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ABSTRACT 
Network psychometrics uses graphical models to assess the network structure of psycho
logical variables. An important task in their analysis is determining which variables are unre
lated in the network, i.e., are independent given the rest of the network variables. This 
conditional independence structure is a gateway to understanding the causal structure 
underlying psychological processes. Thus, it is crucial to have an appropriate method for 
evaluating conditional independence and dependence hypotheses. Bayesian approaches to 
testing such hypotheses allow researchers to differentiate between absence of evidence and 
evidence of absence of connections (edges) between pairs of variables in a network. Three 
Bayesian approaches to assessing conditional independence have been proposed in the net
work psychometrics literature. We believe that their theoretical foundations are not widely 
known, and therefore we provide a conceptual review of the proposed methods and high
light their strengths and limitations through a simulation study. We also illustrate the meth
ods using an empirical example with data on Dark Triad Personality. Finally, we provide 
recommendations on how to choose the optimal method and discuss the current gaps in 
the literature on this important topic.
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Introduction

In network psychometrics, graphical models known as 
Markov Random Fields (Kindermann & Snell, 1980; 
Rozanov, 1982) have become a popular tool for assess
ing the network structure of psychological variables 
(see Borsboom et al., 2021; Contreras et al., 2019; 
Marsman & Rhemtulla, 2022; Robinaugh et al., 2020, 
for recent reviews). In these networks, nodes represent 
observed psychological variables (e.g., symptom indica
tors), and edges represent the pairwise relationships 
between them. A ‘present’ relationship indicates a dir
ect link (positive or negative) between a pair of varia
bles, while an absent relationship reflects conditional 
independence; if any dependence exists it is fully 
accounted for by other variables in the network. For 
example, although shark attacks (A) and ice cream 
sales (I) are correlated, their dependence disappears 
when season (S) is taken into account, showing that A 
and I are conditionally independent given S. The goal 

of network analysis is to discover the underlying con
figuration of present and absent edges—the conditional 
independence structure of the network. Conditional 
independence is a first step in determining causal rela
tionships (e.g., Pearl, 2009; Spirtes et al., 2000), and 
aids our understanding of the underlying dynamic 
system. With the gradual development of Bayesian 
approaches to network analysis (e.g., Marsman et al., 
2015; Marsman & Haslbeck, 2023; Mohammadi & 
Wit, 2015; Williams, 2021; Williams & Mulder, 2020a), 
testing the conditional independence of a pair of 
variables in the network has also begun to receive 
attention: Three Bayesian approaches to conditional 
independence testing have recently been proposed in 
the network psychometrics literature. Although the 
development of conditional independence tests is an 
important step forward, the three methods differ con
ceptually, and we believe that their foundations are not 
well known. In this paper, we provide a conceptual 
review of the three Bayesian approaches, and show 
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that when we are uncertain about the structure of the 
network, there appears to be an optimal approach for 
testing conditional independence.

In recent years, both frequentist and Bayesian 
approaches have been proposed for estimating the 
network structure from empirical data. In psychology, 
frequentist approaches are the norm, and although 
unregularized estimation approaches have become 
available in recent years (see Blanken et al., 2022, for 
a review), regularized estimation based on lasso 
remains popular (e.g., Borsboom et al., 2021; Epskamp 
& Fried, 2018; Tibshirani, 1996; van Borkulo et al., 
2014). A caveat of these approaches is that they are 
biased toward the null hypothesis of conditional inde
pendence, yet their underlying frequentist method
ology can only refute this hypothesis, not support it. 
This leads to the problem that if an edge is missing 
from an estimated network, we are unsure whether 
this is due to a lack of information in the data to sup
port the relation, or due to actual conditional inde
pendence (e.g., Epskamp et al., 2017). Bayesian 
methods (e.g., Wagenmakers, Marsman, et al., 2018; 
Wagenmakers et al., 2016), on the other hand, are 
able to quantify the relative support for the competing 
hypotheses of conditional dependence and conditional 
independence; importantly, they can also reveal the 
lack of support for either hypothesis in the data at 
hand. By distinguishing evidence of absence from 
absence of evidence, Bayesian methods facilitate a 
deeper understanding of the conditional independence 
structure of the network.

Below we review three Bayesian approaches that 
have recently been proposed to test conditional inde
pendence. The first method uses the credible interval— 
the Bayesian version of the frequentist confidence inter
val—and assesses whether or not it contains the param
eter values that indicate conditional independence. This 
method focuses solely on rejecting the conditional 
independence hypothesis, and thus suffers from the 
same fundamental problem that plagues the frequentist 
methods mentioned above. The second method uses a 
Bayes factor approach (Jeffreys, 1961; Kass & Raftery, 
1995)—which is the Bayesian generalization of the like
lihood ratio test. The Bayes factor compares how well 
two competing models can predict the observed data. 
When we compare two models that are identical except 
that one has two variables that are unrelated and the 
other has them related, we can use the Bayes factor to 
express the relative support, or lack thereof, for the 
conditional dependence or independence hypotheses. 
The Bayes factor test represents a major improvement 
over interval-based tests for conditional dependence 

and independence. However, we will show that this 
Bayes factor approach requires a choice about which 
relationships are present in the rest of the network and 
that it is sensitive to that choice. The third method, 
called the inclusion Bayes factor, is a generalization of 
the Bayes factor approach that uses Bayesian model 
averaging (BMA, Hoeting et al., 1999; Kaplan, 2021) to 
overcome the sensitivity to which relationships are pre
sent in the rest of the network. The inclusion Bayes 
factor compares how well we can predict the observed 
data from a combination of all models in which the 
two variables are related, and compares this to the pre
dictive adequacy of a combination of models in which 
the variables are unrelated. In this paper, we consider 
the structure of the network, a particular configuration 
of present and absent edges, to be a model. As we will 
show below, BMA allows us to make robust structure- 
averaged inferences.

The remainder of this paper is structured as fol
lows. The next two sections provide a conceptual 
introduction to the role of conditional dependence 
and independence in graphical modeling, and the 
Bayesian methodology that underlies the methods for 
testing these hypotheses. We refer the interested 
reader to Epskamp et al. (2022), Marsman et al. 
(2018), and Waldorp and Marsman (2022) for a 
detailed introduction to the graphical models used in 
network psychometrics, to van de Schoot et al. (2014) 
and Wagenmakers, Marsman, et al. (2018) for a 
detailed introduction to Bayesian estimation and 
hypothesis testing, and to Huth, de Ron, et al. (2023) 
for a more comprehensive introduction to the 
Bayesian analysis of graphical models. In the third 
section, we investigate the three Bayesian methods to 
test for conditional dependence and independence in 
detail and discuss their relations and limitations, after 
which we compare their relative performance in a 
simulation study and illustrate them with an empirical 
example. We end by discussing the limitations of the 
Bayesian analysis of graphical models, and Bayesian 
model averaging in particular.

Graphical modeling

A graphical model specifies the joint probability dis
tribution for a set of observed variables, and repre
sents these variables as nodes in a network. The goal 
of a statistical analysis of the graphical model is to 
determine the relations between pairs of variables, 
which will constitute the edges of the network. We 
usually have two questions about network relations. 
First, we wish to know if the edge is there or not: is 
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an effect present? Once we have established that there 
is an effect, and the edge should be in the model, a 
follow-up question could be how strong the relation 
is: what is the strength of the effect? The first question 
is usually linked to testing whereas the latter is linked 
to estimation, but this distinction can be vague in 
practice.

In this paper, we will address the two questions about 
the graphical model separately. First, a binary variable cij 

is used to indicate that the edge between variables i and j 
is present (i.e., cij ¼ 1Þ or absent (i.e., cij ¼ 0). In a net
work with p variables, we have k ¼ p ðp − 1Þ=2 possible 
edges. Each configuration of edges (i.e., the pattern of 
zeros and ones: c12, :::, cðp−1Þp) constitutes a possible 
network structure Ss, of which there are 2k in total. 
Figure 1 illustrates the idea for a network of three ran
dom variables; shark attacks (A), ice cream sales (I), and 
season (S). The three variables yield k ¼ 3� ð3 − 
1Þ=2 ¼ 3 possible edges, and thus 2k ¼ 23 ¼ 8 possible 
network structures. For example, Structure S1 ¼ ½cAI ¼

0, cAS ¼ 0, cSI ¼ 0� and Structure S4 ¼ ½cAI ¼ 0, 
cAS ¼ 0, cSI ¼ 1�:

For each structure Ss, s ¼ 1, :::, 2k, we have a 
distinct statistical model1 for the observed variables 
pðdatajHs, SsÞ: The weights of the relations in the 
structure Ss are expressed in a symmetric matrix Hs, 
which has the edge weights hij on the off-diagonals. 
The edge weights that correspond to relations that are 
absent from Ss are set to zero in Hs: For the graphical 
models that we analyze in this paper—Markov 
Random Field (MRF) models (Kindermann & Snell, 

1980; Rozanov, 1982)—these edge weights are partial 
associations, which indicate the strength of the rela
tion between two variables that excludes the influence 
of other variables in the model. The higher the abso
lute value of the partial association hij, the stronger 
the two variables influence each other.

Several MRF models are used in network psycho
metrics, which differ primarily in the level of meas
urement of the variables. For example, the Ising 
model (Ising, 1925) is a graphical model for binary 
variables (e.g., symptom indicators), the ordinal MRF 
(Marsman & Haslbeck, 2023) extends the Ising model 
to also include ordinal variables, the Gaussian graph
ical model (GGM; Lauritzen, 2004) is used for con
tinuous variables, and the mixed graphical model 
(MGM; Haslbeck & Waldorp, 2020) handles binary, 
unordered categorical, count, and continuous varia
bles. For the particular case of the GGM, the matrix 
H is known as the precision matrix, and when stand
ardized, it contains partial correlations (e.g., Waldorp 
& Marsman, 2022). To keep the discussion general, 
we will refer to the elements of H as edge weights. 
Other graphical models that are also used in the net
work psychometrics literature but are not MRF mod
els are the multivariate ordered probit (Guo et al., 
2015) for ordinal variables and the Gaussian copula 
graphical model (Dobra & Lenkoski, 2011) for mixed 
binary, ordinal, and continuous variables. However, in 
this paper we focus exclusively on MRF models.

