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ABSTRACT

There has been considerable interest in estimating causal cross-lagged effects in two-variable,
multi-wave designs. However, there does not currently exist a strategy for ruling out unmeasured
time-varying covariates that may act as confounders. In this paper, we propose a new strategy for
testing whether an unmeasured time-varying covariate explains all covariation between the two
“causal” variables in the data. That model, called the Latent Time-Varying Covariate (LTVC) model,
can be tested with observations for two variables assessed across three or more measurement
waves. If the LTVC model fits well, then a time-varying covariate can explain the covariance struc-
ture, which undermines the plausibility of causal cross-lagged effects. Although the LTVC model
tends to be underpowered when causal cross-lagged effects are small, if testable stationarity con-
straints on the LTVC model are imposed, adequate power can be achieved. We illustrate the LTVC
approach with three examples from the literature. Additionally, we introduce the LTVC-CLPM
model, which is identified given strong stationarity constraints. Also considered are multivariate
and multi-factor models, the inclusion of measured time-invariant covariates in model, measure-
ment of the stability of the LTVC, and the lag-lead model. These methods allow researchers to
probe the assumption that an unmeasured time-varying confounder is the source of all the X-Y
covariation. Our methods help researchers to rule out certain forms of confounding in two-vari-
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able, multi-wave designs.

There has been considerable interest in methods to infer
causal cross-lagged effects in the multi-wave, two-variable
(2VMW) designs (Usami et al., 2019; Zyphur et al., 2020).
The two variables, denoted here as X and Y, are measured
at three or more times, and persons are measured at the
same times. Different structural models have been pro-
posed to measure the causal effect of X; on Y, and the
effect of Y; on X;, ;. Usami et al. (2019) discussed seven
such models, and Zyphur et al. (2020) discuss three other
models. All of these models presume a theory of causality
(Huang & Yuan, 2017; Robins & Herndn, 2009) that
requires a series of assumptions. A key assumption, some-
times called exchangeability (Greenland & Robins, 1986)
specifies that there does not exist a confounder, a variable
that causes both the putative cause and the outcome.
Usami et al. (2019) state

(T)he crucial point for choosing the cross-lagged model
is whether the model provides adequate control of time-
varying and time-invariant confounders (p. 652).

They also state

However, if there are omitted time-varying variables ...,
these are not properly accounted for in these models, and
this is likely to cause biased results (p. 643).

Grosz et al. (2020) have urged non-experimental
researchers to talk openly about causal assumptions
and their desire to make causal inferences. They recom-
mend that researchers clearly articulate the assumptions
underlying their analyses and identify potential con-
founders and plausible threats to the internal validity of
the study. A central difficult issue in causal inference
from non-experimental data is ruling out the existence
of an unmeasured confounding variable, i.e., a variable
that causes both the causal variable and its presumed
outcome. The current article outlines an approach for
assessing the plausibility that an unmeasured time-vary-
ing confounder may completely explain the causal
cross-lagged paths with 2VMW data.
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To date there does not exist a general strategy for
handling confounding due to a latent time-varying
covariate. In this article, we suggest an innovative
approach to manage this problem. The guiding idea is
to model a latent time-varying covariate that com-
pletely explains the X-Y covariation as a plausible rival
hypothesis (Shadish et al., 2002) for the estimation of
causal effects from 2VMW data. That is, we propose
an analysis that potentially rules out the very plausible
rival hypothesis that all the X-Y covariation is
explained by a latent time-varying confounder. We
call this model LTVC.

In LTVC, there is a single latent variable, C, that
explains all the X-Y covariation. This latent variable
changes over time, and no constraints are placed on
how C changes over time. The model equations are as
follows:

Xit = fiCi+ Eji (1)
Yi= gCi+ Fy (2)

where C, is a standardized latent variable, whose over-
time covariance matrix is free to vary." We do not
constrain the loadings on C to be time invariant. All
residual variables E (for X) are correlated with each
other, and all residual variables F (for Y) are corre-
lated with each other; however, neither the E residuals
are correlated with the F residuals, and nor are the E
or F residuals are correlated with C. A three-wave
illustration of this model is presented in Figure 1.

The LTVC model has the following set of
assumptions:

1. The standard linear model assumptions of nor-
mality of latent variables and residuals, homogen-
eity of variance, and independence of residuals.

2. A latent variable, C, simultaneously and com-
pletely explains the covariation between X and Y
at each time.

3. The residuals for X are uncorrelated with the
residuals of Y and both sets of residuals are
uncorrelated with all the C variables.

4. There are no paths from X, to X,,, and from Y,
to Y.

Assumptions 2, 3, and 4 are discussed later in the
article. Note too that CLPM or any other 2VMW
models are not alternative models to LTVC. That is,
having the LTVC be a poor fitting model does not
imply any particular 2VMW model would have non-

'For all structural equations in this article, we omit the mean or intercept
from the equations as all exogenous variables in the model are presumed
to have means of zero.

C(E2,E3)
V(E2)

C(F1,F3)

Figure 1. Model of a latent time-varying confounder (LTVC).
Note: C entirely explains the covariation between the meas-
ured variables X and Y, whose loadings on C are f and g and
whose residuals, £ and F, are correlated across time; V() sym-
bolizes variance, C() covariance, and r() correlation.

zero causal paths. We presume that if there were a
causal effect between X and Y that the causation
would not be instantaneous. If the casual lag were
zero, then the LTVC would be a good-fitting model,
with the cause having a standardized loading of one.

The LTVC model is under-identified because we
are unable to recover unique estimates for all the
model  parameters. (As  discussed in  the
“Understanding the structure of change in a latent
time-varying covariate” section later in the article, the
squared autocorrelations of the latent variable are
identified.) The fundamental reason for this lack of
identification is there are only two indicators of the
latent factor at each time, and there is no third indica-
tor that can be “borrowed” that has uncorrelated
errors of measurement with those two indicators.
Nonetheless, with three or more waves of measure-
ment, the model imposes constraints on the variance-
covariance structure for the data. The LTVC model
with three waves has one over-identifying restriction,
which is:

PX Y, PX Y, PXo Yy = PXo Yy PXy Y3 PXs Yo (3)



with both terms equaling figi1£8:f3830¢,c,Pc,c,Pc,c;
where f; to f; and g; to gs are defined in Figure 1 and

Pcicy Pcacss and pcics are population parameters
that replace the sample estimates rcico, rcacs» and
rcics» respectively. The general equation for the over-
identifying restriction with 3 or more waves is

PXYiipPXeegVePXeipYieg = PXerpYePXYeiqPXerqYorp (4)

where p and g are integers and p <g. In general, for
studies with T waves, there are (T—1)(T—2)(T-3)/6
constraints like Equation 4, of which (T —1)(T—2)/2
are independent. (Throughout this article, we use T to
denote the number of waves.) The degrees of freedom
of the LTVC model are (T —1)(T—2)/2, the number
of free overidentifying restrictions.

Even though the LTVC cannot be fully estimated,
the model can be tested and shown to be inconsistent
with the data. Thus, it is possible to rule out con-
founding as the sole explanation of cross-variable
covariation without specifying exactly how the time-
varying covariate changes over time. To some readers,
it may seem unusual to estimate a model that is not
identified. Normally, the goal of an SEM analysis is to
estimate the model’s parameters. However, an identi-
fied model is not the goal here. Rather, the goal is to
rule out the possibility that an unobserved time-vary-
ing covariate is sufficient to explain all of the X-Y
covariation. Given this purpose, the relative sizes of
the factor loadings on X and Y (f and g) are of no
theoretical interest. Rather, the key question is
whether the data are inconsistent with the model.
There are different strategies to determine if the data
are inconsistent with the model. The traditional way
is to test the null hypothesis that the proposed model
is the true model wusing a chi-square test.
Alternatively, we might use a fit statistic to measure
how well the proposed model is consistent with the
data, e.g., RMSEA or SRMR.

