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ABSTRACT

Network psychometrics uses graphical models to assess the network structure of psycho-
logical variables. An important task in their analysis is determining which variables are unre-
lated in the network, i.e., are independent given the rest of the network variables. This
conditional independence structure is a gateway to understanding the causal structure
underlying psychological processes. Thus, it is crucial to have an appropriate method for
evaluating conditional independence and dependence hypotheses. Bayesian approaches to
testing such hypotheses allow researchers to differentiate between absence of evidence and
evidence of absence of connections (edges) between pairs of variables in a network. Three
Bayesian approaches to assessing conditional independence have been proposed in the net-
work psychometrics literature. We believe that their theoretical foundations are not widely
known, and therefore we provide a conceptual review of the proposed methods and high-
light their strengths and limitations through a simulation study. We also illustrate the meth-
ods using an empirical example with data on Dark Triad Personality. Finally, we provide
recommendations on how to choose the optimal method and discuss the current gaps in

the literature on this important topic.

Introduction

In network psychometrics, graphical models known as
Markov Random Fields (Kindermann & Snell, 1980;
Rozanov, 1982) have become a popular tool for assess-
ing the network structure of psychological variables
(see Borsboom et al.,, 2021; Contreras et al., 2019;
Marsman & Rhemtulla, 2022; Robinaugh et al., 2020,
for recent reviews). In these networks, nodes represent
observed psychological variables (e.g., symptom indica-
tors), and edges represent the pairwise relationships
between them. A ‘present’ relationship indicates a dir-
ect link (positive or negative) between a pair of varia-
bles, while an absent relationship reflects conditional
independence; if any dependence exists it is fully
accounted for by other variables in the network. For
example, although shark attacks (A) and ice cream
sales (I) are correlated, their dependence disappears
when season (S) is taken into account, showing that A
and I are conditionally independent given S. The goal

of network analysis is to discover the underlying con-
figuration of present and absent edges—the conditional
independence structure of the network. Conditional
independence is a first step in determining causal rela-
tionships (e.g., Pearl, 2009; Spirtes et al., 2000), and
aids our understanding of the underlying dynamic
system. With the gradual development of Bayesian
approaches to network analysis (e.g., Marsman et al,
2015; Marsman & Haslbeck, 2023; Mohammadi &
Wit, 2015; Williams, 2021; Williams & Mulder, 2020a),
testing the conditional independence of a pair of
variables in the network has also begun to receive
attention: Three Bayesian approaches to conditional
independence testing have recently been proposed in
the network psychometrics literature. Although the
development of conditional independence tests is an
important step forward, the three methods differ con-
ceptually, and we believe that their foundations are not
well known. In this paper, we provide a conceptual
review of the three Bayesian approaches, and show
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that when we are uncertain about the structure of the
network, there appears to be an optimal approach for
testing conditional independence.

In recent years, both frequentist and Bayesian
approaches have been proposed for estimating the
network structure from empirical data. In psychology,
frequentist approaches are the norm, and although
unregularized estimation approaches have become
available in recent years (see Blanken et al., 2022, for
a review), regularized estimation based on lasso
remains popular (e.g., Borsboom et al., 2021; Epskamp
& Fried, 2018; Tibshirani, 1996; van Borkulo et al,
2014). A caveat of these approaches is that they are
biased toward the null hypothesis of conditional inde-
pendence, yet their underlying frequentist method-
ology can only refute this hypothesis, not support it.
This leads to the problem that if an edge is missing
from an estimated network, we are unsure whether
this is due to a lack of information in the data to sup-
port the relation, or due to actual conditional inde-
pendence (e.g., Epskamp et al, 2017). Bayesian
methods (e.g., Wagenmakers, Marsman, et al., 2018;
Wagenmakers et al, 2016), on the other hand, are
able to quantify the relative support for the competing
hypotheses of conditional dependence and conditional
independence; importantly, they can also reveal the
lack of support for either hypothesis in the data at
hand. By distinguishing evidence of absence from
absence of evidence, Bayesian methods facilitate a
deeper understanding of the conditional independence
structure of the network.