Conditional independence

In network psychometrics, it is often assumed that the 
observed data are variables in a complex, dynamic 

Figure 1. The possible structures along with their Posterior Structure Probabilities for the random variables: shark attacks (A), ice 
cream sales (I), and season (S).

1In the Bayesian literature, the model is usually indicated with Ms , but 
here we use Ss to connect it to the network’s structure.
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system. The underlying system has a causal compo
nent in that some variables influence other variables 
in a particular way, and some of these relationships 
are reciprocal. Since it is difficult to learn the directed, 
causal relationships from correlational data, we use 
undirected graphical models to model the relation
ships among the variables in the underlying system. 
MRFs are an important class of undirected graphical 
models because their parameters tell us directly about 
the conditional dependence and independence 
between variables in the network: If the edge weight 
hij between variables i and j is zero, then the two vari
ables are conditionally independent. MRFs are thus 
convenient models for assessing conditional independ
ence, and, since conditional independence is a gateway 
to learning the underlying causal structure (e.g., Pearl, 
2009; Spirtes et al., 2000), they play an important role 
in the graphical approach to causal inference (Ryan 
et al., 2022). One could, of course, adopt a purely stat
istical interpretation of conditional independence 
without considering potential causal implications. 
However, since the notion of conditional independ
ence is also central to causal inference, we wish to 
clarify how the two are related in this subsection.

Spirtes et al. (2000), Pearl (2009), and others (see 
Glymour et al., 2019, for a recent overview) have 
developed the graphical approach to causal inference 
as a formal framework in which causal relationships 
are represented as directed acyclic graphs (DAGs)0.2 
Conditional dependencies and independencies are key 
to identifying DAGs that are consistent with observed 
data. For example, consider the three variables A, S, 
and I in Figure 1. From their correlations alone, we 
cannot identify causal relationships among the three 
variables. However, if we also knew their conditional 
dependencies, e.g., that A and I are conditionally 
independent given S, while A and S, and A and I are 
conditionally dependent (i.e., A–S–I, such as S6 in 
Figure 1), we could take a step toward causal discov
ery. Under some strong assumptions (e.g., there are 
no unobserved confounders, there is no selection bias, 
and the causal relations do not cancel each other out; 
Eberhardt, 2017), one can use the conditional inde
pendence structure S to infer three possible (directed) 
causal graphs: A ! S ! I, A  S  I, and A  S 
! I. For a detailed introduction to learning causal 
relations from conditional dependence and independ
ence, we refer the interested reader to Pearl (2009).

The conditional independence structure S is a mid
dle ground between simple unconditional associations 
and directed causal graphs: Simple associations will 
contain many spurious relations that disappear when 

conditioning on other variables in the network. While 
this conditioning removes associations that can be 
explained through other variables in the network, it 
can also induce spurious relations: any variable that is 
a common effect of other variables in the network 
will induce a spurious association between these varia
bles when conditioned on. It is therefore important to 
note that not all conditional dependencies will reflect 
causal relations unless strong assumptions are made 
(such as the absence of common effects and unob
served common causes). But, the conditional depend
ency structure will contain conditional dependencies 
for every causal relation in the causal graph. In this 
sense, the conditional independence structure can 
generate possible hypotheses about causal paths, but 
cannot be used to infer causal paths directly (see Ryan 
et al., 2022, for a more detailed discussion of the 
problems of causal inference from network models). 
But, for those who do want to take a next step and 
identify directed causal graphs, causal discovery is an 
exciting field with many advances, such as causal dis
covery algorithms that do not require the absence of 
unobserved common causes or feedback loops 
(Eberhardt, 2017).

There are at least three reasons for why one might 
want to model the conditional independence structure 
of the MRF rather than going a step further and using 
the MRF to discover directed causal graphs. First, 
inferring a DAG2 from conditional dependencies in 
observational data requires strong assumptions that 
may not hold in practice (e.g., no unobserved com
mon causes and no feedback loops). Second, for a 
conditional independence structure, there may be 
many directed causal graphs that are equivalent and 
consistent with the conditional independence struc
ture. We have already seen that there are several 
equivalent graphs for the three-variable example 
above, and for more than three variables the set of 
equivalent graphs increases enormously. Therefore, it 
may be much easier to work with a single MRF than 
with the potentially large set of equivalent causal 
graphs (Epskamp et al., 2018). Third, the MRF does 
not commit one to a causal interpretation; instead, 
one can choose a purely statistical interpretation of 
predicting variables from other variables in the net
work or other interpretations (e.g., Epskamp et al., 
2022).

2DAGs are sometimes referred to as Bayesian networks. We wish to 
emphasize that Bayesian networks (DAGs) are different from Bayesian 
analysis of (MRF) graphical models, which is the focus of this paper.
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Bayesian graphical modeling

Bayesian inference aims to use data to update our 
knowledge about the network structure Ss—the collec
tion of edges in the network—and the network param
eters Hs—the edge weights. To allow the data to 
update our knowledge of the network structure and 
parameters, we need to make explicit what we know 
about them before seeing the data. Figure 1 shows that 
there are many possible structures that that could 
underlie the network, and similarly, there are many 
possible values for the corresponding edge weights. But 
which values could describe our data? Since our goal is 
to learn about them, the specific configuration of the 
network relations and the exact parameter values are 
usually unknown to us. To account for this uncertainty, 
we assign prior distributions to the model or structure 
Ss and to the parameters of that model Hs: A prior is 
a probability distribution that a Bayesian uses to assign 
weights (i.e., probability or probability density) to dif
ferent values of the parameters and structure. First, we 
assign prior probabilities to the different network struc
tures pðSsÞ (i.e., the prior distribution of the effect), 
and then, conditional on a particular structure, we spe
cify prior distributions on the corresponding edge 
weights pðHs j SsÞ (i.e., the prior distribution of the 
effect size). The priors provide a way to formalize the
ory and incorporate advanced knowledge (e.g., results 
from previous research; Lindley, 2004; Vanpaemel & 
Lee, 2012), or they can be used to express ignorance 
using a default or objective prior specification (e.g., 
Consonni et al., 2018). In the appendix, we provide 
details about the prior distributions implemented in 
three popular R packages for analyzing MRF models.

Regardless of how we specify the priors, Bayes’ rule 
weighs the prior distribution with the information 
coming from the observed data to update it to a pos
terior distribution,

pðHs, Ss j dataÞ ¼
pðdata j Hs, SsÞpðHs j SsÞpðSsÞ

pðdataÞ
:

This joint posterior distribution expresses everything 
that we know about the structure and parameter values 
of the network after seeing the data and is central to 
the Bayesian analysis of graphical models. The different 
Bayesian tests for conditional independence consider 
different aspects of this joint posterior. To make this 
more explicit, we factor the joint posterior as follows

pðHs, Ss j dataÞ ¼ pðHs j Ss, dataÞ � pðSs j dataÞ, 

and express it as a product of the posterior distribu
tion of the parameters Hs under the specific structure 

Ss, and the posterior distribution of the possible 
structures with the parameters integrated out. The for
mer is referred to as the conditional posterior distri
bution for the network parameters (i.e., it is the 
posterior distribution of the edge weights for a specific 
structure Ss) and the latter as the marginal posterior 
distribution of the network structure (i.e., a posterior 
of the structures without the parameter values for 
the edge weights). Below, we will use the conditional 
posterior distribution pðHs j Ss, dataÞ for Bayesian 
parameter estimation, and the marginal posterior dis
tribution pðSs j dataÞ for Bayesian hypothesis testing.

Bayesian hypothesis testing: the Bayes factor

Two out of the three proposed Bayesian methods for 
testing the conditional independence hypothesis that 
we review in the next section make use of the Bayes 
factor (Jeffreys, 1939; Kass & Raftery, 1995). The 
Bayes factor quantifies the relative predictive perform
ance of two rival hypotheses (e.g., the conditional 
dependence of two variables or their conditional inde
pendence), or of two competing models or structures. 
Consider two competing network structures Ss and 
St: The Bayes factor is defined as the change in beliefs 
concerning the relative plausibility of the two struc
tures before and after observing the data

pðSsÞ

pðStÞ
|fflffl{zfflffl}

Prior
odds

�
pðdatajSsÞ

pðdatajStÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

BFst

¼
pðSsjdataÞ
pðStjdataÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Posterior
odds

:

Specifically, the first factor on the left of the for
mula above is the prior odds, that is, the relative 
plausibility of the two structures before having seen 
the data. The second factor is the Bayes factor which 
indicates the statistical evidence or support for the 
two structures in the data at hand. The term on the 
right is the posterior odds, which indicates the relative 
plausibility of the rival models after having seen the 
data. In this paper, we assume that the prior odds are 
equal to one by assuming pðSsÞ ¼ pðStÞ, which makes 
the Bayes factor equal to the posterior odds (see 
Marsman et al., 2022, for a different approach).

The subscripts in the Bayes factor notation indicate 
in which direction the support is expressed. BFst 
indicates the relative support for Ss over St and BFts 
indicates the relative support for St over Ss: Observe 
that the Bayes factor BFts is the reciprocal of BFst , i.e., 
BFts ¼ 1=BFst: The Bayes factor BFst ranges from 0 to 
1, values larger than one indicate a relative support 
for Ss while values smaller than one indicate the 
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relative support for St: If the Bayes factor is equal to 
one, both structures predicted the data equally well. In 
practice, we usually interpret Bayes factors between 1/10 
and 10 as evidence that is insufficiently compelling.3

Bayesian estimation: the posterior distribution 
of partial associations

One of the three Bayesian methods for testing the 
conditional independence hypothesis that we review 
in the next section makes use of Bayesian estimation. 
In practical situations, we often wish to estimate the 
parameters H0 for a particular structure S0: This could 
be the structure with the highest posterior probability 
pðS0 j dataÞ, the median probability structure (e.g., 
Barbieri & Berger, 2004; Marsman et al., 2022) that 
consists of all relations for which the posterior inclu
sion probability (defined in the section on Bayesian 
model averaging) is greater than a half, or it could be 
the complete structure that includes all relations. The 
posterior distribution for a single structure S0 is

pðH0 j S0, dataÞ ¼
pðdata j H0, S0Þ � pðH0 j S0Þ

pðdata j S0Þ
, 

where pðH0 j S0Þ denotes the prior distribution for 
the parameters under the structure S0: Given a single 
parameter hij, the prior pðh0ij j S

0Þ assigns a relative 
plausibility to each value of the parameter. The 
information in the data is then used to update 
this prior distribution into a posterior distribution 
pðhij j S

0, dataÞ: In the posterior distribution, the 
plausibility of parameter values that predict the data 

well increases, while the plausibility of parameter val
ues that predict the data poorly decreases 
(Wagenmakers et al., 2016).