The estimation of under-identified models is not
unprecedented in SEM. For instance, a two-factor
model with all measures loading on both factors is
not identified; nonetheless it is possible to test
whether the covariance structure is consistent with the
model. Another example is a post-treatment con-
founder within a mediation analysis discussed by
Moerkerke et al. (2015). Although not all the model’s
parameters can be uniquely estimated, it is still pos-
sible to estimate the direct and indirect effects, the
key parameters of interest.

Given this lack of identification, estimating the
LTVC by an SEM program presents difficulties. The
SEM program Amos (Arbuckle, 2021) can estimate the
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model with the correct degrees of freedom if the user
chooses the option “Estimate Under-identified
Models.” Mplus (Muthén & Muthén, 1998-2017) typ-
ically provides estimates, but reports that the model is
not identified and gives no chi-square test or fit statis-
tics. To obtain the chi-square and fit statistics, the
model can be re-estimated, fixing one parameter to its
estimated value from the initial run. We suggest fixing
the estimate of the residual variance of X; value from
the first run and re-estimating the model. The LTVC
model with four or more waves produces fit statistics
in lavaan (Rosseel, 2012), but yields the wrong
degrees of freedom, always one too few. With three
waves, lavaan reports the model is not identified, but
does provide estimates. As with Mplus, we suggest
taking the estimate of the residual variance of X, value
from the first run, fixing the parameter to that value,
and re-estimating the model, which yields the correct
degrees of freedom for the model.

To prevent Heywood cases, we suggest constraining
the residual variances for X and Y to be non-negative.
Our reasoning is as follows: Imagine that CLPM is the
correct model with large positive paths from X, to Yy, ;.
If we were to fit an LTVC model to this data structure,
the loadings on Y would increase over time, but the
loadings on X would decrease. If the X to Y path is large
enough in the true model, when estimating LTVC, we
would obtain Heywood cases for Y on later waves and
for X on earlier waves. Allowing Heywood cases would
enable impossibly large loadings.

Power analyses of the LTVC model

It is important to examine whether the LTVC model
(see Equations 1 and 2, as well as Figure 1) can
explain the pattern of X-Y covariances observed in the
data. If the LTVC model can explain the pattern of
covariances, then we cannot rule out the alternative
hypothesis that an omitted latent time varying con-
founder completely explains that covariation, which
would undermine the plausibility of any X-Y causal
effects. Alternatively, if the LTVC model is not a
good-fitting model, we can rule out the possibility
that omitted latent time-varying confounder can
explain all the X-Y covariation.

The recommendation here is to estimate the LTVC
model when conducting a 2VMW causal model to
rule out the possibility of a latent confounder as an
alternative explanation for the pattern of observed
covariances. For this strategy to be viable, there would
need to be sufficient power to reject the LTVC. If the
power to reject the LTVC were low, then the test
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would not be diagnostic. Therefore, we undertook a
series of power analyses in which the true model was
a causal model (e.g., CLPM) model, and the estimated
model was an LTVC model. We then evaluated
whether we had adequate power to reject the LTVC
model under a variety of scenarios in which we varied
the stabilities, the causal cross-lagged paths, the cross-
sectional correlations, the sample size, and the number
of waves. Because the LTVC model implies a non-
trivial cross-sectional correlation between X and Y, we
presume that the lowest value of that correlation
is £0.2.

We assumed that a given causal model (e.g.,
CLPM) is the true model, and we then generated a
variance-covariance matrix using the parameters for
that model. We then conducted a power analysis to
determine whether the LTVC model would be rejected
under those conditions. We also computed the
RMSEA for the LTVC model. We interpreted power
values of 0.80 and RMSEA values of 0.08 or above as
indicative of a poor-fitting model.

We computed power, not by simulation, but by
using a method developed by Satorra and Saris (1985;
see Feng & Hancock, 2023). To compute power, we
first determined the population variance-covariance
matrix implied by a causal model (e.g., CLPM). We
then used that covariance matrix to compute the non-
centrality parameter (NCP). Using the NCP, df, and
the proposed sample size, we determined the probabil-
ity of a statistically significant chi-square statistic to
estimate the power to reject the LTVC model when
the generating model was a CLPM model. Using the
NCP and the degrees of freedom (df), we also com-
puted RMSEA.

The basic CLPM equations to generate the data
are:

Xit = aXji-1) + dYio1) + Ea (5)
Yi = bYigp) + Xig-1) + Fu (6)

Note that E and F are uncorrelated with prior val-
ues of X and Y but may be contemporaneously corre-
lated. For simplicity, the total variances of X and Y
were fixed to be one across all waves. In addition, the
cross-sectional correlations between X and Y were set
to the same value across all waves of data collection.
To accomplish this, we varied the magnitude of the
covariance of the residual terms in Equations 5 and 6.

We computed the power to reject the model with
an alpha of 0.05 for sample sizes of 250, 500, 750, and
1000 for the LTVC. We varied several factors, includ-
ing the number of equally-spaced waves (3, 4, and 5),
the cross-lagged paths (c¢: 0.1, 0.2, 0.3, 0.4, 0.5 and d:

Table 1. Theoretical power and RMSEA estimates for CLPM
estimated by LTVC with a lagged path from X to Y (c: 0.1 to
0.5), 3 to 5 waves (T), no path from Y to X (d=0), and both
stabilities (a and b), and the X-Y cross-sectional correlation of
0.5, and an alpha of 0.05, with bold values indicating power
greater than 0.800 or RMSEA greater than 0.80.

Path Waves N

4 T 250 500 750 1000 RMSEA
1 3 .055 .061 .066 .071 0.014
R 4 .056 061 .067 073 0.011
A 5 .056 .061 .067 .074 0.010
2 3 .084 120 .156 192 0.034
2 4 A71 314 457 585 0.048
2 5 425 .765 927 981 0.065
3 3 215 379 525 647 0.074
3 4 814 .987 999 1.000 0.123
3 5 985 1.000 1.000 1.000 0.133
4 3 725 951 993 999 0.162
4 4 .999 1.000 1.000 1.000 0.204
4 5 1.000 1.000 1.000 1.000 0.206
5 3 984 1.000 1.000 1.000 0.260
5 4 1.000 1.000 1.000 1.000 0.288
5 5 1.000 1.000 1.000 1.000 0.292

0, 0.1, 0.2, 0.3, 0.4), the stability paths for X and Y (a
and b: 0.4, 0.5, 0.6), the cross-sectional correlation
between X and Y at time 1 (0.2, 0.3, 0.4, 0.5). We
wrote the R program, Power LTVC, to compute
power for all of these cases, which is contained in
Supplementary Material: Power_LTVC.

Table 1 contains the power and the RMSEA values®
when the population values for a CLPM model in
which there the autoregressive (stability) paths for X
(path a) and Y (path b) were both .5. The unidirec-
tional cross-lagged path from X to Y, ¢, equaled 0.1,
0.2, 0.3, 0.4, or 0.5, whereas the cross-lagged path
from Y to X, d, was fixed to zero. The cross-sectional
correlation between X and Y was fixed to 0.5.

None of the power estimates exceeded 0.80 when
the cross-lag path or ¢ was .1. With a unidirectional
crosslag path of 0.20, we achieved acceptable power
for 5-wave studies with at least 750 cases. With a uni-
directional crosslag path of 0.30, acceptable power was
achieved for 4 and 5-wave studies, even with sample
sizes as low as 250. However, for 3-wave studies and
c¢=0.3, power was low, ranging from 0.22 with 250
cases to 0.65 with 1000 cases, and RMSEA was 0.074.
With a unidirectional crosslag path of 0.4, the 3-wave
250 case had power of .73. For all other conditions,
power exceeded 0.95 when the unidirectional crosslag
path was .40. RMSEA was also above 0.16 when the
crosslag path was .40. For an effect of 0.5, power was
greater than 0.98 for all conditions, and RMSEA
exceeded 0.25.

®More detailed results from the power analyses using Power_LTVC are
available at osf.io/k7mgj.



