or a is 
˗0.144, and for Y or b is 0.316 (Interpersonal 
Problems). The negative autoregressive effect is diffi
cult to comprehend. Both lagged effects (c and d) are 
negative, which is implausible. In terms of the resid
uals, the largest ones are for the autocorrelations of X 
and Y.

When we estimated the LTVC-CLPM with the 
other two example datasets, we also obtained poor fit 
and anomalous results with huge factor loadings on 
the LTVC, negative autoregressive paths and cross- 
lagged paths with the opposite sign than the cross-sec
tional correlations. The LTVC–CLPM estimates overly 
large factor loadings on C and high stabilities for C 
that the autoregressive and cross-lagged paths must 
compensate for by having the negative paths. 
Although we do not understand exactly why this is 
happening, we very speculatively discuss two different 
possible explanations.

One possibility is that the model is too complicated 
for there to be stable estimates. Perhaps if we intro
duced prior knowledge in a Bayesian analysis (e.g., 
paths a and b are not likely to be negative), we might 
obtain more reasonable estimates.

Alternatively, perhaps the over-time model is mis- 
specified. One possibility is that besides the LTVC, 
there are also random intercepts for X and Y, and no 
autoregressive or cross˗lagged paths. Another possibil
ity is there might be a second unmeasured 
confounder, a state factor, which increases the cross- 
sectional covariances, but not the lagged ones.

In summary, the LTVC-CLPM has several advan
tages over the earlier LTVC model presented in 
Figure 1. First, all of its model parameters are identi
fied. Second, CLPM is a special case of this model, 
whereas for LTVC, there is no clear alternative causal 
model. Third, LTVC-CLPM is an observation-level 
model in that it has lagged paths for X and Y, whereas 
LTVC is a residual model with no such paths. Several 
analysts (Andersen, 2022; L€udtke & Robitzsch, 2022; 
Murayama & Gfr€orer, 2024) have argued that the true 
model is the observation-level model, whereas the 
residual-level model is only an approximation used to 
simplify the estimation of the observation model.

However, the residual-level model of LTVC has 
several theoretical advantages over the LTVC˗CLPM. 
First, LTVC-CLPM model requires stronger 

stationarity assumptions than the LTVC model. 
Second, historically, over-time factor models have pre
sumed the residual model (Duncan, 1972; Kenny, 
1973; Newsom, 2024). Thus, in this case we need not 
necessarily presume that observation model is the true 
model, and residual model is a simplification. Third, 
the estimates for the LTVC-CLPM were anomalous, 
and the models fit poorly, whereas for two of the 
three examples, we obtained a good-fitting LTVC 
model. Of course, three studies are too small of a 
sample to make a generalization, but it does suggest 
that the residual model LTVC may be a sensible way 
to model no causal cross-lagged effects. A systematic 
comparison of the two approaches would be benefi
cial. Especially informative would be to include studies 
similar to the Dumenci and Windle (1996) study in 
which X and Y are likely not causing each other but 
rather are presumed to measure the same construct.

Multivariate and multi-factor models

Previous discussion was limited to two-variable, 
multi-wave models; we consider here having three or 
more variables. With three or more variables and just 
two waves, a model in which a single factor causes 
each variable at each time without any constraints on 
the factor loadings is identified (Duncan, 1972). With 
four or more variables, this single-factor model can be 
estimated and tested within each cross-section.

With three or more indicators and just two waves, 
we can relax the assumption of a single-factor and 
instead allow for multiple factors. One strategy is to 
assume quasi-stationarity (Kenny, 1973, 1975; Kenny 
& Milan, 2012): Each variable is caused by p latent 
common factors and the variances and covariances of 
these p latent factors are the same at both times. The 
common factor’s loadings of measure m at time t for 
factor i is denoted as fitm. The quasi˗stationarity 
assumption is that over time all the loadings for vari
able m change from time 1 to time 2 by a propor
tional constant:

km ¼ f12m=f11m ¼ f22m=f21m ¼ ::: ¼ fp2pm=fp1m (16) 

Given this assumption, the ratio of the same cross- 
sectional covariances between X and Y or CX2Y2/CX1Y1 

equals kXkY and the ratio of the two cross-lagged 
covariances between X and Y or CX1Y2/CX2Y1 equals 
kY/kX. Kenny (2025a) shows how to estimate the 
quasi-stationarity model by SEM and how to integrate 
it within the LTVC approach.