Instead of reporting the full posterior distribution 
for each element in H0, we often report it in terms of 
a measure of location (i.e., the posterior mean, median, 
or mode) and spread (i.e., the posterior variance), or in 
terms of an x% credible interval (see van Doorn et al., 
2021). An x% credible interval contains x% of the 
probability mass of the posterior distribution. Two 
popular ways to create an x% credible interval are the 
highest posterior density interval, which is the shortest 
possible credible interval that contains x% of the pos
terior mass, and the x% central credible interval, which 
is obtained by clipping ð100 − xÞ=2% from each tail of 
the posterior distribution. Figure 2 shows a fictional 
example of a posterior distribution that has a 95% cen
tral credible interval and a 95% highest density interval. 
The posterior is a probability density with the gray 
area under its curve containing 95% of its total prob
ability. Note that the highest density interval is shorter 
than the central credible interval, even though both 
capture 95% of the posterior.

Equipped with these Bayesian concepts, we next 
turn to the three proposed Bayesian approaches for 
testing conditional independence.

Three Bayesian methods for testing 
conditional independence

Approach 1: Credible interval

In frequentist statistics, an assessment of whether or 
not the null value h0 falls within the x% confidence 
interval for a parameter hij (sometimes considered as 
estimation, but see Morey et al., 2016) is equivalent to 
the test of the null hypothesis,

Figure 2. An example of a posterior distribution for a parameter h, the line at the bottom of the density represents the 95% cen
tral credible interval and the shaded gray region represents the 95% highest density interval (HDI). The two dashed vertical lines 
around zero represent the region of practical equivalence (ROPE, introduced in the next section).

3In principle, Bayes factors are a continuous measure of evidence and 
therefore do not require strict cutoff values. But even if we do, there is 
no hard and fast rule for what the cutoff should be, and practitioners 
may prefer other values (Jeffreys, 1961; Kass & Raftery, 1995).
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H0 : hij ¼ h0, 

with a significance level of a ¼ ð100 − xÞ% : We 
would reject H0 with significance level a if the null 
value falls outside the ð100 − aÞ% confidence interval 
(cf. Figure 2). It is tempting to extend this testing 
approach to Bayesian statistics by using an x% cred
ible interval to test whether or not we could reject 
H0: But from which posterior distribution should we 
take the credible interval for the partial associations? 
In practice, this is usually done using a complete 
structure SC that includes all relations (e.g., the bot
tom right structure in Figure 1). However, this 
approach implies that the relation between nodes i 
and j is a priori assumed to exist, and we are thus 
testing a hypothesis that we assume to be false from 
the outset (e.g., Jeffreys, 1939). This signals a bias 
against the null hypothesis, which is common in clas
sical null hypothesis significance tests.

In practice, the logic behind credible interval-based 
tests may indeed lead to contradictions, since compari
sons between the null hypothesis and its complement 
using the Bayes factor, for example, may signal support 
for the null hypothesis of conditional independence, 
while the null value h0 would fall outside the credible 
interval. See Berger and Delampady (1987) and 
Wagenmakers et al. (2020) for detailed discussions of 
this issue. Null hypothesis tests based on the credible 
interval can also lead to ambiguous results, because if 
the null value would fall within the interval, we cannot 
interpret this as support for the null hypothesis because 
the test cannot distinguish between the potential causes 
of this failure to reject (i.e., absence of evidence or evi
dence of absence). In order to test for conditional inde
pendence, we must therefore be able to quantify 
support in favor of the null hypothesis.

Despite this complication, credible interval-based 
tests have been used to test for conditional independ
ence in the Bayesian graphical modeling literature. 
For example, Jongerling et al. (2023) use credible 
intervals to perform edge selection (i.e., conditional 
independence testing) in GGMs with the goal of esti
mating the posterior distribution of centrality meas
ures. Williams (2021) used a generalization of the 
credible interval test based on the idea that we can 
specify a region in the parameter space that is essen
tially zero—the region of practical equivalence (ROPE, 
Kruschke, 2011)—and then exclude an edge if x% of 
the posterior distribution of the partial association is 
inside the ROPE, otherwise include it (cf. Figure 2). 
In a slightly different way, Marsman et al. (2022) also 
used credible intervals for edge selection. They used a 
continuous spike and slab prior on the partial 

associations of an Ising model, where the intersection 
of the spike and slab components occurs at an 
approximate x% credible interval. This is very similar 
to using ROPE for edge selection; to set the spike- 
and-slab prior, Marsman et al. (2022) also start with a 
posterior distribution that assumes the effect is pre
sent (based on the unit-information prior; Kass & 
Wasserman, 1995). However, unlike the credible inter
val test and the ROPE approach, the approach in 
Marsman et al. (2022) can distinguish the potential 
causes underlying the edge exclusion because it 
assigns prior weights to the edge inclusion and exclu
sion hypotheses.

Thus, our concerns with credible interval-based tests 
are directed at their conceptual underpinnings, particu
larly their inability to quantify support for the null 
hypothesis. To quantify this support, we need an evi
dential measure that contrasts the competing hypothe
ses of conditional dependence and independence, i.e., 
the Bayes factor. For a review of (log) Bayes factors as 
weight of evidence see, for example, Good (1985).

Approach 2: The single-model Bayes factor

The Bayes factor is the gold standard for Bayesian 
hypothesis testing (Berger & Pericchi, 2015), and 
around the same time that graphical models became 
popular in psychology, Bayes factor hypothesis testing 
became popular in psychological research. In large 
part, this increased popularity of the Bayes factor in 
psychology is a response to the misuse of the null 
hypothesis significance test (NHST) in psychological 
research and the limited replicability (Ioannidis, 2005; 
Open Science Foundation, 2015) of many psycho
logical findings established with NHST (e.g., 
Wagenmakers, 2007; Wagenmakers et al., 2011). Some 
of the concerns that methodologists have with NHST 
also play a role in the credible interval test of the pre
vious section. One of the more prominent concerns is 
that the adequacy or inadequacy of the null hypothesis 
is not compared against an alternative. Thus, rejection 
of the null hypothesis should not be taken as evidence 
in favor of the alternative hypothesis, which may be 
just as inadequate as the null hypothesis (or even more 
inadequate). The Bayes factor, however, compares the 
predictive adequacy of the null hypothesis against that 
of an alternative, and as such can separate evidence for 
the absence of an effect, evidence for the presence of 
an effect, but also the absence of evidence in either dir
ection (e.g., Dienes, 2014; Keysers et al., 2020). Thus, 
Bayes factor testing is a significant step forward for 
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psychological network analysis. However, we are con
cerned with the way it is commonly formulated.

We consider the Bayes factor test for the condi
tional independence of the variables i and j in the net
work, i.e., we consider the following two hypotheses

H0 : hij ¼ 0; and H1 : hij 6¼ 0:

If we wish to assign prior probabilities to these 
hypotheses, it is easier to reformulate them in terms 
of the edge indicators and model the size of the effect 
hij conditional on the presence of the effect. That is, 
we model pðHsjSsÞ such that we can impose a prior 
on the hypothesis or model Ss: Then, our hypotheses 
can be reformulated as

H0 : cij ¼ 0; and H1 : cij ¼ 1:

By formulating the hypothesis in terms of the edge 
indicator rather than the edge weight, we immediately 
encounter a problem. We cannot yet isolate the effect 
of a single relationship, i.e., the edge indicator, and 
thus we must now carefully consider how to set up 
the Bayes factor. The way this is usually done is by 
comparing two structures Ss and St that are identical 
except that the relation between the variables i and j 
is present in Ss but is absent in St: In this way, com
paring Ss with St using the Bayes factor gives us a 
Bayes factor test for H1 versus H0: Although it is not 
made explicit, in practice the complete structure Ss ¼

SC is used here, as in the case of the credible interval 
test we discussed earlier.

Note that the Bayes factor test for conditional inde
pendence we formulated above is not uniquely defined. 
In principle, we could compare any two structures Ss 
and St, as long as they are identical except that the 
relation between the variables i and j is present in Ss 
but not in St: For our hypothetical three-variable 
example, this means that we have three ways to test the 
conditional independence of variables A and I: We 
could contrast Ss ¼ S3 with St ¼ S1, Ss ¼ S5 versus 
St ¼ S2, or Ss ¼ S8 versus St ¼ S6: Each of these 
comparisons is a valid comparison in terms of contrast
ing the effect of the relation (i.e., assessing conditional 
independence). However, in each case we are making a 
different assumption about the other relationships in 
the network. We will refer to any such Bayes factor test 
as a single-model Bayes factor, since it assumes a single 
model for the remaining relationships in the network. 
The single-model Bayes factor test is sensitive to the 
assumption concerning the overall network structure 
because partial associations are sensitive to the other 
partial associations in the model or structure. To illus
trate, consider the relation between variables A and I in 

our three-variable example. First, in order to compute 
its value in our example, we express the Bayes factor as 
a function of the prior and posterior probabilities:

BFst ¼
pðSs j dataÞ
pðSt j dataÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Posterior
odds

pðSsÞ

pðStÞ
|fflffl{zfflffl}

Prior
odds

:

,

The posterior probabilities for each of the eight 
structures are shown in Figure 1. When we assume 
that each of the structures is equally plausible a priori, 
the prior probabilities are equal to one and the Bayes 
factors are equal to the posterior probabilities. Thus, 
the Bayes factors for the three possible model pairs 
are obtained as follows:

BF31 ¼
pðS3jdataÞ
pðS1jdataÞ

¼
:016
:07
¼ 0:23,

BF52 ¼
pðS5jdataÞ
pðS2jdataÞ

¼
:019
:11
¼ 0:17,

BF86 ¼
pðS8jdataÞ
pðS6jdataÞ

¼
:03
:66
¼ 0:05:

This demonstration confirms that the single-model 
Bayes factor can, in fact, be sensitive to our choice for 
the remaining relations in the network. The first two 
Bayes factors (i.e., BF31 ¼ 0:23 and BF52 ¼ 0:17) 
showed weak evidence for exclusion, while the third 
Bayes factor showed strong evidence for exclusion 
(i.e., BF86 ¼ 0:05). But which Bayes factor test should 
we use?