Stationarity of parameters

The LTVC is a very general model: The loadings can
take on any value and change over time and the
covariance structure of the latent variable can take on
any form. However, the power to rule out a time-
varying covariate as an alternative explanation of the
causal relationship between X and Y can be low, espe-
cially with small samples and small effect sizes. One
way to increase power is to assume stationarity, which
is commonly done in the modeling of 2VMW data
(Usami et al., 2019). To impose stationarity, the same
parameter at different waves equals the same value.
Stationarity assumptions reduce the complexity of the
model and so increase the precision in the estimation
of model parameters and power in rejecting the fit of
the model. Conceptually, stationary models also pro-
vide advantages for modeling explanatory processes
and prediction. Anytime applied researchers use
model parameters to make predictions, they implicitly
assume stationarity—that the causal effect of the varia-
bles does not change across time.

We consider two extensions of LTVC that impose
stationarity constraints. To assist in the comprehen-
sion, Figure 2 illustrates the set of T-by-T covariances
between X and Y. The first model, LTVC-S, presumes
that the common factor loadings of X and Y do not
change over time and that the factor variance of the
common factor, C, also does not change over time.
Adding these stationarity assumptions to the LTVC
model has two important consequences. First, the
model implies equal cross-sectional covariances:
C(X},Y;) = C(X,,Y,) = C(X3,Y3), which are denoted
as csc in the main diagonal in Figure 2. Additionally,
the model implies equal cross-lagged covariances.
With three waves, the constraints are C(X;,Y,) =
C(X5,Y1), C(XpY;) = C(X3Y3), and C(X.,Y3) =
C(X5,Yy), that is Ix; = Iy; and Ix, = ly, in terms of
the symbols in Figure 2, but the two Ix; and the two

X2

X3

Xy

)4l )%) Y3 Ya

Figure 2. Stationarity constraints on the cross-covariance
matrix with four waves.

Note: Cross-sectional covariances (csc) and the minor diagonals
being the lagged (/) covariances with either x or y as the ear-
lier measured variable and the numeric subscript (1 to 3)
being the lag length.
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Iy, covariances are not forced to be equal to each
other.

The LTVC-S model, like the LTVC, is not identi-
fied because there are only two indicators per factor.
However, the covariance matrix implied by the
LTVC-S can be uniquely estimated using an SEM pro-
gram. The equivalent model has no common factors,
but instead, there are constraints on X-Y covariances:
T equal cross-sectional covariances and T(T—1)/2
equal cross-lagged covariances. Although the model,
expressed in terms of factor loadings and factor cova-
riances, is not identified, an equivalent model of the
LTVC-S implied covariances is identified.

Table 2 presents key information about the LTVC
and LTVC-S models. LTVC has no constraints on
covariances, whereas LTVC-S has T equal cross-sec-
tional covariances and T(T —1)/2 pairs of equal cross-
lagged covariances. To test the stationarity assumption
in LTVC-S, we create a new model, S-Only that has
equal cross-sectional covariances (the main diagonal
in Figure 2), but not equal cross-lagged covariances.
To test the equality of the cross-lagged covariances of
LTVC-S model, we compute the chi-square difference
between the LTVC-S model and the S-only model. If
the LTVC-S model fits as well as the S-Only model
(i.e., chi-square difference between the LTVC-S model
and the S-Only model is not statistically significant),
then we can conclude a latent time-varying covariate
is sufficient to explain the covariation in our data.
Instead of using a statistical test, one might alterna-
tively examine the RMSEA, based on the chi-square
difference. We adopt the approach of Savalei et al.
(2024) of computing the RMSEA using the difference
in chi squares, which they denote as RMSEAp.

We can make a further stationarity assumption that
the processes that govern change are time invariant.
For instance, the X-Y covariances are the same
between waves 1 and 2 as between wave 2 and 3.
Such an assumption implies equality of all covariances
of the same lag length and presumes the distance
between adjacent waves is the same. We call this
model LTVC-2S, as it imposes a second set of statio-
narity constraints. LTVC-2S imposes all the same con-
straints as LTVC-S and additionally constrains all
crosslag covariances of equal lag length to be equal,
e.g, C(X,,Y,) = C(X,Y;) = C(X;,Yy). As illustrated
in Figure 2, all the three Ix; covariances are set equal
and equal to the ly; covariances. Similarly, the two Ix,
covariances are equal and they equal the two ly, cova-
riances. Finally, the Ix; covariance equal the ly; covari-
ance. In a study with T waves, there are (T —1)(T—2)
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Table 2. Typology of LTVC models.”

LTVC Over-ldentifying

Model Name Stationarity Restrictions Model df Stationarity df LTVC df

LTVC None Equation 4 (T—2)(T-3)/2 0 (T—2)(T-3)/2

S-Only Equal Cross-Sectional None T-1 T-1 0
Covariances

LTVC-S Equal Cross-Sectional Equal Cross-Lagged (T—1)(T+2)/2 T-1 (T—1)(T-2)/2
Covariances Covariances

25-Only S-Only and Equal None (T—1)72 (T—1)2 0
Same-Length
Lagged Covariances

LTVC-2S S-Only and Equal Equal Cross-Lagged (-1 (T=1)? (T-1)

Same-Length
Lagged Covariances

Covariances of the
Same Lag Length

2All degrees of freedom (df) assume that the lag intervals between all adjacent waves are the same.
Note: LTVC, LTVC-S, and LTVC-2S are models that presume a latent time-varying covariate explains the X-Y covariation, but they differ in their stationarity
assumptions (see column 2). The S-Only and 2S-Only models are used to test those stationarity assumptions.

such constraints. As with the LTVC-S, the LTVC-2S
model’s covariances are identified.

To test the assumption of time-invariant change,
we estimate the 2S-Only model that contains equal
same-length lagged covariances, separately for X and
Y, as well as equal cross-sectional covariances, but no
equal cross-lagged covariances. In Figure 2, the Ix;
covariances and Ix, covariances are set equal to each
other, as well as the ly; and ly, covariances, but the Ix
and ly covariances are not be set equal to each other.
To test this second stationarity assumption, we com-
pare the fit of the 2S-Only model to the S-Only
model. If the 2S-Only model fits as well as the S-Only
model, we can impose the second set of stationarity
constraints. Then we evaluate the equality of cross-
lagged covariances allowing for equality of over-time
processes by comparing the fit of LTVC-2S model to
the fit of 25-Only model, which has T—1 degrees of
freedom.

Power and RMSEA[, for LTVC-S and LTVC-2S
models

Earlier we showed that the power and RMSEA to
reject an LTVC model was acceptable only when the
causal path was moderate to large and sample size
was large. Here we examine whether power and
RMSEAp increase when stationarity constraints are
imposed. We examine both CLPM and RI-CLPM,
when each is tested using LTVC-S and LTVC-2S. To
simplify the presentation, we primarily focus on
RMSEAp, using 0.08 for the cutoff for a poor-fitting
model.

CLPM

In general, we found that power and RMSEA, were
greater for the LTVC-S model than for the LTVC
model, and power was greater for the LTVC-2S model

than for the LTVC-S model, though improvements
when moving from the LTVC-S model to the LTVC-
2S model were generally not as dramatic as the
improvements when moving from the LTVC model to
the LTVC-S model.

Table 3 contains bidirectional models with equal
stabilities and gives the RMSEAp for the model. The
path from X to Y, ¢, varied from 0.1 to 0.5, the path
for Y to X, d, from 0 to 0.4, and the cross-sectional
correlations were set to .5. Importantly, the a and b
stabilities were set equal to 0.5, an assumption that is
later relaxed.

When the two causal paths, ¢ and d, were equal,
RMSEAp was always zero. As the difference between
the two paths increased by the same amount,
RMSEAp increased as the paths’ sizes increased. For
instance, consider a 3-wave dataset estimated using
LTVC-S. RMSEA would be 0.077 when ¢=0.1 and
d=0, but when ¢=05 and d=04, RMSEAp
increases to 0.125. Thus, for a fixed value of c—d, the
bigger the values of ¢ and d, the greater the value of
RMSEAp. Additionally, when the absolute difference
between ¢ and d is 0.1, the smallest value of RMSEAR
is 0.060 and when the ¢ — d difference is 0.2, it is
.122. With a difference in coefficients of just 0.2, we
should be able to rule out the LTVC-S or LTVC-2S
models.