We estimated both a one-factor and multi-factor 
quasi-stationarity model with the four waves and all 
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our indicators of Depression from the Dumenci and 
Windle (1996) study. The model of quasi-stationarity 
for that data fits quite well (v2(42) ¼ 36.248, 
p¼ 0.721, RMSEA ¼ 0.000, SRMR ¼ 0.016) and bet
ter than the single-factor model (v2(74) ¼ 107.968, 
p¼ 0.006, RMSEA ¼ 0.033, SRMR ¼ 0.052) with the 
improvement in model fit being (v2(32) ¼ 71.720, 
p< 0.001).

So far, we have assumed that the latent variable, C, 
is a single variable. What happens if there are multiple 
latent variables? The quasi-stationarity assumption can 
be made but not tested for two˗variable data in which 
the latent variable is the sum of many variables. If the 
assumption of quasi-stationarity holds, the LTVC 
over-identifying restrictions in Equation 4 still hold.

Measured time-invariant covariates

Almost always, 2VMW studies have covariates. Some 
of these covariates are time varying and are measured 
at each time point, and for those covariates, it would 
seem sensible to treat them as another variable, like X 
and Y, making the analysis multivariate. In the 
remainder of the section, we consider measured time- 
invariant covariates, i.e., variables that are measured 
only once because they are likely hardly to change 
over the course of the study.

We propose two models that include time-invariant 
covariates. A measured time˗invariant covariate either 
directly causes the X and Y measures; that is, they 
have direct effects on X and Y, and the covariates are 
uncorrelated with C. Note this model explains all of 
the covariation between the covariates and the two 
variables X and Y. Alternatively, they cause only the 
latent time-varying covariate and have an indirect 
effect on X and Y through C. This indirect model of 
covariates results in the LTVC being an identified 
model, as the measured covariate serves as the third 
“indicator” of the latent time-varying covariate. The 
model can be considered to be a version of the 
Multiple Indicator Multiple Causes (MIMIC) model 
in which the covariates are the multiple causes of C, 
and X and Y are the multiple indicators. The indirect 
model has the number of covariates times the number 
of waves fewer covariate paths than the direct model, 
making the indirect model is a special case the direct 
model.

As an illustration, we return to the N�u~nez-Regueiro 
et al. (2022) study and consider Age, Gender, and 
Father’s Socioeconomic Status as covariates. Including 
only those cases with complete data on the covariates, 
the sample size is reduced to 762. We proceed using 

the flowchart in Figure 3. We need to expand the S- 
Only assumption to include the requirement that each 
covariate has the same effect on X and Y at each time, 
which for each covariate adds 2(T − 1) or 24 add
itional constraints to the model. The fit of this new S- 
Only model is v2(28) ¼ 61.641, p< 0.001, RMSEA ¼
0.040, SRMR ¼ .045. Although the RMSEA is accept
able, we believe that we should cautiously reject the 
assumption of equal effects at each wave and proceed 
to test the LTVC model with no stationarity assump
tions. First assuming direct effects of the covariates, 
the fit for the model with direct effects to X and Y is 
v2(6) ¼ 1.069, p¼ 0.983, RMSEA ¼ 0.000, SRMR ¼
.004. Comparing this result to those in Table 6, we 
see that controlling for the covariates does little to 
alter the conclusion that the LTVC model is a good- 
fitting model. The fit for the indirect effect model is 
v2(20) ¼ 33.945, p¼ 0.026, RMSEA ¼ 0.030, SRMR ¼
.026. To test the assumptions of the indirect effect 
model over the direct effect model, we obtain v2(14) 
¼ 32.876, p¼ 0.003, RMSEAD ¼ 0.042, suggesting the 
indirect effect model is poor fitting. (There are only 
14 degrees of freedom more for the indirect model 
over the direct model when there are 15 fewer covari
ate paths estimated in the indirect model than the dir
ect model because the indirect model is identified, 
and so one degree of freedom is lost by not fixing a 
parameter.) Besides being a poorer fitting model than 
the direct model, the solution for the indirect model 
is not very interpretable, as the standardized loadings 
for Y are very near one.