Williams and Mulder (2020a) proposed the single- 
model Bayes factor for testing conditional independ
ence in GGMs (see also Giudici, 1995). In their 
approach, the complete structure is used as a basis for 
comparison. In the next section, we show that this 
method works well when the data generating structure 
has relatively many relations, consistent with the mod
el’s assumption, but it starts to perform less well when 
the data generating structure is sparse and has rela
tively few connections. Since we are typically highly 
uncertain about which particular structure would 
underlie our data (see Marsman et al., 2022; Marsman 
& Haslbeck, 2023), the foundations of the single- 
model Bayes factor can be unstable.

Approach 3: The inclusion Bayes factor

We can use Bayesian model averaging (BMA; Hoeting 
et al., 1999; Kaplan, 2021) to overcome the sensitivity 
of the single-model Bayes factor to our assumptions 
about the remaining relationships in the network. 
When we consider the single-model Bayes factor, we 
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must assume that the network is based on some struc
ture. In practice, however, we usually do not know 
what that structure is. To account for our uncertainty 
about the structure of the network, BMA considers all 
possible structures and weights the outcome of each 
structure by its posterior probability; the relative 
plausibility that the structure produced the data at 
hand. By weighting the outcome of each structure by 
its posterior probability, BMA accounts for the uncer
tainty we have about which structure is at play 
(Hinne et al., 2020; Huth, de Ron, et al., 2023). 
Mohammadi and Wit (2015) and Marsman et al. 
(2022) applied BMA to graphical models.

We focus here on the posterior inclusion probability, 
the posterior probability of including an effect, which 
we use to estimate the inclusion Bayes factor; the Bayes 
factor test that pits the conditional dependence hypoth
esis against the conditional independence hypothesis. 
Although we do not consider it here, BMA is also use
ful for estimating the marginal posterior distribution 
for the partial associations; a robust estimate of the 
effect size that incorporates the uncertainty in the par
ameter and the uncertainty in its selection.

We can express the posterior probability of includ
ing the edge between variables i and j as the sum of 
the posterior probabilities over all structures that 
include the edge. Let Sði−jÞ denote the set of structures 
that include an edge between variables i and j, then 
the inclusion probability can be computed as

pðcij ¼ 1jdataÞ ¼
X

S02Sði−jÞ

pðS0jdataÞ, 

which weights the posterior plausibility of the inclu
sion of the relation in the network structure. For 
example, the posterior inclusion probability of includ
ing the relation between variables A and I (i.e., 
cAI ¼ 1) in Figure 1 is equal to

pðcAI ¼ 1jdataÞ ¼ pðS3jdataÞ þ pðS5jdataÞ
þ pðS7jdataÞ þ pðS8jdataÞ
¼ :016þ :019þ :005þ :03 ¼ :07:

Since the posterior probabilities for edge inclusion 
and exclusion sum to one, the corresponding prob
ability of exclusion is pðcAI ¼ 0jdataÞ ¼ 1 − pðcAI ¼

1jdataÞ ¼ :93: The Bayes factor for inclusion can now 
be determined as follows (Huth, de Ron, et al., 2023; 
Marsman et al., 2022; Marsman & Haslbeck, 2023)

pðdata j cij ¼ 1Þ
pðdata j cij ¼ 0Þ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Inclusion
Bayes factor

¼
pðcij ¼ 1 j dataÞ
pðcij ¼ 0 j dataÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Posterior
inclusion odds

pðcij ¼ 1Þ
pðcij ¼ 0Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Prior
inclusion odds

:

,

The inclusion Bayes factor quantifies the weighted 
evidence for the inclusion of the relationship across 
all structures. As such, the inclusion Bayes factor 
provides a simple measure to distinguish between 
inconclusive evidence and conclusive conditional inde
pendence between two nodes. When we assume that 
all structures are equally likely a priori, the prior 
inclusion probability for individual edges is equal to 
1/2. The prior odds then equal to 1, and we see that 
the inclusion Bayes factor for including the edge 
between variables A and I is equal to :07=:93 � :074, 
which means that based on the information in our 
data, we have strong evidence that an edge between 
variables A and I should be excluded from the net
work, in other words, we have strong evidence for 
conditional independence (i.e., the exclusion Bayes 
factor is 1=:074 � 13:5). Note that the inclusion Bayes 
factor does not depend on the remaining relationships 
in the network, since it averages the network struc
tures and thus overcomes the dependence of the sin
gle-model Bayes factor on assumptions about the 
remaining relationships.

Simulation study

We performed a simulation study to compare the accur
acy of edge selection using the three methods in the case 
of a GGM using the BDgraph R package (Mohammadi 
& Wit, 2019). The R code we used in our simulations is 
available in the repository at https://osf.io/2x74v/. We 
simulated several conditions. Specifically, we varied the 
size of the network, p ¼ f10, 30, 50g, the number of 
observations, n ¼ f100, 200, 500, 1, 000, 5, 000g, the 
size of the focal edge weight between variables 1 and 2 
(i.e., partial correlation), h12 ¼ f0, :1, :25, :4g, and 
the density of the rest of the network (i.e., the number of 
relations in the rest of the network). We simulated the 
structures based on a random graph. We varied the 
density (D) of the network so that the probability of an 
edge between two nodes was either .2, 0.5, or .8. Given 
the generated structure, we sampled the remaining edge 
weights from a g-Wishart distribution (Roverato, 2002). 
Since manipulating the edge weight between variables 1 
and 2 could result in a precision matrix that is not posi
tive semi definite we continued sampling precision 
matrices until we found one that was positive semi 
definite.

We obtain the single-model (non-BMA) parameters, 
by sampling from their posterior distribution of the 
edge weights based on the full model. In this case this 
posterior distribution is a g-Wishart distribution 
(Lenkoski, 2013; Roverato, 2002). We obtain the single- 
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model Bayes factors by computing the fraction of the 
normalizing constants (i.e., marginal likelihoods) of the 
g-Wishart distributions under the fully connected 
structure and a structure that excludes the focal edge. 
For BMA analysis we used the default settings from the 
function bdgraph. For each dataset, using 10, 000 
iterations,4 we computed for the focal edge weight h12:

1. The central credible interval for the single-model 
parameter estimate, and whether or not it included 
the test-relevant value of 0. We then transformed 
this into a quasi-inclusion probability, which was 1 
if the interval included 0 and 0 otherwise, to make 
it comparable to the other measure. We computed 
two variants of the credible interval: (i) the stand
ard 95% central credible interval and (ii) an 

adaptive credible interval. The latter is equivalent 
to ROPE (for more details, see, Kruschke, 2011).

2. The single-model posterior edge inclusion 
probability. The single-model posterior inclusion 
probability is calculated from the single-model 
Bayes factor as follows

pðcij ¼ 1jdataÞ ¼
BF10 O10

1þ BF10 O10
, 

where BF10 is the single-model Bayes factor in 
favor of conditional dependence and O10 is the 
prior odds. We assumed full structure for the 
remaining relationships in the network and used 
O10 ¼ 1 in our analysis.

3. The posterior edge inclusion probability obtained 
from Bayesian model averaging.

We computed the Brier score (Brier, 1950), which 
quantifies the mean squared difference between pre
dicted probabilities and actual outcomes for a binary 
event (in this case the presence of an edge), with 
lower scores indicating better predictive performance. 

Figure 3. Average Brier score for each of the four measures as a function of the sample size plotted for each value of the edge 
weight, number of variables (p), and network density (D).

4Note that we ran the MCMC procedures for a fixed number of iterations, 
and did not check for convergence of the individual Markov chains. 
Although our experience is that the implemented procedures tend to 
converge quickly, there is no guarantee that the chains that were used in 
our simulations actually did.
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For each metric and condition Figure 3 shows that 
when the focal parameter has an edge weight equal to 
zero (i.e., conditional independence), the inclusion 
Bayes factor and the adaptive credible interval per
form best across different sample sizes, numbers of 
variables, and network densities. We can also observe 
that the performance of the single-model Bayes factor 
becomes worse as the network density and the num
ber of variables increase. All methods tend to perform 
better as a function of sample size. When the edge is 
present, even with a value of h12 ¼ 0:1, we see that 
the situation is reversed, in other words, the 95% cen
tral credible interval and the single-model Bayes factor 
perform better than the inclusion Bayes factor and the 
adaptive credible interval, especially for N < 1, 000:
When the value of the partial correlation is 0.25 and 
0.4, all of the methods tend to perform quite well.

Figure 3 shows that the density of the network has 
an influence on which method performs best. To get 
a clearer picture of the overall performance, we first 
aggregate the accuracy of the methods across effect 
sizes and compute the values for the area under the 
receiver operating characteristic curve (AUC) for each 
measure. The receiver operating characteristic (ROC) 
curve plots the tradeoff between the true positive rate 
(sensitivity) and the false positive rate (1 - specificity) 

as we vary the classification threshold. Therefore, the 
AUC is a performance measure of how well the meth
ods can capture the truth—in this case, whether the 
edge is truly present. Methods with a higher AUC 
value (closer to 1) can better discriminate between 
present and absent edges than methods with lower 
AUC values (see Fawcett, 2006, for an introduction to 
ROC curves and AUC values). As can be seen from 
the results presented in Figure 4, the inclusion Bayes 
factor performs better than the single-model Bayes 
factor for low and medium network density levels, 
especially for smaller sample sizes, but performs worse 
when the network density is high. When the density 
is high, the structure assumed by the single-model 
Bayes factor is close to the true underlying network 
structure (i.e., both are densely connected), and thus 
the single-model Bayes factor has an advantage under 
this condition. The BMA approach still assumes dif
ferent structures for the data and is therefore subopti
mal when the true structure is dense. The 95% 
credible interval shows the worst performance overall.