Once we allow for unequal autoregressive paths, a
and b, the story becomes more complicated. The abil-
ity to reject LTVC-S and LTVC-2S depends on the
difference between the cross-lagged
When the variables are all standardized and station-
ary, the crosslag difference equals ¢ — d+r(b — a),
where r is the cross-sectional correlation. As we saw
in Table 3, the difference, ¢ — d, in lagged coefficients
affects RMSEAp. But RMSEAp also depends on the
difference between the two autoregressive paths.
Assuming ¢ — d is positive, as b gets larger than a,
RMSEAp increases, but as b gets smaller than

covariances.
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Table 3. RMSEA,, values with stabilities and cross-sectional correlation at 0.5, and X to Y path, ¢, varying from 0.1 to 0.5, Y to X
path, d, varying from 0.0 to 0.4 with values larger than 0.080 in bold.

d

C T S 25 S 25 S 25 S 25 S 25

A 3 0.077 0.095 0.000 0.000 0.078 0.096 0.160 0.196 0.249 0.305
Al 4 0.067 0.095 0.000 0.000 0.069 0.097 0.142 0.202 0.225 0.319
Al 5 0.060 0.095 0.000 0.000 0.062 0.098 0.129 0.205 0.206 0.327
2 3 0.156 0.191 0.078 0.096 0.000 0.000 0.082 0.100 0.170 0.209
2 4 0.136 0.192 0.069 0.097 0.000 0.000 0.074 0.104 0.157 0.222
2 5 0.122 0.193 0.062 0.098 0.000 0.000 0.067 0.107 0.145 0.230
3 3 0.239 0.293 0.160 0.196 0.082 0.100 0.000 0.000 0.090 0.110
3 4 0.210 0.297 0.142 0.202 0.074 0.104 0.000 0.000 0.085 0.120
3 5 0.189 0.299 0.129 0.205 0.067 0.107 0.000 0.000 0.079 0.126
4 3 0.330 0.404 0.249 0.305 0.170 0.209 0.090 0.110 0.000 0.000
4 4 0.293 0.415 0.225 0.319 0.157 0.222 0.085 0.120 0.000 0.000
4 5 0.266 0.421 0.206 0.327 0.145 0.230 0.079 0.126 0.000 0.000
5 3 0.435 0.537 0.354 0.435 0.277 0.340 0.202 0.248 0.125 0.153
.5 4 0.393 0.564 0.327 0.466 0.262 0373 0.197 0.280 0.127 0.179
5 5 0.362 0.579 0.304 0.484 0.247 0.392 0.188 0.298 0.123 0.194

a, RMSEAp decreases until it equals zero when
¢ — d=r(b — a), and then it increases as ¢ — d+r(b
— a) becomes more negative. Note too that even
when both ¢ and d are zero, RMSEAR is non-zero
when a and b are unequal. This result indicates that
CLPM is not the alternative model for LTVC. Rather,
estimating LTVC models allows us to rule out the
plausible rival hypothesis that a latent time-varying
covariate completely explains X-Y covariation.

The RMSEAp for LTVC-S declines slightly as the
number of waves increases from 3 to 5. This is surpris-
ing given that power increases as the number of waves
increases. Perhaps this occurs because the difference
between cross-lagged covariances declines as the lag
length increases. Because models with more waves have
longer lagged covariances, RMSEAp declines. In con-
trast, RMSEAp, for the LTVC-2S model does increase as
the number of waves increases.

Generally, holding everything else constant, increas-
ing the cross-sectional correlation, denoted here as r,
does appear to increase the power of the LTVC-S and
LTVC-2S models slightly, but the effect is quite mod-
est. For instance, when ¢=0.1, d=0, and a and b
equal 0.5, LCTC-S is estimated with 3 waves, and
r=0.2, RMSEAp is 0.068, when r=0.5, it is 0.077.
We suspect this is due to increased precision with
larger correlations.

RI-CLPM

RI-CLPM is CLPM with the addition of a random
intercept that acts as a trait factor (Hamaker et al,
2015). Stable intercepts are added to both X and Y,
and the autoregressive (a and b) and cross-lagged (c

and d) paths represent paths among residuals of X
and Y, after removing the stable intercept variance.

To more easily compare power values of CLPM to
those from RI-CLPM, we started with the CLPM with
standardized variables and added an intercept to that
model. For simplicity, the intercept variance was the
same for X and Y. We also allowed the two intercepts
to be correlated.

Here we consider the model with a unidirectional
cause (d=0) and equal stabilities (a=b=0.5), and a
cross-sectional correlation of .5. For RI-CLPM, we
add random intercepts explaining between 10 to 50%
of the total variance of X and Y and correlating 0.5
with each other. Focusing on LTVC-S and LTVC-2S,
the general pattern of results for RI-CLPM were very
similar to those for CLPM, which is not too surprising
as the model is a modified version of CLPM.
However, on average, the RMSEA, values were lower
for RI-CLPM than for CLPM and this trend increased
as the percentage of variance due to the random inter-
cepts increased.

The RMSEAp was affected by the correlation of the
intercepts. Again, using the same values for the parame-
ters and examining LTVC-S and LTVC-2S, the
RMSEAp increased as the correlation of the intercepts
increased, although these increases were small. Again,
in RI-CLPM, power increased under the assumption of
stationarity, and power was generally higher for 2S
models than for S models.

Decision tree for ruling out a time-varying
confounder

When estimating causal cross-lagged effects (e.g., RI-
CLPM), the researcher can evaluate the plausibility of
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S-Only Fits

YES

LTVC Fits

2S-Only Fits

LTVC-S Fits

LTVC-2S Fits

Can Rule Out
LTVC

Out LTVC
Figure 3. Decision tree for LTVC models.
Note: Begin with “S-Only Fits” and end with “LTVC Model Can
Be Ruled Out” or “LTVC Model Cannot Be Ruled Out”; see
Table 2 for definitions of the LTVC, S-Only, and 2S5-Only
models.

whether a latent time-varying covariate successfully
explains the observed covariation between the two vari-
ables. Figure 3 contains a decision tree that details the
steps to evaluate whether the LTVC model fits well.
What is meant by the “model fitting well” depends on
some explicit empirical cutoff for a poor fitting model,
such as a p value from the ;> test or, especially when
sample sizes are large, a good-fitting model might be
defined by being below a pre-set RMSEA or SRMR
value. Additionally, theory, prior knowledge, and study
characteristics would affect the decision as to what is a
good model. We strongly urge researchers to preregister
their criteria for model rejection. Moreover, we note
that because tests of S-Only and 2S-Only evaluate the
plausibility of strong stationarity assumptions, it would
be advisable to set either to set higher alphas and lower
RMSEA values to retain those models.

Note that testing for confounding with the LTVC
model is very different from the more familiar tests of
model assumptions, e.g., a test of normality. When
those familiar tests fail, it signals that the researcher
needs to change the analysis, e.g., by transforming the
outcome to satisfy the normality assumption. Also,
researchers typically hope that the familiar test shows
that the estimated model fits well, e.g., no evidence of
nonnormality. However, in testing the LTVC model,
likely the researchers would hope that the LTVC is
not a good-fitting model. Moreover, even if the LTVC
model is deemed to be a good-fitting model, the
researcher would still estimate the specified causal
cross-lagged model. Nonetheless, the LTVC model
provides important context: The possibility that a
latent time-varying covariate might be the source of
all of the causal effects cannot be ruled out.

We begin at the top of Figure 3 by testing the
plausibility of stationarity assumption of equal cross-
sectional covariances, the S-Only model. If S-Only
does not fit well, we must rely on the test of the
LTVC model. If we do not reject the LTVC model,
the data are consistent with a latent time-varying
covariate being able to explain the covariation in the
data. Alternatively, if we reject the LTVC model, then
LTVC cannot explain the pattern of covariances in
the data.