Below we review three Bayesian approaches that
have recently been proposed to test conditional inde-
pendence. The first method uses the credible interval—
the Bayesian version of the frequentist confidence inter-
val—and assesses whether or not it contains the param-
eter values that indicate conditional independence. This
method focuses solely on rejecting the conditional
independence hypothesis, and thus suffers from the
same fundamental problem that plagues the frequentist
methods mentioned above. The second method uses a
Bayes factor approach (Jeffreys, 1961; Kass & Raftery,
1995)—which is the Bayesian generalization of the like-
lihood ratio test. The Bayes factor compares how well
two competing models can predict the observed data.
When we compare two models that are identical except
that one has two variables that are unrelated and the
other has them related, we can use the Bayes factor to
express the relative support, or lack thereof, for the
conditional dependence or independence hypotheses.
The Bayes factor test represents a major improvement
over interval-based tests for conditional dependence

and independence. However, we will show that this
Bayes factor approach requires a choice about which
relationships are present in the rest of the network and
that it is sensitive to that choice. The third method,
called the inclusion Bayes factor, is a generalization of
the Bayes factor approach that uses Bayesian model
averaging (BMA, Hoeting et al., 1999; Kaplan, 2021) to
overcome the sensitivity to which relationships are pre-
sent in the rest of the network. The inclusion Bayes
factor compares how well we can predict the observed
data from a combination of all models in which the
two variables are related, and compares this to the pre-
dictive adequacy of a combination of models in which
the variables are unrelated. In this paper, we consider
the structure of the network, a particular configuration
of present and absent edges, to be a model. As we will
show below, BMA allows us to make robust structure-
averaged inferences.

The remainder of this paper is structured as fol-
lows. The next two sections provide a conceptual
introduction to the role of conditional dependence
and independence in graphical modeling, and the
Bayesian methodology that underlies the methods for
testing these hypotheses. We refer the interested
reader to Epskamp et al. (2022), Marsman et al.
(2018), and Waldorp and Marsman (2022) for a
detailed introduction to the graphical models used in
network psychometrics, to van de Schoot et al. (2014)
and Wagenmakers, Marsman, et al. (2018) for a
detailed introduction to Bayesian estimation and
hypothesis testing, and to Huth, de Ron, et al. (2023)
for a more comprehensive introduction to the
Bayesian analysis of graphical models. In the third
section, we investigate the three Bayesian methods to
test for conditional dependence and independence in
detail and discuss their relations and limitations, after
which we compare their relative performance in a
simulation study and illustrate them with an empirical
example. We end by discussing the limitations of the
Bayesian analysis of graphical models, and Bayesian
model averaging in particular.

Graphical modeling

A graphical model specifies the joint probability dis-
tribution for a set of observed variables, and repre-
sents these variables as nodes in a network. The goal
of a statistical analysis of the graphical model is to
determine the relations between pairs of variables,
which will constitute the edges of the network. We
usually have two questions about network relations.
First, we wish to know if the edge is there or not: is
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Figure 1. The possible structures along with their Posterior Structure Probabilities for the random variables: shark attacks (A), ice

cream sales (I), and season (S).

an effect present? Once we have established that there
is an effect, and the edge should be in the model, a
follow-up question could be how strong the relation
is: what is the strength of the effect? The first question
is usually linked to testing whereas the latter is linked
to estimation, but this distinction can be vague in
practice.