Since the two Bayes factor approaches are the only 
formal ways to test for conditional independence 
hypotheses, we wish to compare their performance in 
some more detail. Figure 5 plots the proportion of 
times the Bayes factors made a correct decision in 

Figure 4. AUC values as a function of the sample size plotted for different values of the network density and number of variables p.
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detecting evidence for the true hypothesis. As can be 
seen, and as expected based on the previous plots, 
when the edge is absent (i.e., when h12 ¼ 0), the inclu
sion Bayes factor outperforms the single-model Bayes 
factor in all simulation conditions. This suggests that 
the inclusion Bayes factor is quite good at capturing 
evidence in favor of conditional independence. When 
the edge is present, its weight is small, and the network 
is small and sparse, the two Bayes factors show similar 
performance. In contrast, as can also be seen in 
Figure 4, as the network becomes larger and more 
densely connected, the single-model Bayes factor begins 
to outperform the inclusion Bayes factor. As the true 
value for the edge weight increases, both methods per
form very well, especially for large sample sizes.

Empirical example

To illustrate the difference between the two Bayes fac
tors we consider the analysis of a data set from a 
study by Gojkovi�c et al. (2022) on the network struc
ture of empathy, narcissism, and the Dark Triad (i.e., 

the combination of narcissism, psychopathy, and 
Machiavellianism) personality traits. The data are pub
licly available at https://osf.io/7jcks/. It consists of 
eight variables, each measured by a battery of Likert- 
scale items. The narcissism, psychopathy, and 
Machiavellianism variables are based on the 27 items 
from the Short Dark Triad (i.e, each variable is a sum 
of responses to 9 different items Jones & Paulhus, 
2014); the cognitive empathy, affective resonance, and 
affective dissonance variables are based on the 36 
items from the Affective and Cognitive Measure of 
Empathy (Vachon & Lynam, 2016); the narcissistic 
admiration and narcissistic rivalry variables are based 
on the 18 items from the Narcissistic admiration 
(Adm)iration and Narcissistic Rivalry (Back et al., 
2013). The affective dissonance items were inversely 
coded so that a higher summed score corresponded to 
a higher level of affective dissonance. The study was 
based on a sample of 263 high school and university 
students from Vojvodina, Serbia.

Since we wish to see if there is a difference in the 
conclusion we would draw from using the two Bayes 

Figure 5. The proportion of times that the two Bayes factors found evidence in favor of the true hypothesis, as a function of the 
sample size plotted for each value of the edge weight, number of variables (p), and network density (D).
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factors, we analyzed the network structure of the eight 
variables with a GGM using both the single-model 
and multi-model or BMA perspectives. For the single- 
model analysis, we estimated the parameters of a fully 
connected GGM by drawing one million samples 
from the corresponding posterior distribution, which 
in this case is a g-Wishart distribution (Lenkoski, 
2013; Roverato, 2002). The Bayes factor was computed 
for each of the 8� ð8 − 1Þ=2 ¼ 28 edges in the net
work by computing the ratio of the marginal likeli
hood with all edges present to the marginal likelihood 
with the focal relationship excluded. We used the 
BDgraph package to sample from the g-Wishart dis
tribution and to compute the marginal likelihood. For 
the multi-model analysis, we also used the BDgraph 
package, which estimates the posterior inclusion prob
abilities using a Markov chain Monte Carlo proced
ure. We used one million iterations for each Markov 
chain. In each of these analyses, we used the default 
settings of BDgraph, setting a g-Wishart prior on the 
precision matrix H and assuming a prior inclusion 
probability of 1/2 for all edges.

Figure 6 illustrates that there is indeed a difference 
between the inferences we would draw using the 
inclusion Bayes factor and the single-model Bayes fac
tor. We can see that the inclusion Bayes factor pro
vides evidence for edge exclusion, i.e., for the 
estimated parameters that are close to zero, as indi
cated by the narrower” v” shape shown in the left 
panel. In the BMA case, there is a more pronounced 
shrinkage toward zero. Therefore, as shown in the 

previous section, the inclusion Bayes factor offers 
more pronounced evidence in support of conditional 
independence than the single-model Bayes factor.

Figure 7 shows the edge evidence plots—networks 
whose edges reflect strong evidence for edge inclusion 
(using a cutoff of BF10 ¼ 10). Based on the inclusion 
Bayes factor in the left panel, we conclude that 13 of 
the 28 possible edges are present in the network, and 
based on the single-model Bayes factor in the right 
panel, we conclude that 12 of them are present. For 
the edge between the variables psychopathy (SD3P) 
and affective resonance (ARe), the exclusion Bayes 
factor is equal to BF01 ¼ 9:1, close to the evidential 
cutoff of 10, giving us evidence in favor of conditional 
independence. For comparison, the largest single- 
model Bayes factor in favor of edge exclusion is 
between the variables admiration (Adm) and affective 
resonance (ARe), and is only BF01 ¼ 2:5: Examining 
the networks in Figure 7, we can see that, for 
example, with the inclusion Bayes factor we find evi
dence for the inclusion of an edge between the varia
bles psychopathy (SD3P) and admiration (SD3N), 
cognitive empathy (CEm) and admiration (SD3N), 
but we have no evidence for the inclusion of the same 
edges when we use the single-model Bayes factor. 
Conversely, using the single-model Bayes factor, we 
find evidence for the inclusion of an edge between the 
variables cognitive empathy (CEm) and admiration 
(Adm), for which we have inconclusive evidence 
when using the inclusion Bayes factor. From our sim
ulations, we know that When the network structure is 

Figure 6. The (natural) logarithm of the Bayes factors plotted against the posterior mean of the corresponding edge weight. The 
left panel shows the results for the inclusion Bayes factor, and the right panel shows the results for the single-model Bayes factor. 
Bayes factor values greater than or equal to one hundred are set equal to one hundred (i.e., log ðBF10Þ ¼ 4:6Þ:
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Figure 8. The 95% credible intervals for the BMA estimates in black and for the estimates based on a fully connected structure in 
yellow. The vertical dotted line represents the value of h¼ 0. The points on each line represent the posterior median estimates.

Figure 7. Edge evidence plots based on the inclusion Bayes factor on the left and the single-model Bayes factor on the right. The 
blue solid lines indicate edges for which there is a BF10 � 10, the dashed red line indicates an inclusion Bayes factor that almost 
reaches the exclusion threshold and the dashed grey lines indicate edges for which there is inconclusive evidence for edge 
(in)exclusion.
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sparse, which appears to be the case in this example, 
the inclusion Bayes factor can more accurately capture 
the evidence, both for edge inclusion and edge 
exclusion.

Since we argue that the credible and/or highest 
density intervals should not be used for hypothesis 
testing, we adhere to this principle in this section. 
However, because these intervals are valuable meas
ures of posterior parameter uncertainty, we present 
plots of the 95% central credible intervals around each 
posterior edge weight. We computed the 95% central 
credible intervals for the BMA parameter estimates 
and the 95% central credible intervals for the posterior 
parameter estimates based on a structure that assumes 
all edges are present. As can be seen in Figure 8, the 
central credible intervals obtained from the two meth
ods are different. We prefer the credible intervals 
based on BMA because they account for both param
eter uncertainty and structure uncertainty.

Discussion

In this paper, we have reviewed three different 
Bayesian approaches to testing conditional independ
ence hypotheses for a class of Markov random field 
models used in network psychometrics. The first 
method uses the posterior distribution of the partial 
association hij to check whether it falls in the ROPE, 
or similarly whether its x% credible interval contains 
zero. Both scenarios would indicate that the hypoth
esis of conditional independence of the variables i and 
j cannot be rejected, but the drawback is that we can
not use it to support the independence hypothesis. 
The second approach used the single-model Bayes fac
tor to test for conditional independence, which com
pares two network structures Ss and St that are 
identical except that the focal relationship is included 
in Ss but not in St: Although this method could be 
used to express support for the conditional independ
ence hypothesis, its drawback is that it is sensitive to 
the required choice of which relations are in the rest 
of the network. The third approach uses BMA to 
express the inclusion Bayes factor, which accounts for 
the uncertainty about other relations in the network. 
The inclusion Bayes factor is free from the conceptual 
problems of credible interval-based tests and is opti
mal when we are uncertain about the structure under
lying our data.

In the simulations, we showed that the inclusion 
Bayes factor was the best overall method for deter
mining conditional independence. It also performed 
well in determining conditional dependence, although 

the single-model Bayes factor outperformed the inclu
sion Bayes factor in scenarios where the true network 
structure is densely connected. In these scenarios, 
which are close to the assumption of a fully connected 
structure underlying the single model Bayes factor, 
the inclusion Bayes factor loses power because it con
tinues to consider alternative structures for the data at 
hand. However, in practice, since we do not know 
what the underlying structure is, the inclusion Bayes 
factor is the most robust choice for inferring condi
tional independence or dependence.

Critique: The correct model is probably not being 
considered

The mathematics behind Bayesian model comparison 
does not assume that any of the models under consid
eration are correct in some abstract sense, as the for
mulas only evaluate the predictive adequacy of the 
models under consideration (see for instance, 
O’Hagan, 2010, p. 167). Nevertheless, many statisti
cians have argued that Bayesian model comparison 
only makes sense if the correct model is in the collec
tion of models under consideration—the M-closed 
context (Bernardo & Smith, 1994, pp. 383–407). The 
main concern of critics of Bayesian model compari
son, and BMA in particular, is that the posterior dis
tribution cannot converge to the correct model if it is 
not in the collection of models under consideration— 
the M-open context. Instead of converging to the 
correct model, the posterior distribution would con
verge to the model that is closest to the true model in 
a Kullback-Leibler sense in the M-open context. This 
model would be optimal in terms of its predictive 
adequacy relative to the collection of models under 
consideration.

Box’s famous adage “all models are wrong” (Box, 
1976, p. 792) is often used to make the case that the 
M-closed assumption is also wrong. There are two 
ways in which we think the true model might differ 
from the one we consider in psychological network 
modeling. First, the network models we use typically 
include main effects and pairwise relations (i.e., first 
and second-order interactions). In principle, one 
could consider models with third or higher-order 
interactions, but these models are computationally 
demanding. Second, we often have a substantive 
motivation for choosing the variables to include in 
our network, but this choice can have a huge impact 
on the network structure. For example, two variables 
will be conditionally dependent if we exclude their 
common cause from the network, but conditionally 
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independent if we include it. This is called the bound
ary specification problem (Laumann et al., 1989; Neal 
& Neal, 2023). However, it is likely that if we knew 
which variable caused other variables, we would 
include it in the network. Thus, while we agree that 
the M-closed assumption is unlikely to hold in prac
tice, we also agree with the continuation of the adage 
that “all models are wrong, but some models are 
useful” (Box & Draper, 1987, p. 424). With BMA, we 
evaluate the predictive adequacy of the structures of 
interpretable network models formulated on a sub
stantively interesting subset of variables.