If the S-Only model does fit well, we proceed to see
if the 25-Only model also fits well, relative to the S-
Only model. If the S-Only model fits well, but the 2S-
Only model does not (i.e., the fit of the 25-Only model
is substantially worse), we compare the fit of LTVC-S to
the fit of S-Only model. If we reject the LTVC-S model,
we can rule out LTVC. If we fail to reject LTVC-S, then
an LTVC could potentially explain our covariance
structure. Alternatively, if the 2S-Only model fits as
well as the S-Only model, indicating that covariances of
the same lag length can be assumed to be equal, then
we use the LTVC-2S model to evaluate the plausibility
of the LTVC. To do so, we estimate the LTVC-2S model
and compare it to the fit of 2S-Only model.’

As we discussed earlier, ruling out the LTVC model
does not mean that CLPM or any other causal model
is the correct model. It simply means that the LTVC
model is unable to explain the observed pattern of
covariation. The rejection of the LTVC model does
not indicate the nature of the causal effect, nor does it
“prove” that there is a causal relationship between X
and Y.

Illustrations

To demonstrate how these models could be used in
practice, we include three examples. For the first
example, it is likely that there are no causal lagged
effects; the second and third examples are from pub-
lished papers with lagged effects. Also, the third
example includes unequal spacing of the time lags.
For each example, we present fit values for all the
possible models: LTVC, LTVC-S, LTVC-2S, S-Only,
and 2S-Only models. We also present a summary of
results from the analyses using the flowchart in Figure
3. All analyses in this article used Mplus (Muthén &

3Note that the test of stationarity refers to equality of parameters in the
original metric. There might be cases in which stationarity holds using
the standardized metric. In this case, the standardized loading of X and Y
on the common factor does not change over time. Kenny (2005a) shows
how to estimate the standardized LTVC models using SEM. For all three
of the examples, the model fit improves with standardized instead of
unstandardized stationarity.



Muthén, 1998-2017), and the setups and outputs for
these and subsequent analyses are available as
Supplemental Material: Mplus Setups and Outputs. To
identify the LTVC model, we first estimated the
model with no constraints. Using the residual variance
of the time 1 measure of X from the first run, we
fixed its residual variance to that value in a second
run. All statistical tests used 0.05 as the value for
alpha.

Depression in adolescence

We chose the first example to be one in which there
are not likely any lagged effects, as the two variables
are two subscales of a construct. Dumenci and Windle
(1996) measured depression on 433 adolescent women
every 6 months 4 times. Depression is measured using
the Center for Epidemiologic Studies Depression Scale
or CES-D, which has four subscales, two of which we
analyze: Positive Affect (reversed) and Interpersonal
Problems.

Table 4 provides the results for all the LTVC mod-
els and relevant model comparisons. Using the flow-
chart in Figure 3, we find the following: Because both
S-Only (x*(3) = 4.846, p=0.183, RMSEA = 0.038,
SRMR 0.029) and 2S-Only (2(9) 8.302,
p=0.504, RMSEA = 0.000, SRMR = 0.028) are good-
fitting models, we estimated the LTVC-2S model.
When we compared that model to the 25-Only model,
we obtained a good-fitting model, ;(2(3) 2.066,
p=0.559, RMSEA, = 0.000. The data were consistent
with the view that a latent time-varying covariate
could successfully and completely explain the covari-
ation between the two measures of depression. This is

Table 4. LTVC models for the Dumenci and Windle (1996) study.
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what we expected to find as these two variables are
presumed to have a common unmeasured confounder:
depression.

Depression and self-esteem in college: the BLS
study

The second example includes two variables that were
hypothesized to be in a causal relationship. Orth et al.
(2008), see also Orth et al. (2021), claimed to find an
effect from Self-esteem to Depression. The title of
their paper is Low self-esteem prospectively predicts
depression in adolescence and young adulthood. In
Study 1 of Orth et al. (2008), the Berkeley
Longitudinal Study (BLS), there are 404 United States
college students measured four times, once each year.
Table 5 contains LTVC model-fit information for
the BLS study. Using the flowchart in Figure 3, we
find the following: Because both the S-Only (F(3) =
6.097, p=0.107, RMSEA = 0.051, SRMR = 0.054)
and the 2S-Only (4°(9) = 10.168, p=0.337, RMSEA
= 0.018, SRMR = 0.061) are good-fitting models, we
estimated the LTVC-2S model. When we compared
the LTVC-2S to the 2S-Only model, we obtained an
equivocal fit with a statistically significant chi square
(*(3) = 10.628, p=0.014) but an RMSEA below 0.08
(RMSEAp = 0.079). The decision as to whether the
LTVC-2S model fits the data is ambiguous.
Ordinarily, unless the sample size was large (N > 500),
we would rely on the chi square test. Moreover,
because all three LTVC models have p values less
than 0.05, we would reject the LTVC model. Even if
we reject the LTVC model, we know nothing about
the correct causal mechanism. Later in this article, we

Model e df p RMSEA SRMR C. Model® ¥ diff df p RMSEAp
LTVC 2.508 3 474 0.000 .007

S-Only 4.846 3 183 0.038 .029

LTVC-S 8.909 9 446 0.000 031 S-Only 4,063 6 668 0.000
25-Only 8.302 9 .504 0.000 028 S-Only 3.456 6 750 0.000
LTVC-2S 10.368 12 .584 0.000 028 25-Only 2.066 3 559 0.000
#Comparison Model.

Note: See Table 2 for model definitions.

Table 5. LTVC models for the BLS study.

Model 7 df p RMSEA SRMR C. Model® i diff df p RMSEA,
LTVC 8.210 3 042 0.066 014

S-Only 6.097 3 107 0.051 054

LTVC-S 17.751 9 .038 0.049 .053 S-Only 11.654 6 .070 0.048
25-Only 10.168 9 337 0.018 061 S-Only 4,071 6 667 0.000
LTVC-2S 20.796 12 053 0.043 058 25-Only 10.628 3 014 0.079

*Comparison Model.
Note: See Table 2 for model definitions.
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Table 6. LTVC models for the Ninez-Regueiro et al. (2022) study.

Model P df p RMSEA SRMR C. Model® i diff df p RMSEA,
LTVC 1334 6 970 0.000 004

S-Only 5114 4 276 0.017 034

LTVC-S 13.167 14 513 0.000 035 S-Only 8.053 10 624 0.000
25-Only 16.975 14 258 0.015 039 S-Only 11.861 10 294 0.014
LTVC-2S 17.594 19 550 0.000 038 25-Only 0.619 5 987 0.000

#Comparison Model.
Note: See Table 2 for model definitions.

explore a non-causal model in which Depression is a
leading indicator of a latent variable and Self-esteem
lags by more than year.

Academic self-concept and achievement

We tested the LTVC models using the data from
Nunez-Regueiro et al. (2022) who tested a series of
models on a sample of 933 French high school stu-
dents to examine the reciprocal effects between
Academic Self-Concept and Academic Achievement.
The students were measured during their first and
second years of high school. During each year they
were measured three times a year, trimesters, but
because students were on internship during the 5™ tri-
mester, data were not collected for that trimester. For
the 10 time-differences in pairs of measurements, 3
were 1 unit, 3 were 2 units, 2 were 3 units, 1 was 4
units, and 1 was 5 units. Because of this pattern, the
formulas for degrees of freedom in Table 2 cannot be
used. Nunez-Regueiro et al. included several covariates
in their analyses; our analyses did not include them
here, but we do discuss them in a later section. We
note that Nunez-Regueiro et al. in their article made
no claims of any causal effects.

Table 6 contains model-fit information for the
Nunez-Regueiro et al. study. Using the flowchart in
Figure 3, we find the following: Because both the S-
Only (*(4) = 5.114, p=0.276, RMSEA = 0.017,
SRMR = 0.034) and the 2S-Only (°(14) = 16.975,
p=0.258, RMSEA = 0.015, SRMR = 0.039) are good-
fitting models, we estimated the LTVC-2S model.
When we compared that to the 2S-Only model, we
obtained a good-fitting model, ¥°(5) = 0.619,
p=0.987, RMSEAp = 0.000.

Thus, we cannot rule out the possibility that some
unmeasured  time-varying completely
explains the covariation between the two variables.
The hypothesis that Academic Self-Concept and
Academic Achievement were caused by the same vari-
able, perhaps Academic Ability, remains. However, as
we discussed and showed in Table 3, the power to
reject the LTVC with reciprocal effects is poor.
Nunez-Regueiro et al. (2022) expected and found

covariate

evidence for reciprocal effects in most of their analy-
ses. In sum, we are left with two competing explana-
tions for the results: reciprocal causal or a latent time-
varying confounder.