Because the indirect effect model is identified, it 
has the potential to make LTVC models much more 
useful. In fact, the LTVC model with indirect effects 
of the covariate is identified with as few as two waves 
of data. It might even be able to expand the indirect 
model to allow for autoregressive and causal cross- 
lagged effects in X and Y. However, although this 
model is identified in theory, in practice it may be dif
ficult to estimate. Akin to instrumental variable esti
mation, we would likely need very strong covariates 
that explain substantial amounts of variance in both X 
and Y for this approach to be useful.

Understanding the structure of change in a latent 
time-barying covariate

Although the LTVC model is under-identified, the 
squared over-time correlations of the confounding 
variable are identified. Understanding the structure of 
change on the latent-time varying confounder can be 
highly beneficial. Dwyer (1983) has shown the CLPM 
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implicitly presumes that the common factor that 
explains the time-one covariation has zero over-time 
correlations (i.e., a state or occasion factor):

(Latent) variables may not decay rapidly enough to be 
treated as occasion factors. Such factors inflate cross- 
lagged covariances and can introduce a bias in the 
estimation of lagged effects that is most damaging 
(p. 362).

Alternatively, should the latent variable be totally 
stable, then perhaps estimates from RI-CPLM may 
have less bias. Thus, an analysis of the stability of C 
would be beneficial in understanding the amount of 
bias due to an unmeasured confounding variable.

As an illustration, we use the N�u~nez-Regueiro et al. 
(2022) study. We found that LTVC˗2S model is a 
good-fitting model (see Table 6). We compare these 
new models to the LTVC-2S model because they place 
constraints on the variance˗covariance matrix of the 
latent time-varying covariate. We first evaluate 
whether the latent variable is perfectly stable, a trait. 
Estimating the LTVC-2S model with latent variable 
correlations of one, v2(24) ¼ 42.696, p¼ 0.011, 
RMSEA ¼ 0.029, SRMR ¼ .041. When we compare 
the LTVC-2S model to a model with perfectly stable 
correlations, v2(5) ¼ 25.102, p < .001. A trait model 
cannot explain the covariance structure of C.

Another possibility is to presume that there is a 
state or occasion factor at each time which is com
pletely transitory. For such a model, all over-time cor
relations are zero. When we estimate the LTVC-2S 
model with all C correlations fixed to zero, we find 
v2(24) ¼ 161.143, p< 0.001, RMSEA¼ 0.078, SRMR 
¼ .204. When we compare the LTVC-2S model to a 
model with zero correlations, we find v2(5) ¼
143.549, p < .001. A state model is also not good- 
fitting.

The next possibility is that X-Y covariances have an 
autoregressive structure. The autoregressive trait 
model for C is Ct ¼ etCt-1 þ Ut, where et is the autor
egressive coefficient and Ct-1 and Ut are uncorrelated. 
Because we found evidence of 2S stationarity, we can 
assume that the autoregressive coefficient does not 
change over time.4 When we subtract the chi square 
for LTVC-2S, we obtain v2(4) ¼ 1.706, p¼ 0.790, 
which is a good-fitting model. The lag-one autoregres
sive coefficient is estimated to be .942. Although this 
indicates high lag-1 stability, the implied correlation 

from wave one to wave six is the autoregressive coeffi
cient raised to the fifth power, which equals 0.743.