Limitation: There are no substantively motivated 
or good default prior distributions for 
psychological networks

The BMA approach requires us to specify our prior 
knowledge and expectations about the structure of the 
network. However, despite the large body of literature 
on psychological network modeling, we still have a 
limited understanding of their structure. The main 
reason for this limited understanding is that Bayes 
factor tests that can quantify the support for certain 
relational patterns have only recently been proposed 
and have not yet gained much traction. As a result, 
we must rely on standard, objective specifications of 
priors for psychometric topologies and their associated 
parameters. These priors may be inappropriate for 
psychological networks for two reasons. First, they 
may give relatively little weight to the correct struc
ture. In objective specifications, we usually assign a 
uniform prior on the possible structures (cf. appen
dix). Since there is often a huge collection of possible 
structures for the network under consideration, only a 
tiny fraction of the total probability is assigned to the 
correct model. Thus, finding the right model is like 
looking for a needle in a haystack. Therefore, it would 
be helpful to know in advance what kind of model we 
are looking for. Second, objective priors are often 
developed in the context of regression models, and we 
are unsure if these specifications make sense in the 
network context. For example, in regression, it makes 
sense to find a sparse collection of variables that can 
make accurate predictions. This is because we wish to 
choose the least complex model (i.e., the model with 
the fewest number of predictors) that best predicts 
new data. But, in the context of MRF models an 
absent edge carries a strong assumption, namely of 
conditional independence, which indicates that we 
should not exclude edges by default. Although the 
objective priors we use here assign equal probability 

to including and excluding individual edges, we need 
to investigate the suitability of these priors in the net
work context. We encourage researchers to always 
perform sensitivity analyses by estimating the models 
under different prior specifications and examining 
whether and how much the different specifications 
alter the conclusions.

In order to advance the specification of good prior 
densities, we need to advance our understanding of 
psychometric network structures. Early discussions 
about the underlying structures of psychometric net
works were a reaction to the massive popularity of 
lasso-based methods, which assume sparse network 
structures. Alternatives to the lasso have been pro
posed that either focus on densely connected networks 
(e.g., Marsman et al., 2015), or that aim to strike a 
balance between sparse and dense network topologies 
(e.g., Chen et al., 2018), but these approaches have 
not been widely adopted. This means that we must 
interpret the sparsity of psychometric networks with 
caution, especially when data are limited (Epskamp 
et al., 2017; Williams et al., 2019).

Now that BMA allows us to test our predictions 
about network topology, we are entering a new era of 
network psychometrics. In the next decade, armed 
with new Bayesian methodology, we hope to see an 
advanced understanding of the structure of psycho
metric networks, how they differ across measures and 
populations, and which relationships have been 
explained and which have not.

Limitation: There are few BMA methods for 
analyzing psychological networks

For network researchers to adopt BMA for their anal
yses, it is imperative that the methodology be imple
mented in user-friendly software. Most psychological 
network modeling analyses are performed in the stat
istical software R, and two R packages now implement 
BMA for network analysis. The BDgraph package5

includes methods for analyzing continuous, binary, 
and ordinal variables (GGMs and latent GGMs; R. 
Mohammadi & Wit, 2019), and the bgms package6

for analyzing MRFs of (mixed) binary and ordinal 
variables (Marsman & Haslbeck, 2023). Since most 
data sets in psychology contain binary and ordinal 
variables, these two R packages already cover a lot of 
ground. The BDgraph package is now also imple
mented in the open-source statistical software JASP 
(see Huth, de Ron, et al., 2023), which has a graphical 

5https://cran.r-project.org/web/packages/BDgraph/index.html.
6https://cran.r-project.org/web/packages/bgms/index.html.
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user interface that allows users to point and click on 
their desired analyses (e.g., Love et al., 2019; 
Wagenmakers, Love, et al., 2018). The JASP imple
mentation opens BMA-based methods for psycho
logical networks to researchers without experience 
programming in R.

Although we argue that Bayes factor approaches, 
especially the inclusion Bayes factor, should be pre
ferred for testing conditional independence hypothe
ses, as shown in the empirical example, one can still 
use the credible or highest density intervals around 
the model-averaged parameter estimates (e.g., edge 
weights) as measures of parameter uncertainty. For 
these and many other advantages, the interested 
reader is referred to the newly developed R package 
easybgm (Huth, Keetelaar, et al., 2023), which allows 
researchers with less programming experience to use 
powerful packages such as bgms and BDgraph to 
analyze their data and obtain (BMA) Bayes factors as 
well as edge uncertainty plots.
The existing software for BMA-based methods for the 
analysis of psychological networks covers several 
important variable types—e.g., continuous, binary, 
and ordinal variables—for cross-sectional applications 
of networks. However, there are currently no software 
solutions for networks with nominal, discrete, or count 
variables, or for longitudinal data designs. The develop
ment of BMA methods for analyzing these types of 
variables and research designs, and their software 
implementations, is a fruitful area for future research.

Challenge: Bayesian model averaging can be time 
consuming

One of the main challenges of BMA is that it must 
evaluate the collection of models under consideration. 
In practice, it is rarely possible to enumerate all pos
sible models, since the number of structures grows rap
idly as the number of variables increases. Therefore, 
the R packages that estimate these models rely on 
Stochastic Search Variable Selection techniques (George 
& McCulloch, 1993). These techniques are typically 
implemented through Markov chain Monte Carlo algo
rithms (MCMC, see van Ravenzwaaij et al., 2018, for 
an accessible introduction) that iteratively simulate a 
network structure and its associated parameters from 
the joint posterior distribution. As mentioned in the 
section on prior distributions, first an edge indicator 
variable cij is sampled, and then the corresponding 
edge weight hij is assigned to a particular prior distri
bution given the sampled value for the edge indicator. 
Since the space of possible models is usually large, it is 

imperative to run such procedures for enough itera
tions to sufficiently explore the joint posterior distribu
tion. For some models, such as the GGM, this is 
usually very fast for the size of data sets encountered in 
psychology. However, for binary or ordinal models, 
MCMC procedures can take a long time, depending on 
the sample size. Fortunately, we only need to run the 
procedure once to get the full Bayesian benefit.

Conclusion

We have provided a conceptual review of recent 
Bayesian tests for conditional independence of varia
bles in psychological networks. We argued that the 
two Bayes factor tests are conceptually superior to fre
quentist and credible interval-based tests for condi
tional independence, in particular because they can 
express support, or lack thereof, for conditional inde
pendence and dependence between the network’s vari
ables. We have shown that the single-model Bayes 
factor is sensitive to the assumption that must be 
made about the underlying network structure, while 
the inclusion Bayes factor adequately accounts for the 
structure uncertainty. Thus, the inclusion Bayes factor 
provides researchers with a straightforward test of 
conditional independence and dependence hypotheses. 
We hope that the new Bayesian methodology, which 
focuses on the analysis of the structure of psycho
logical networks, (i.e., psychometric topology) will 
help unravel the complex systems underlying psycho
logical variables.

Article Information

Conflict of Interest Disclosures: Each author signed a 
form for disclosure of potential conflicts of interest. No 
authors reported any financial or other conflicts of interest 
in relation to the work described.

Ethical Principles: The authors affirm having followed pro
fessional ethical guidelines in preparing this work. These 
guidelines include obtaining informed consent from human 
participants, maintaining ethical treatment and respect for 
the rights of human or animal participants, and ensuring 
the privacy of participants and their data, such as ensuring 
that individual participants cannot be identified in reported 
results or from publicly available original or archival data.

Funding: NS, SEK, and MM were supported by the 
European Union [ERC, BAYESIAN P-NETS, #101040876]. 
Views and opinions expressed are however those of the 
author(s) only and do not necessarily reflect those of the 
European Union or the European Research Council. 
Neither the European Union nor the granting authority can 
be held responsible for them. KH was supported by the 
Center for Urban Mental Health (University of Amsterdam) 

MULTIVARIATE BEHAVIORAL RESEARCH 929



and DvdB was supported by Amsterdam Brain and 
Cognition (University of Amsterdam).

Role of the Funders/Sponsors: None of the funders or 
sponsors of this research had any role in the design and 
conduct of the study; collection, management, analysis, and 
interpretation of data; preparation, review, or approval of 
the manuscript; or decision to submit the manuscript for 
publication.

References

Back, M. D., K€ufner, A. C., Dufner, M., Gerlach, T. M., 
Rauthmann, J. F., & Denissen, J. J. (2013). Narcissistic 
admiration and rivalry: Disentangling the bright and dark 
sides of narcissism. Journal of Personality and Social 
Psychology, 105(6), 1013–1037. https://doi.org/10.1037/ 
a0034431

Barbieri, M. M., & Berger, J. O. (2004). Optimal predictive 
model selection. The Annals of Statistics, 32(3), 870–897. 
https://doi.org/10.1214/009053604000000238

Berger, J. O., & Delampady, M. (1987). Testing precise 
hypotheses. Statistical Science, 2(3), 317–335. https://doi. 
org/10.1214/ss/1177013238

Berger, J. O., & Pericchi, L. R. (2015). Bayes factors. In N. 
Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. 
Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef: Statistics 
Reference Online. Wiley. https://doi.org/10.1002/9781118 
445112.stat00224.pub2

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian Theory. 
Wiley.

Blanken, T. F., Isvoranu, A.-M., & Epskamp, S. (2022). 
Estimating network structures using model selection. In 
Network Psychometrics with R (pp. 111–132). Routledge.

Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., 
Fried, E. I., McNally, R. J., Robinaugh, D. J., Perugini, 
M., Dalege, J., Costantini, G., Isvoranu, A.-M., Wysocki, 
A. C., van Borkulo, C. D., van Bork, R., & Waldorp, L. J. 
(2021). Network analysis of multivariate data in psycho
logical science. Nature Reviews Methods Primers, 1(1), 58. 
https://doi.org/10.1038/s43586-021-00055-w

Box, G. E. P. (1976). Science and statistics. Journal of the 
American Statistical Association, 71(356), 791–799. 
https://doi.org/10.1080/01621459.1976.10480949

Box, G. E. P., & Draper, N. R. (1987). Empirical model- 
building and response surfaces. John Wiley & Sons, Inc.