Model extensions

Here we consider six extensions to our model. First,
we develop an observation-level LTVC model that is a
blend of LTVC and CLPM. We next consider multi-
variate models, beyond the bivariate model that we
have previously discussed. We also consider the case
that the latent variable is a not a single variable, but
rather that there are multiple latent variables. Next,
we discuss the inclusion of covariates into the LTVC
model. Next, we consider modeling the process of
change of the latent time-varying confounder, C.
Lastly, we relax the assumption that the latent time-
varying confounder simultaneously causes X and Y.

The LTVC-CLPM model

In this section, we develop an observation-level LTVC
model that is a blend of LTVC and CLPM. Unlike
CLPM, there is no cross-sectional correlation between
residuals (E and F in Equations 5 and 6), but rather
there is a latent-time varying confounder, which
changes in an autoregressive fashion. We refer to this
model as the LTVC-CLPM (see Figure 4). The model
has a latent variable, C, that causes X and Y at each
wave and changes in a first-order autoregressive fash-
ion and the variables X and Y also have autoregressive
paths, a and b, as well as cross-lagged paths, ¢ and d.
One major advantage this model has over the previous
LTVC model with correlated residuals is that this
model explicitly includes the possibility of an alterna-
tive model, i.e., ¢ and d being non-zero. This allows
the latent time-varying confounding to explain some
but not all of the X-Y covariation. Note that CLPM is
a special case of this model in which the autoregres-
sive path for the latent time-varying confounder, e,
equals zero (Dwyer, 1983, p. 362).

Generally, for observation-level models with latent
variables, all the wave-one variables, including C;, are
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Figure 4. The LTVC model with observation-level autoreges-
sive paths: LTVC-CLPM.

Note: X and Y are measured variables at 3 Times, C a latent
time-varying confounder with an f path to X and a g path to
Y, a the autoregessive path for X, b the autoregessive path for
Y, c the path from X to lagged Y, d the path from Y to lagged
X, and E and F the residuals for X and Y, V() a variance, and
C() a covariance.

treated as exogenous, as we have done in Figure 4.
To identify the model, we make assumptions of statio-
narity. The structural equations are:

Ci=¢eCii1+ Uy (7)
Xy = fCy+ aXiy+ dYii1+ Ey (8)
Yi= gCi+ bYi o1+ Xi1+ Fi 9)

As shown in Figure 4, we set equal the factor load-
ings of f and g, the autoregressive paths of a, b, and e,
the cross-lagged paths of ¢ and d, and the residual
variances of E for X, F for Y, and U for C. As we did
for LTVC, we standardize C;. Lastly, to make the
model fully stationarity, we need to constrain the var-
iances and covariances of the exogenous variables, Xj,
Y,, and C;.

To make those constraints with an SEM program,
we chose to reparametrize the model in the same way
as Usami et al. (2019). We created a separate phantom
variable for each of the 2 T measures. Each X, measure
has a phantom variable of Ly; (e.g., X; = sxLx;), and
each Y, measure has a phantom variable (e.g., Ly, and
Y, = syLy;. Two new parameters are added to the
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model, sx and sy, but we lose two parameters by fix-
ing the variances of Ly and Ly to one. In this new
model, in Figure 4, as well as Equations 7, 8, and 9,
we replace X with Ly and Y with Ly. This formulation
turns the parameters of f, g a, b, ¢, d, and e into beta
coefficients, and sx and sy are the standard deviations
of X and Y, respectively.

The nonlinear constraints that need to be imposed
to create stationarity variance covariance matrix are:

syt =1-¢ (10)

_ dge+f(1—be)
Tor = (1 —ae)(1 — be) — cde? (1)

B cfe +g(1 — ae)
Tor = (1 —ae)(1 — be) — cde? (12)

Txy = [e(ﬂﬂ’cy + gare + fere —|—gdrcy) + fg + ac + db]
/(1-cd-ab) (13)

SEZ =1 - |:6l2 + dz + 2ad"xy + ef(arcx + dr‘)’) + frcxi|
(14)

SFZ =1 - |:b2 —+ C2 + 2bCrxy + Eg(brcy + Crcx) + grf}’i|
(15)

The total number of model parameters is 9, regard-
less of the number of waves. To validate that the
model is identified, we generated several population
covariance matrices, then conducted an SEM analysis,
and each time the program successfully recovered the
population parameters. Note that if C has zero stabil-
ity, e=0, the model is the same as CLPM, but paths f
and g are not identified.

The full set of stationarity constraints imply all the
previously discussed 2S constraints, (T — 1), as well
equal lagged covariances of the same lag length for
both X and Y, (T—1)(T—2), and equal variances
across time for X and for Y, 2(T— 1), resulting in the
total number of stationarity constraints equals
@T-1)(T-1).

We illustrate the estimation of the LTVC-CLPM
using the earlier discussed Dumenci and Windle
(1996) study. To test stationarity, we imposed 21 dif-
ferent constraints on the variance-covariance matrix.
The fit for this stationarity model is ¥*(21) = 26.986,
p=0.171, RMSEA = 0.026, SRMR = 0.060, a good-
fitting model. Fitting the LTVC-CLPM, we obtain
7*(27) = 85.714, p < 0.001, RMSEA = 0.071, SRMR =
.073. When we remove the test of stationarity, we
obtain y%(6) = 58.728, p <0.001, RMSEAp, = 0.142.
Both the chi square test and the RMSEA suggest that
LTVC-CLPM is not a good-fitting model.
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Even if we believed LTVC-CLPM were a good
model, the model estimates are difficult to interpret.
The standardized loading of X on C is 0.995 and of Y
on C is .554. Examining the beta weights, the autore-
gressive coefficient for C or e is 0.859, the autoregres-
sive effect for X (absence of Positive Affect) or a is
-0.144, and for Y or b is 0.316 (Interpersonal
Problems). The negative autoregressive effect is diffi-
cult to comprehend. Both lagged effects (¢ and d) are
negative, which is implausible. In terms of the resid-
uals, the largest ones are for the autocorrelations of X
and Y.

When we estimated the LTVC-CLPM with the
other two example datasets, we also obtained poor fit
and anomalous results with huge factor loadings on
the LTVC, negative autoregressive paths and cross-
lagged paths with the opposite sign than the cross-sec-
tional correlations. The LTVC-CLPM estimates overly
large factor loadings on C and high stabilities for C
that the autoregressive and cross-lagged paths must
compensate for by having the negative paths.
Although we do not understand exactly why this is
happening, we very speculatively discuss two different
possible explanations.

One possibility is that the model is too complicated
for there to be stable estimates. Perhaps if we intro-
duced prior knowledge in a Bayesian analysis (e.g.,
paths a and b are not likely to be negative), we might
obtain more reasonable estimates.

Alternatively, perhaps the over-time model is mis-
specified. One possibility is that besides the LTVC,
there are also random intercepts for X and Y, and no
autoregressive or cross-lagged paths. Another possibil-
ity is there might be a second unmeasured
confounder, a state factor, which increases the cross-
sectional covariances, but not the lagged ones.

In summary, the LTVC-CLPM has several advan-
tages over the earlier LTVC model presented in
Figure 1. First, all of its model parameters are identi-
fied. Second, CLPM is a special case of this model,
whereas for LTVC, there is no clear alternative causal
model. Third, LTVC-CLPM is an observation-level
model in that it has lagged paths for X and Y, whereas
LTVC is a residual model with no such paths. Several
analysts (Andersen, 2022; Liidtke & Robitzsch, 2022;
Murayama & Gfrorer, 2024) have argued that the true
model is the observation-level model, whereas the
residual-level model is only an approximation used to
simplify the estimation of the observation model.