In this paper, we will address the two questions about
the graphical model separately. First, a binary variable y;;
is used to indicate that the edge between variables i and j
is present (i.e., Vi = 1) or absent (i.e., Vi = 0). In a net-
work with p variables, we have k = p (p — 1)/2 possible
edges. Each conﬁguration of edges (i.e., the pattern of
zeros and ones: 7y,, ..., Y(,—1),) constitutes a possible
network structure Ss, of Wthh there are 2X in total.
Figure 1 illustrates the idea for a network of three ran-
dom variables; shark attacks (A), ice cream sales (I), and
season (S). The three variables yield k=3 x (3 —
1)/2 = 3 possible edges, and thus 2F = 23 = 8 possible
network structures. For example, Structure S; = [y,; =
0, y4s=0, 74 =0] and Structure Sy = [y, =0,
Yas =0, vs =1J.

For each structure S, s=1, ..., 2K, we have a
distinct statistical model' for the observed variables
p(data|®,, S;). The weights of the relations in the
structure S, are expressed in a symmetric matrix @,
which has the edge weights 0;; on the off-diagonals.
The edge weights that correspond to relations that are
absent from S; are set to zero in ;. For the graphical
models that we analyze in this paper—Markov
Random Field (MRF) models (Kindermann & Snell,

"In the Bayesian literature, the model is usually indicated with Mg, but
here we use S to connect it to the network’s structure.

1980; Rozanov, 1982)—these edge weights are partial
associations, which indicate the strength of the rela-
tion between two variables that excludes the influence
of other variables in the model. The higher the abso-
lute value of the partial association 0;;, the stronger
the two variables influence each other.

Several MRF models are used in network psycho-
metrics, which differ primarily in the level of meas-
urement of the variables. For example, the Ising
model (Ising, 1925) is a graphical model for binary
variables (e.g., symptom indicators), the ordinal MRF
(Marsman & Haslbeck, 2023) extends the Ising model
to also include ordinal variables, the Gaussian graph-
ical model (GGM; Lauritzen, 2004) is used for con-
tinuous variables, and the mixed graphical model
(MGM; Haslbeck & Waldorp, 2020) handles binary,
unordered categorical, count, and continuous varia-
bles. For the particular case of the GGM, the matrix
©® is known as the precision matrix, and when stand-
ardized, it contains partial correlations (e.g., Waldorp
& Marsman, 2022). To keep the discussion general,
we will refer to the elements of ® as edge weights.
Other graphical models that are also used in the net-
work psychometrics literature but are not MRF mod-
els are the multivariate ordered probit (Guo et al,
2015) for ordinal variables and the Gaussian copula
graphical model (Dobra & Lenkoski, 2011) for mixed
binary, ordinal, and continuous variables. However, in
this paper we focus exclusively on MRF models.

l]’

Conditional independence

In network psychometrics, it is often assumed that the
observed data are variables in a complex, dynamic
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system. The underlying system has a causal compo-
nent in that some variables influence other variables
in a particular way, and some of these relationships
are reciprocal. Since it is difficult to learn the directed,
causal relationships from correlational data, we use
undirected graphical models to model the relation-
ships among the variables in the underlying system.
MRFs are an important class of undirected graphical
models because their parameters tell us directly about
the conditional dependence and independence
between variables in the network: If the edge weight
0;; between variables i and j is zero, then the two vari-
ables are conditionally independent. MRFs are thus
convenient models for assessing conditional independ-
ence, and, since conditional independence is a gateway
to learning the underlying causal structure (e.g., Pearl,
2009; Spirtes et al., 2000), they play an important role
in the graphical approach to causal inference (Ryan
et al., 2022). One could, of course, adopt a purely stat-
istical interpretation of conditional independence
without considering potential causal implications.
However, since the notion of conditional independ-
ence is also central to causal inference, we wish to
clarify how the two are related in this subsection.
Spirtes et al. (2000), Pearl (2009), and others (see
Glymour et al., 2019, for a recent overview) have
developed the graphical approach to causal inference
as a formal framework in which causal relationships
are represented as directed acyclic graphs (DAGs)0.2
Conditional dependencies and independencies are key
to identifying DAGs that are consistent with observed
data. For example, consider the three variables A, S,
and I in Figure 1. From their correlations alone, we
cannot identify causal relationships among the three
variables. However, if we also knew their conditional
dependencies, e.g., that A and I are conditionally
independent given S, while A and S, and A and I are
conditionally dependent (i.e., A-S-I, such as S¢ in
Figure 1), we could take a step toward causal discov-
ery. Under some strong assumptions (e.g., there are
no unobserved confounders, there is no selection bias,
and the causal relations do not cancel each other out;
Eberhardt, 2017), one can use the conditional inde-
pendence structure S to infer three possible (directed)
causal graphs: A - S - LA «— S« L, and A « §
— 1. For a detailed introduction to learning causal
relations from conditional dependence and independ-
ence, we refer the interested reader to Pearl (2009).
The conditional independence structure S is a mid-
dle ground between simple unconditional associations
and directed causal graphs: Simple associations will
contain many spurious relations that disappear when