We have so far discussed how a single type of fac
tor, either trait, state, or autoregressive, can explain 
the pattern of LTVC covariances. We now examine 
two such factors at the same time. For instance, the 
common factor has two parts: one part is autoregres
sive, and the other part is totally unstable over time, a 
state factor (Humphreys, 1960). To identify this 
model, 2S stationarity assumptions must be made. 
When we estimated this model for the N�u~nez- 
Regueiro et al. (2022) study, we did not find evidence 
for the utility of adding a state factor to the autore
gressive model, obtaining v2(1) ¼ 0.001, p¼ 1.00. 
Thus, the autoregressive model is the preferred model 
to explain the pattern of change of the latent time- 
varying confounder for this dataset.

Other possible combinations could be estimated. 
For instance, akin to RI-CLPM, we could have a stable 
trait factor, i.e., random intercept, as well as an autor
egressive factor. Although difficult to fit, the STARTS 
model (Kenny & Zautra, 2001), which includes a per
fectly stable trait factor, an autoregressive factor, and 
state factor, could be fitted. Another possibility is a 
linear growth model with a slope and intercept. If 
there were enough waves, we could consider a cyclical 
model of change. See Liu and West (2016) for an 
introduction to modeling cycles and Muth�en et al. 
(2024) for a discussion of statistical estimation.

Lag-lead LTVC model

A key assumption of the LTVC model is that the 
time-varying confounder causes X and Y simultan
eously. It is possible to estimate a version of the 
LTVC model in which the effect of C on one variable 
is simultaneous and a lagged effect on the other vari
able. We can view the Lag˗lead Model as the alterna
tive model to LTVC in that the lag length for LTVC 
is zero.

Kenny (1973) discussed a Lag-lead model in which 
the lag is fixed to be one unit of time:

Xit ¼ atCit þ Eit (17) 

Yit ¼ btCiðtþ1Þ þ Fit (18) 

In this model, X is said to be a leading indicator of 
C, and Y a lagging indicator. Like the LTVC model in 
Figure 1, there are no constraints on the correlational 
structure of C. This approach has two serious limita
tions: lag length must be specified, and which varia
bles are the leading and lagging indicators must be 
known.

4Both Rickard (1972) and Kenny (1973) considered a three-wave model 
with no stationarity constraints in which the latent time˗varying 
confounder has an autoregressive structure. That model has two degrees 
of freedom. One degree of freedom evaluates the assumption of a 
first˗order autoregressive structure and the other evaluates the LTVC 
model.
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Kenny (2025b) presented a new model that empir
ically estimates the leading indicator and the lag 
length using non-linear model constraints. The model 
presumes that the earlier discussed 2S assumptions 
hold and that the model of change of the latent time- 
varying covariate can be specified. For the BLS study, 
we first estimated a model of change that was autore
gressive, and the model fit was poor (v2(13) ¼ 28.212, 
p¼ 0.008, RMSEA¼ 0.054, SRMR ¼ 0.067). However, 
a model with a lagged autoregressive factor and a sim
ultaneous state factor fits well (v2(12) ¼ 12.382, 
p¼ 0.416, RMSEA¼ 0.009, SRMR ¼ 0.063). The lag 
length for this model was estimated to be −1.234 
(95% CI: −1.873 to −0.595), which indicates that 
Depression leads Self˗esteem by about 15 months. 
Note that lag length is defined in this model in terms 
of Self˗esteem (X) leading Depression (Y), and so a 
negative value implies Self-esteem is a lagging indica
tor. When we set the lag length to zero, the fit wors
ened considerably when compared to the model with 
lag length free: v2(1) ¼ 8.495, p ¼ .004.

These results suggest that there is a General 
Negativity Factor, which first appears in Depression. 
Perhaps it is triggered by some life event. That factor 
is seen first in Depression, but then over a year later 
in Self-esteem.