However, the residual-level model of LTVC has
several theoretical advantages over the LTVC-CLPM.
First, LTVC-CLPM model requires stronger

stationarity assumptions than the LTVC model.
Second, historically, over-time factor models have pre-
sumed the residual model (Duncan, 1972; Kenny,
1973; Newsom, 2024). Thus, in this case we need not
necessarily presume that observation model is the true
model, and residual model is a simplification. Third,
the estimates for the LTVC-CLPM were anomalous,
and the models fit poorly, whereas for two of the
three examples, we obtained a good-fitting LTVC
model. Of course, three studies are too small of a
sample to make a generalization, but it does suggest
that the residual model LTVC may be a sensible way
to model no causal cross-lagged effects. A systematic
comparison of the two approaches would be benefi-
cial. Especially informative would be to include studies
similar to the Dumenci and Windle (1996) study in
which X and Y are likely not causing each other but
rather are presumed to measure the same construct.

Multivariate and multi-factor models

Previous discussion was limited to two-variable,
multi-wave models; we consider here having three or
more variables. With three or more variables and just
two waves, a model in which a single factor causes
each variable at each time without any constraints on
the factor loadings is identified (Duncan, 1972). With
four or more variables, this single-factor model can be
estimated and tested within each cross-section.

With three or more indicators and just two waves,
we can relax the assumption of a single-factor and
instead allow for multiple factors. One strategy is to
assume quasi-stationarity (Kenny, 1973, 1975; Kenny
& Milan, 2012): Each variable is caused by p latent
common factors and the variances and covariances of
these p latent factors are the same at both times. The
common factor’s loadings of measure m at time t for
factor i is denoted as fy,. The quasi-stationarity
assumption is that over time all the loadings for vari-
able m change from time 1 to time 2 by a propor-
tional constant:

km :f12m/f11m :fZZrn/fZlm = .. :prpm/]fDlm (16)

Given this assumption, the ratio of the same cross-
sectional covariances between X and Y or Cx,yv,/Cxiv1
equals kyky and the ratio of the two cross-lagged
covariances between X and Y or Cx;y»/Cxzy1 equals
ky/kx. Kenny (2025a) shows how to estimate the
quasi-stationarity model by SEM and how to integrate
it within the LTVC approach.

We estimated both a one-factor and multi-factor
quasi-stationarity model with the four waves and all



our indicators of Depression from the Dumenci and
Windle (1996) study. The model of quasi-stationarity
for that data fits quite well (*(42) = 36.248,
p=0.721, RMSEA = 0.000, SRMR = 0.016) and bet-
ter than the single-factor model (*(74) = 107.968,
p=0.006, RMSEA = 0.033, SRMR = 0.052) with the
improvement in model fit being (1*(32) = 71.720,
p<0.001).

So far, we have assumed that the latent variable, C,
is a single variable. What happens if there are multiple
latent variables? The quasi-stationarity assumption can
be made but not tested for two-variable data in which
the latent variable is the sum of many variables. If the
assumption of quasi-stationarity holds, the LTVC
over-identifying restrictions in Equation 4 still hold.

Measured time-invariant covariates

Almost always, 2VMW studies have covariates. Some
of these covariates are time varying and are measured
at each time point, and for those covariates, it would
seem sensible to treat them as another variable, like X
and Y, making the analysis multivariate. In the
remainder of the section, we consider measured time-
invariant covariates, i.e., variables that are measured
only once because they are likely hardly to change
over the course of the study.

We propose two models that include time-invariant
covariates. A measured time-invariant covariate either
directly causes the X and Y measures; that is, they
have direct effects on X and Y, and the covariates are
uncorrelated with C. Note this model explains all of
the covariation between the covariates and the two
variables X and Y. Alternatively, they cause only the
latent time-varying covariate and have an indirect
effect on X and Y through C. This indirect model of
covariates results in the LTVC being an identified
model, as the measured covariate serves as the third
“indicator” of the latent time-varying covariate. The
model can be considered to be a version of the
Multiple Indicator Multiple Causes (MIMIC) model
in which the covariates are the multiple causes of C,
and X and Y are the multiple indicators. The indirect
model has the number of covariates times the number
of waves fewer covariate paths than the direct model,
making the indirect model is a special case the direct
model.

As an illustration, we return to the Nunez-Regueiro
et al. (2022) study and consider Age, Gender, and
Father’s Socioeconomic Status as covariates. Including
only those cases with complete data on the covariates,
the sample size is reduced to 762. We proceed using
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the flowchart in Figure 3. We need to expand the S-
Only assumption to include the requirement that each
covariate has the same effect on X and Y at each time,
which for each covariate adds 2(T—1) or 24 add-
itional constraints to the model. The fit of this new S-
Only model is »*(28) = 61.641, p <0.001, RMSEA =
0.040, SRMR = .045. Although the RMSEA is accept-
able, we believe that we should cautiously reject the
assumption of equal effects at each wave and proceed
to test the LTVC model with no stationarity assump-
tions. First assuming direct effects of the covariates,
the fit for the model with direct effects to X and Y is
74(6) = 1.069, p=0.983, RMSEA = 0.000, SRMR =
.004. Comparing this result to those in Table 6, we
see that controlling for the covariates does little to
alter the conclusion that the LTVC model is a good-
fitting model. The fit for the indirect effect model is
7%(20) = 33.945, p =0.026, RMSEA = 0.030, SRMR =
.026. To test the assumptions of the indirect effect
model over the direct effect model, we obtain y*(14)
= 32.876, p=0.003, RMSEAp = 0.042, suggesting the
indirect effect model is poor fitting. (There are only
14 degrees of freedom more for the indirect model
over the direct model when there are 15 fewer covari-
ate paths estimated in the indirect model than the dir-
ect model because the indirect model is identified,
and so one degree of freedom is lost by not fixing a
parameter.) Besides being a poorer fitting model than
the direct model, the solution for the indirect model
is not very interpretable, as the standardized loadings
for Y are very near one.

Because the indirect effect model is identified, it
has the potential to make LTVC models much more
useful. In fact, the LTVC model with indirect effects
of the covariate is identified with as few as two waves
of data. It might even be able to expand the indirect
model to allow for autoregressive and causal cross-
lagged effects in X and Y. However, although this
model is identified in theory, in practice it may be dif-
ficult to estimate. Akin to instrumental variable esti-
mation, we would likely need very strong covariates
that explain substantial amounts of variance in both X
and Y for this approach to be useful.

Understanding the structure of change in a latent
time-barying covariate

Although the LTVC model is under-identified, the
squared over-time correlations of the confounding
variable are identified. Understanding the structure of
change on the latent-time varying confounder can be
highly beneficial. Dwyer (1983) has shown the CLPM
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implicitly presumes that the common factor that
explains the time-one covariation has zero over-time
correlations (i.e., a state or occasion factor):

(Latent) variables may not decay rapidly enough to be
treated as occasion factors. Such factors inflate cross-
lagged covariances and can introduce a bias in the
estimation of lagged effects that is most damaging
(p. 362).

Alternatively, should the latent variable be totally
stable, then perhaps estimates from RI-CPLM may
have less bias. Thus, an analysis of the stability of C
would be beneficial in understanding the amount of
bias due to an unmeasured confounding variable.

As an illustration, we use the Nunez-Regueiro et al.
(2022) study. We found that LTVC-2S model is a
good-fitting model (see Table 6). We compare these
new models to the LTVC-2S model because they place
constraints on the variance-covariance matrix of the
latent time-varying covariate. We first evaluate
whether the latent variable is perfectly stable, a trait.
Estimating the LTVC-2S model with latent variable
correlations of one, )(2(24) = 42.696, p=0.011,
RMSEA = 0.029, SRMR = .041. When we compare
the LTVC-2S model to a model with perfectly stable
correlations, ;(2(5) = 25102, p < .001. A trait model
cannot explain the covariance structure of C.

Another possibility is to presume that there is a
state or occasion factor at each time which is com-
pletely transitory. For such a model, all over-time cor-
relations are zero. When we estimate the LTVC-2S
model with all C correlations fixed to zero, we find
7%(24) = 161.143, p <0.001, RMSEA= 0.078, SRMR
= .204. When we compare the LTVC-2S model to a
model with zero correlations, we find »*(5) =
143.549, p < .001. A state model is also not good-
fitting.