Brier, G. W. (1950). Verification of forecasts expressed in terms 
of probability. Monthly Weather Review, 78(1), 1–3. https:// 
doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0. 
CO;2

Chen, Y., Li, X., Liu, J., & Ying, Z. (2018). Robust measure
ment via a fused latent and graphical item response the
ory model. Psychometrika, 83(3), 538–562. https://doi.org/ 
10.1007/s11336-018-9610-4

Consonni, G., Fouskakis, D., Liseo, B., & Ntzoufras, I. 
(2018). Prior distributions for objective Bayesian analysis. 
Bayesian Analysis, 13(2), 627–679. https://doi.org/10. 
1214/18-BA1103

Contreras, A., Nieto, I., Valiente, C., Espinosa, R., & 
Vazquez, C. (2019). The study of psychopathology from 
the network analysis perspective: A systematic review. 
Psychotherapy and Psychosomatics, 88(2), 71–83. https:// 
doi.org/10.1159/000497425

Dienes, Z. (2014). Using Bayes to get the most our of non- 
significant results. Frontiers in Psychology, 5(781), 781. 
https://doi.org/10.3389/fpsyg.2014.00781

Dobra, A., & Lenkoski, A. (2011). Copula Gaussian graph
ical models and their application to modeling functional 
disability data. The Annals of Applied Statistics, 5(2A), 
969–993. https://doi.org/10.1214/10-AOAS397

Eberhardt, F. (2017). Introduction to the foundations of 
causal discovery. International Journal of Data Science 
and Analytics, 3(2), 81–91. https://doi.org/10.1007/ 
s41060-016-0038-6

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). 
Estimating psychological networks and their accuracy: A 
tutorial paper. Behavior Research Methods, 50(1), 195– 
212. https://doi.org/10.3758/s13428-017-0862-1

Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized 
partial correlation networks. Psychological Methods, 23(4), 
617–634. https://doi.org/10.1037/met0000167

Epskamp, S., Haslbeck, J. M. B., Isvoranu, A. M., & van 
Borkulo, C. D. (2022). Pairwise Markov random fields. In 
A. M. Isvoranu, S. Epskamp, L. J. Waldorp, & D. 
Borsboom (Eds.), Network psychometrics with R: A guide 
for behavioral and social scientists (pp. 93–110). 
Routledge, Taylor & Francis Group.

Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating 
psychopathological networks: Be careful what you wish 
for. PLoS One, 12(6), e0179891. https://doi.org/10.1371/ 
journal.pone.0179891

930 N. SEKULOVSKI ET AL.



Fawcett, T. (2006). An introduction to ROC analysis. 
Pattern Recognition Letters, 27(8), 861–874. https://doi. 
org/10.1016/j.patrec.2005.10.010

George, E. I., & McCulloch, R. E. (1993). Variable selection 
via Gibbs sampling. Journal of the American Statistical 
Association, 88(423), 881–889. https://doi.org/10.1080/ 
01621459.1993.10476353

Giudici, P. (1995). Bayes factors for zero partial covariances. 
Journal of Statistical Planning and Inference, 46(2), 161– 
174. https://doi.org/10.1016/0378-3758(94)00101-Z

Glymour, C., Zhang, K., & Spirtes, P. (2019). Review of 
causal discovery methods based on graphical models. 
Frontiers in Genetics, 10, 524. https://doi.org/10.3389/ 
fgene.2019.00524

Gojkovi�c, V., Dostani�c, J. S., & -Duri�c, V. (2022). Structure 
of darkness: The dark triad, the ’dark’ empathy and the 
’dark’ narcissism. Primenjena Psihologija, 15(2), 237–268. 
https://doi.org/10.19090/pp.v15i2.2380

Good, I. J. (1985). Weight of evidence: A brief survey. 
Bayesian Statistics, 2, 249–270.

Guo, J., Levina, E., Michailidis, G., & Zhu, J. (2015). 
Graphical models for ordinal data. Journal of 
Computational and Graphical Statistics: A Joint 
Publication of American Statistical Association, Institute of 
Mathematical Statistics, Interface Foundation of North 
America, 24(1), 183–204. https://doi.org/10.1080/ 
10618600.2014.889023

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: 
Estimating time-varying mixed graphical models in high- 
dimensional data. Journal of Statistical Software, 93(8), 1– 
46. https://doi.org/10.18637/jss.v093.i08

Hinne, M., Gronau, Q. F., van den Bergh, D., & 
Wagenmakers, E.-J. (2020). A conceptual introduction to 
Bayesian model averaging. Advances in Methods and 
Practices in Psychological Science, 3(2), 200–215. https:// 
doi.org/10.1177/251524591989865

Hoeting, J., Madigan, D., Raftery, A., & Volinsky, C. (1999). 
Bayesian model averaging: A tutorial. Statistical Science, 
14(4), 382–401. https://doi.org/10.1214/ss/1009212519

Huth, K. B. S., de Ron, J., Goudriaan, A. E., Luigjes, J., 
Mohammadi, R., van Holst, R. J., Wagenmakers, E.-J., & 
Marsman, M. (2023). Bayesian analysis of cross-sectional 
networks: A tutorial in R and JASP. Advances in Methods 
and Practices in Psychological Science, 6(4), 193. https:// 
doi.org/10.1177/25152459231193

Huth, K., Keetelaar, S., Sekulovski, N., van den Bergh, D., & 
Marsman, M. (2023). Simplifying Bayesian analysis of 
graphical models for the social sciences with easybgm: A 
user-friendly R-package. PsyArXiv. https://doi.org/10. 
31234/osf.io/8f72p

Ioannidis, J. P. A. (2005). Why most published research 
findings are false. PLoS Medicine, 2(8), e124. https://doi. 
org/10.1371/journal.pmed.0020124

Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. 
Zeitschrift F€ur Physik, 31(1), 253–258. https://doi.org/10. 
1007/BF02980577

Jeffreys, H. (1939). Theory of probability. Clarendon Press.
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford 

University Press.
Jones, D. N., & Paulhus, D. L. (2014). Introducing the short 

dark triad (sd3) a brief measure of dark personality traits. 

Assessment, 21(1), 28–41. https://doi.org/10.1177/ 
1073191113514105

Jongerling, J., Epskamp, E., & Williams, D. R. (2023). 
Bayesian uncertainty estimation for Gaussian graphical 
models and centrality indices. Multivariate Behavioral 
Research, 58(2), 311–339. https://doi.org/10.1080/002731 
71.2021.1978054

Kaplan, D. (2021). On the quantification of model uncer
tainty: A Bayesian perspective. Psychometrika, 86(1), 215– 
238. https://doi.org/10.1007/s11336-021-09754-5

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of 
the American Statistical Association, 90(430), 773–795. 
https://doi.org/10.2307/2291091

Kass, R. E., & Wasserman, L. (1995). A reference Bayesian 
test for nested hypotheses and its relation to the Schwarz 
criterion. Journal of the American Statistical Association, 
90(431), 928–934. https://doi.org/10.1080/01621459.1995. 
10476592

Keysers, C., Gazzola, V., & Wagenmakers, E.-J. (2020). 
Using Bayesian factor hypothesis testing in neuroscience 
to establish evidence of absence. Nature Neuroscience, 
23(7), 788–799. https://doi.org/10.1038/s41593-020-0660-4

Kindermann, R., & Snell, J. L. (1980). Markov Random 
Fields and their Applications. (Vol. 1) American 
Mathematical Society.

Kruschke, J. K. (2011). Bayesian assessment of null values 
via parameter estimation and model comparison. 
Perspectives on Psychological Science: A Journal of the 
Association for Psychological Science, 6(3), 299–312. 
https://doi.org/10.1177/1745691611406925

Laumann, E. O., Marsden, P. V., & Prensky, D. (1989). The 
boundary specification problem in network analysis. In 
L. C. Freeman, D. R. White, & A. K. Romney (Eds.), 
Research methods in social network analysis. George 
Mason University Press.

Lauritzen, S. (2004). Graphical Models. Oxford University 
Press.

Lenkoski, A. (2013). A direct sampler for G-Wishart vari
ates. Stat, 2(1), 119–128. https://doi.org/10.1002/sta4.23

Lindley, D. (2004). That wretched prior. Significance, 1(2), 
85–87. https://doi.org/10.1111/j.1740-9713.2004.026.x

Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., 
Verhagen, J., Ly, A., Gronau, Q. F., Sm�ıra, M., Epskamp, 
S., Matzke, D., Wild, A., Knight, P., Rouder, J. N., 
Morey, R. D., & Wagenmakers, E.-J. (2019). JASP – 
Graphical statistical software for common statistical 
designs. Journal of Statistical Software, 88(2), 1–17. 
https://doi.org/10.18637/jss.v088.i02

Marsman, M. (2023). Bgms: Bayesian variable selection for 
networks of binary and/or ordinal variables [Computer 
software manual]. (R package version 0.1.0)

Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van 
Bork, R., Waldorp, L. J., Maas, H. L. J. v d., & Maris, G. 
(2018). An introduction to network psychometrics: 
Relating Ising network models to item response theory 
models. Multivariate Behavioral Research, 53(1), 15–35. 
https://doi.org/10.1080/00273171.2017.1379379

Marsman, M., & Haslbeck, J. M. B. (2023). Bayesian ana
lysis of the ordinal Markov random field. PsyArXiv. 
https://osf.io/preprints/psyarxiv/ukwrf

Marsman, M., Huth, K., Waldorp, L. J., & Ntzoufras, I. 
(2022). Objective Bayesian edge screening and structure 

MULTIVARIATE BEHAVIORAL RESEARCH 931



selection for Ising networks. Psychometrika, 87(1), 47–82. 
https://doi.org/10.1007/s11336-022-09848-8

Marsman, M., Maris, G. K. J., Bechger, T. M., & Glas, 
C. A. W. (2015). Bayesian inference for low-rank Ising 
networks. Scientific Reports, 5(1), 9050. (https://doi.org/ 
10.1038/srep09050

Marsman, M., & Rhemtulla, M. (2022). Guest editors’ intro
duction to the special issue “network psychometrics in 
action”: Methodological innovations inspired by empirical 
problems. Psychometrika, 87(1), 1–11. https://doi.org/10. 
1007/s11336-022-09861-x

Mohammadi, A., & Wit, E. C. (2015). Bayesian structure 
learning in sparse Gaussian graphical models. Bayesian 
Analysis, 10(1), 109–138. https://doi.org/10.1214/14- 
BA889

Mohammadi, R., & Wit, E. C. (2019). BDgraph: An R pack
age for Bayesian structure learning in graphical models. 
Journal of Statistical Software, 89(3), 3. https://doi.org/10. 
18637/jss.v089.i03

Morey, R. D., Hoekstra, R. H. A., Rouder, J. N., Lee, M. D., 
& Wagenmakers, E.-J. (2016). The fallacy of placing con
fidence in confidence intervals. Psychonomic Bulletin & 
Review, 23(1), 103–123. https://doi.org/10.3758/s13423- 
015-0947-8

Neal, Z. P., & Neal, J. W. (2023). Out of bounds? The 
boundary specification problem for centrality in psycho
logical networks. Psychological Methods, 28(1), 179–188. 
https://doi.org/10.1037/met0000426

O’Hagan, A. (2010). Kendall’s Advanced Theory of Statistic 
2B. John Wiley & Sons.