Conclusion

We have urged researchers interested in showing 
lagged causal effects with 2VMW data to demonstrate 
that a model that the covariation between the two var
iables is not entirely due to a confounding variable. 
We have developed a testable, but under-identified 
model of a confounding variable moving through 
time, as well as a testable and identified model of con
founding variable with stationarity assumptions. We 
investigated the power to reject these time-varying 
covariate models, and we found that power increases 
with larger asymmetric causal effects, number of 
waves, and stationarity of parameters.

It is crucial to realize that sometimes an LTVC 
model might appear to be a good-fitting model, when 
in fact it is not the correct model. First, as shown in 
Table 3, it might well be that that the true model is 
reciprocal with both X causing Y and Y causing X. 
Second, if stationarity assumptions cannot be made or 
effects are small, there may be insufficient power to 
reject the LTVC model. Moreover, even if we deem 
that that the LTVC is a poor model, we cannot con
clude that the estimated causal model (e.g., CLPC) is 
correct or that the causal estimates are unbiased. 

Those estimated effects may still be seriously biased 
by unmeasured confounders.

An empirically based strategy could be used to val
idate that the LTVC model represents an appropriate 
way to model a latent time-varying confounder with 
2VMW data. An extensive re-analysis of many data
sets in which two variables are likely indicators of a 
common variable, like the Dumenci and Windle 
(1996) CES-D reanalysis in this article, would be 
informative. Moreover, if further improvements in 
LTVC-CLPM could be made, that model and the 
LTVC using correlated residuals could be compared.

Instead of estimating an LTVC model, as we have 
done in this article, an alternative would be to con
duct a sensitivity analysis. That is, the researcher 
would investigate what happens to the estimates of 
the causal effects, when a latent-time varying con
founder is added to the model. A sensitivity analysis 
does not require that the model be identified. 
Consider, for example, a researcher who estimates a 
longitudinal causal model using RI-CLPM and finds 
evidence of a lagged X to Y effect. One possible sensi
tivity analysis would be to replace the random inter
cept with a latent time-varying confounder. The 
researcher might fix the factor loadings of X and Y, to 
identify the model, and then see how much the X to 
Y effect changes as the factor loadings on the LTVC 
increase. Elaborating the process of how to conduct 
sensitivity analyses for LTVC models is deserving of 
further investigation.

In 1963, Donald T. Campbell (Campbell & Stanley, 
1963, p. 69) speculated that equal cross-lagged correla
tions might be indicative of the absence of causal 
cross-lagged effects. His students (Kenny, 1973; 
Rickard, 1972) provided a more formal rationale for 
that approach using latent variable modeling. 
However, for some 50 years, researchers abandoned 
the topic of latent confounders for bivariate, multi- 
wave data. Why did this happen?

One reason is the mistaken belief that confounding 
can be controlled in a CLPM analysis regression. As 
first shown by Dwyer (1983, p. 362), CLPM implicitly 
presumes that the common factor that explains the 
residual cross-sectional covariation has zero stability 
over time (i.e., is a state or occasion factor). CLPM 
makes a very strong and likely implausible assumption 
about the common factor.

A second reason that researchers have ignored the 
common factor model is that researchers who gather 
such data are generally interested in the causal effects. 
Rogosa (1980) correctly noted that researchers with 
longitudinal data have little interest in testing 
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confounding but rather are much more interested in 
estimating and testing causal effects. Although we 
understand that interest and the desire to find causal 
effects, it is, nonetheless, beneficial to explicitly rule 
out confounding as a complete explanation of X-Y 
covariation.

A third reason is that in the early 1980s when this 
topic was being debated, we did not have the SEM 
tools that we now have. The focus then was primarily 
on two-wave studies. Since then, the focus moved 
from two-wave to multi-wave studies, and we now 
have powerful SEM programs to estimate such 
models.

Drawing causal inferences from 2VMW is a chal
lenging enterprise requiring substantive knowledge of 
the process and measurement issues involved and 
consideration of alternative non˗causal mechanisms. 
The LTVC models in this article begin to provide us 
with tools in this endeavor.
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