The next possibility is that X-Y covariances have an
autoregressive structure. The autoregressive trait
model for C is C; = ¢,C,.; + U, where ¢, is the autor-
egressive coefficient and C,; and U, are uncorrelated.
Because we found evidence of 2S stationarity, we can
assume that the autoregressive coefficient does not
change over time." When we subtract the chi square
for LTVC-2S, we obtain y*(4) = 1.706, p=0.790,
which is a good-fitting model. The lag-one autoregres-
sive coefficient is estimated to be .942. Although this
indicates high lag-1 stability, the implied correlation

“Both Rickard (1972) and Kenny (1973) considered a three-wave model
with no stationarity constraints in which the latent time-varying
confounder has an autoregressive structure. That model has two degrees
of freedom. One degree of freedom evaluates the assumption of a
first-order autoregressive structure and the other evaluates the LTVC
model.

from wave one to wave six is the autoregressive coeffi-
cient raised to the fifth power, which equals 0.743.

We have so far discussed how a single type of fac-
tor, either trait, state, or autoregressive, can explain
the pattern of LTVC covariances. We now examine
two such factors at the same time. For instance, the
common factor has two parts: one part is autoregres-
sive, and the other part is totally unstable over time, a
state factor (Humphreys, 1960). To identify this
model, 2S stationarity assumptions must be made.
When we estimated this model for the Nunez-
Regueiro et al. (2022) study, we did not find evidence
for the utility of adding a state factor to the autore-
gressive model, obtaining x*(1) = 0.001, p=1.00.
Thus, the autoregressive model is the preferred model
to explain the pattern of change of the latent time-
varying confounder for this dataset.

Other possible combinations could be estimated.
For instance, akin to RI-CLPM, we could have a stable
trait factor, i.e.,, random intercept, as well as an autor-
egressive factor. Although difficult to fit, the STARTS
model (Kenny & Zautra, 2001), which includes a per-
fectly stable trait factor, an autoregressive factor, and
state factor, could be fitted. Another possibility is a
linear growth model with a slope and intercept. If
there were enough waves, we could consider a cyclical
model of change. See Liu and West (2016) for an
introduction to modeling cycles and Muthén et al.
(2024) for a discussion of statistical estimation.

Lag-lead LTVC model

A key assumption of the LTVC model is that the
time-varying confounder causes X and Y simultan-
eously. It is possible to estimate a version of the
LTVC model in which the effect of C on one variable
is simultaneous and a lagged effect on the other vari-
able. We can view the Lag-lead Model as the alterna-
tive model to LTVC in that the lag length for LTVC
is zero.

Kenny (1973) discussed a Lag-lead model in which
the lag is fixed to be one unit of time:

Xit = a;Cyy + Ej (17)
Yir = byCi(ry1) + Fu (18)

In this model, X is said to be a leading indicator of
C, and Y a lagging indicator. Like the LTVC model in
Figure 1, there are no constraints on the correlational
structure of C. This approach has two serious limita-
tions: lag length must be specified, and which varia-
bles are the leading and lagging indicators must be
known.



Kenny (2025b) presented a new model that empir-
ically estimates the leading indicator and the lag
length using non-linear model constraints. The model
presumes that the earlier discussed 2S assumptions
hold and that the model of change of the latent time-
varying covariate can be specified. For the BLS study,
we first estimated a model of change that was autore-
gressive, and the model fit was poor (*(13) = 28.212,
p=0.008, RMSEA= 0.054, SRMR = 0.067). However,
a model with a lagged autoregressive factor and a sim-
ultaneous state factor fits well (y*(12) = 12.382,
p=0.416, RMSEA= 0.009, SRMR = 0.063). The lag
length for this model was estimated to be —1.234
(95% CI. —1.873 to —0.595), which indicates that
Depression leads Self-esteem by about 15months.
Note that lag length is defined in this model in terms
of Self-esteem (X) leading Depression (Y), and so a
negative value implies Self-esteem is a lagging indica-
tor. When we set the lag length to zero, the fit wors-
ened considerably when compared to the model with
lag length free: x°(1) = 8.495, p = .004.

These results suggest that there is a General
Negativity Factor, which first appears in Depression.
Perhaps it is triggered by some life event. That factor
is seen first in Depression, but then over a year later
in Self-esteem.

Conclusion

We have urged researchers interested in showing
lagged causal effects with 2VMW data to demonstrate
that a model that the covariation between the two var-
iables is not entirely due to a confounding variable.
We have developed a testable, but under-identified
model of a confounding variable moving through
time, as well as a testable and identified model of con-
founding variable with stationarity assumptions. We
investigated the power to reject these time-varying
covariate models, and we found that power increases
with larger asymmetric causal effects, number of
waves, and stationarity of parameters.

It is crucial to realize that sometimes an LTVC
model might appear to be a good-fitting model, when
in fact it is not the correct model. First, as shown in
Table 3, it might well be that that the true model is
reciprocal with both X causing Y and Y causing X.
Second, if stationarity assumptions cannot be made or
effects are small, there may be insufficient power to
reject the LTVC model. Moreover, even if we deem
that that the LTVC is a poor model, we cannot con-
clude that the estimated causal model (e.g., CLPC) is
correct or that the causal estimates are unbiased.
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Those estimated effects may still be seriously biased
by unmeasured confounders.

An empirically based strategy could be used to val-
idate that the LTVC model represents an appropriate
way to model a latent time-varying confounder with
2VMW data. An extensive re-analysis of many data-
sets in which two variables are likely indicators of a
common variable, like the Dumenci and Windle
(1996) CES-D reanalysis in this article, would be
informative. Moreover, if further improvements in
LTVC-CLPM could be made, that model and the
LTVC using correlated residuals could be compared.

Instead of estimating an LTVC model, as we have
done in this article, an alternative would be to con-
duct a sensitivity analysis. That is, the researcher
would investigate what happens to the estimates of
the causal effects, when a latent-time varying con-
founder is added to the model. A sensitivity analysis
does not require that the model be identified.
Consider, for example, a researcher who estimates a
longitudinal causal model using RI-CLPM and finds
evidence of a lagged X to Y effect. One possible sensi-
tivity analysis would be to replace the random inter-
cept with a latent time-varying confounder. The
researcher might fix the factor loadings of X and Y, to
identify the model, and then see how much the X to
Y effect changes as the factor loadings on the LTVC
increase. Elaborating the process of how to conduct
sensitivity analyses for LTVC models is deserving of
further investigation.

In 1963, Donald T. Campbell (Campbell & Stanley,
1963, p. 69) speculated that equal cross-lagged correla-
tions might be indicative of the absence of causal
cross-lagged effects. His students (Kenny, 1973;
Rickard, 1972) provided a more formal rationale for
that approach wusing latent variable modeling.
However, for some 50years, researchers abandoned
the topic of latent confounders for bivariate, multi-
wave data. Why did this happen?

One reason is the mistaken belief that confounding
can be controlled in a CLPM analysis regression. As
first shown by Dwyer (1983, p. 362), CLPM implicitly
presumes that the common factor that explains the
residual cross-sectional covariation has zero stability
over time (i.e., is a state or occasion factor). CLPM
makes a very strong and likely implausible assumption
about the common factor.

A second reason that researchers have ignored the
common factor model is that researchers who gather
such data are generally interested in the causal effects.
Rogosa (1980) correctly noted that researchers with
longitudinal data have little interest in testing
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confounding but rather are much more interested in
estimating and testing causal effects. Although we
understand that interest and the desire to find causal
effects, it is, nonetheless, beneficial to explicitly rule
out confounding as a complete explanation of X-Y
covariation.

A third reason is that in the early 1980s when this
topic was being debated, we did not have the SEM
tools that we now have. The focus then was primarily
on two-wave studies. Since then, the focus moved
from two-wave to multi-wave studies, and we now
have powerful SEM programs to estimate such
models.

Drawing causal inferences from 2VMW is a chal-
lenging enterprise requiring substantive knowledge of
the process and measurement issues involved and
consideration of alternative non-causal mechanisms.
The LTVC models in this article begin to provide us
with tools in this endeavor.
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