Open Science Foundation. (2015). Estimating the reproduci
bility of psychological science. Science, 349(6251), 716. 
https://doi.org/10.1126/science.aac4716

Pearl, J. (2009). Causality: Models, reasoning, and inference 
(2nd ed.). Cambridge University Press.

Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & 
Borsboom, D. (2020). The network approach to psycho
pathology: A review of the literature 2008–2018 and an 
agenda for future research. Psychological Medicine, 50(3), 
353–366. https://doi.org/10.1017/S0033291719003404

Roverato, A. (2002). Hyper inverse Wishart distribution for 
non-decomposable graphs and its application to Bayesian 
inference for Gaussian graphical models. Scandinavian 
Journal of Statistics, 29(3), 391–411. https://doi.org/10. 
1111/1467-9469.00297

Rozanov, Y. A. (1982). Markov random fields. Springer- 
Verlag.

Ryan, O., Bringmann, L. F., & Schuurman, N. (2022). The 
challenge of generating causal hypotheses using network 
models. Structural Equation Modeling, 29(6), 953–970. 
https://doi.org/10.1080/10705511.2022.2056039

Sekulovski, N., Keetelaar, S., Haslbeck, J. M. B., Marsman, 
M. (2023). Sensitivity analysis of prior distributions in 
bayesian graphical modeling: Guiding informed prior 
choices for conditional independence testing. PsyArXiv. 
https://doi.org/10.31234/osf.io/6m7ca

Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, 
prediction, and search (2nd ed.). MIT Press.

Tibshirani, R. (1996). Regression shrinkage and selection via 
the lasso. Journal of the Royal Statistical Society Series B, 
58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996. 
tb02080.x

Vachon, D. D., & Lynam, D. R. (2016). Fixing the problem 
with empathy: Development and validation of the affect
ive and cognitive measure of empathy. Assessment, 23(2), 
135–149. https://doi.org/10.1177/1073191114567941

van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, 
T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. 
(2014). A new method for constructing networks from 
binary data. Scientific Reports, 4(1), 5918. (https://doi.org/ 
10.1038/srep05918

van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., 
Neyer, F. J., & van Aken, M. A. G. (2014). A gentle intro
duction to Bayesian analysis: Applications to develop
mental research. Child Development, 85(3), 842–860. 
https://doi.org/10.1111/cdev.12169

van Doorn, J., van den Bergh, D., B€ohm, U., Dablander, F., 
Derks, K., Draws, T., Etz, A., Evans, N. J., Gronau, Q. F., 
Haaf, J. M., Hinne, M., Kucharsk�y, �S., Ly, A., Marsman, 
M., Matzke, D., Gupta, A. R. K. N., Sarafoglou, A., 
Stefan, A., Voelkel, J. G., & Wagenmakers, E.-J. (2021). 
The JASP guidelines for conducting and reporting a 
Bayesian analysis. Psychonomic Bulletin & Review, 28(3), 
813–826. https://doi.org/10.3758/s13423-020-01798-5

Vanpaemel, W., & Lee, M. (2012). Using priors to formalize 
theory: Optimal attention and the generalized context 
model. Psychonomic Bulletin & Review, 19(6), 1047–1056. 
https://doi.org/10.3758/s13423-012-0300-4

van Ravenzwaaij, D., Cassey, P., & Brown, S. D. (2018). A 
simple introduction to Markov Chain Monte–Carlo sam
pling. Psychonomic Bulletin & Review, 25(1), 143–154. 
https://doi.org/10.3758/s13423-016-1015-8

Wagenmakers, E.-J. (2007). A practical solution to the per
vasive problems of p values. Psychonomic Bulletin & 
Review, 14(5), 779–804. https://doi.org/10.3758/ 
BF03194105

Wagenmakers, E.-J., Lee, M. D., Rouder, J. N., & Morey, 
R. D. (2020). The principle of predictive irrelevance or 
why intervals should not be used for model comparison 
featuring a point null hypothesis. In C. W. Gruber (Ed.), 
The theory of statistics in psychology – Applications, use 
and misunderstandings. Springer.

Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, 
A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, 
D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van 
Kesteren, E.-J., van Doorn, J., �Sm�ıra, M., Epskamp, S., 
Etz, A., Matzke, D., … Morey, R. D. (2018). Bayesian 
inference for psychology. Part II: Example applications 
with JASP. Psychonomic Bulletin & Review, 25(1), 58–76. 
https://doi.org/10.3758/s13423-017-1323-7

Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., 
Verhagen, J., Love, J., Selker, R., Gronau, Q. F., �Sm�ıra, 
M., Epskamp, S., Matzke, D., Rouder, J. N., & Morey, 
R. D. (2018). Bayesian inference for psychology. Part I: 
Theoretical advantages and practical ramifications. 
Psychonomic Bulletin & Review, 25(1), 35–57. https://doi. 
org/10.3758/s13423-017-1343-3

Wagenmakers, E.-J., Morey, R. D., & Lee, M. D. (2016). 
Bayesian benefits for the pragmatic researcher. Current 
Directions in Psychological Science, 25(3), 169–176. 
https://doi.org/10.1177/0963721416643289

Wagenmakers, E.-J., Wetzels, R., Borsboom, D., & van der 
Maas, H. L. J. (2011). Why psychologists must change 
the way they Analyze their data: The case of psi: 

932 N. SEKULOVSKI ET AL.



Comment on Bem (2011). Journal of Personality and 
Social Psychology, 100(3), 426–432. https://doi.org/10. 
1037/a0022790

Waldorp, L. J., & Marsman, M. (2022). Relations between 
networks, regression, partial correlations, and the latent 
variable model. Multivariate Behavioral Research, 57(6), 
994–1006. https://doi.org/10.1080/00273171.2021.1938959

Williams, D. R. (2021). Bayesian estimation for Gaussian 
graphical models: Structure learning, predictability, and 
network comparisons. Multivariate Behavioral Research, 
56(2), 336–352. https://doi.org/10.1080/00273171.2021. 
1894412

Williams, D. R., & Mulder, J. (2020a). Bayesian hypothesis 
testing for Gaussian graphical models: Conditional inde
pendence and order constraints. Journal of Mathematical 
Psychology, 99, 102441. https://doi.org/10.1016/j.jmp.2020. 
102441

Williams, D. R., & Mulder, J. (2020b). BGGM: Bayesian 
Gaussian graphical models in R. Journal of Open Source 
Software, 5(51), 2111. https://doi.org/10.21105/joss.02111

Williams, D. R., Rhemtulla, M., Wysocki, A. C., & Rast, P. 
(2019). On nonregularized estimation of psychological 
networks. Multivariate Behavioral Research, 54(5), 719– 
750. https://doi.org/10.1080/00273171.2019.1575716

Appendix. Prior distributions for MRF models 
implemented in R packages

The Bayesian analysis of an MRF model requires specifying 
two sets of prior distributions.

Priors on the structure
The prior probabilities on the network structure pðSsÞ can 
be expressed by specifying a prior probability on the possible 
value for each binary indicator variable cij. This is achieved 
by assuming that each edge follows an independent Bernoulli 
distribution with a prior inclusion probability pij. The R 
packages bgms (Marsman, 2023) for analyzing MRF for bin-
ary and ordinal data and BDgraph (R. Mohammadi & Wit, 

2019) for analyzing GGMs both provide this as the default 
option for the prior on the network structure. Setting this 
prior with pij ¼ 0:5 for all edges is considered an uninforma-
tive or objective choice, and this option is also referred to as 
the uniform prior on the structure (e.g., Marsman et al., 
2022). Of course, there are other prior options for the net-
work structure that take into account the number of present 
edges (i.e, the complexity of the structure); we refer the inter-
ested reader to Huth, de Ron, et al. (2023) for an accessible 
introduction to these priors and to Sekulovski, Keetelaar, 
Haslbeck, and Marsman (2023) for a detailed discussion of 
prior selection with particular emphasis on the priors imple-
mented in the R package bgms.

Priors on the edge weights
We also need to specify priors on the edge weight parame-
ters in H: The R package BDgraph specifies a g-Wishart 
distribution (Roverato, 2002) on the precision matrix (i.e., 
the inverse of the covariance matrix) containing the 
(untransformed) edge weight parameters for the GGM. The 
g-Wishart distribution takes two parameters (i) the degrees 
of freedom d, which is by default set to d¼ 3, and (ii) a 
scale matrix D, set by default to an uninformative p� p 
identity matrix. The R package BGGM (Williams & Mulder, 
2020b), which can also be used to analyze GGMs, specifies 
either a Wishart or a Matrix F prior on the precision matrix 
(Williams & Mulder, 2020a). The (g-)Wishart priors are 
conjugate to the precision matrix and assure a posterior 
density function on the space of positive semi definite 
matrices. Note that the R package BGGM does not stipulate 
priors on the network structure since it assumes that all 
edges are present a priori. Finally, the R package bgms 
specifies prior distributions on the individual edge weights 
given the value of the edge indicator variable cij, i.e., 
pðhijjcijÞ: In other words, if cij ¼ 0, the edge weight is set to 
zero, and if cij ¼ 1, the edge is given a specific (diffuse) 
prior distribution (e.g., a Cauchy distribution). For more 
details, see Marsman and Haslbeck (2023) and Sekulovski 
et al. (2023).
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