conditioning on other variables in the network. While
this conditioning removes associations that can be
explained through other variables in the network, it
can also induce spurious relations: any variable that is
a common effect of other variables in the network
will induce a spurious association between these varia-
bles when conditioned on. It is therefore important to
note that not all conditional dependencies will reflect
causal relations unless strong assumptions are made
(such as the absence of common effects and unob-
served common causes). But, the conditional depend-
ency structure will contain conditional dependencies
for every causal relation in the causal graph. In this
sense, the conditional independence structure can
generate possible hypotheses about causal paths, but
cannot be used to infer causal paths directly (see Ryan
et al., 2022, for a more detailed discussion of the
problems of causal inference from network models).
But, for those who do want to take a next step and
identify directed causal graphs, causal discovery is an
exciting field with many advances, such as causal dis-
covery algorithms that do not require the absence of
unobserved common causes or feedback loops
(Eberhardt, 2017).

There are at least three reasons for why one might
want to model the conditional independence structure
of the MRF rather than going a step further and using
the MRF to discover directed causal graphs. First,
inferring a DAG® from conditional dependencies in
observational data requires strong assumptions that
may not hold in practice (e.g., no unobserved com-
mon causes and no feedback loops). Second, for a
conditional independence structure, there may be
many directed causal graphs that are equivalent and
consistent with the conditional independence struc-
ture. We have already seen that there are several
equivalent graphs for the three-variable example
above, and for more than three variables the set of
equivalent graphs increases enormously. Therefore, it
may be much easier to work with a single MRF than
with the potentially large set of equivalent causal
graphs (Epskamp et al., 2018). Third, the MRF does
not commit one to a causal interpretation; instead,
one can choose a purely statistical interpretation of
predicting variables from other variables in the net-
work or other interpretations (e.g., Epskamp et al.,
2022).

’DAGs are sometimes referred to as Bayesian networks. We wish to
emphasize that Bayesian networks (DAGs) are different from Bayesian
analysis of (MRF) graphical models, which is the focus of this paper.



Bayesian graphical modeling

Bayesian inference aims to use data to update our
knowledge about the network structure S;—the collec-
tion of edges in the network—and the network param-
eters ®,—the edge weights. To allow the data to
update our knowledge of the network structure and
parameters, we need to make explicit what we know
about them before seeing the data. Figure 1 shows that
there are many possible structures that that could
underlie the network, and similarly, there are many
possible values for the corresponding edge weights. But
which values could describe our data? Since our goal is
to learn about them, the specific configuration of the
network relations and the exact parameter values are
usually unknown to us. To account for this uncertainty,
we assign prior distributions to the model or structure
S; and to the parameters of that model ®;. A prior is
a probability distribution that a Bayesian uses to assign
weights (i.e., probability or probability density) to dif-
ferent values of the parameters and structure. First, we
assign prior probabilities to the different network struc-
tures p(S;) (ie., the prior distribution of the effect),
and then, conditional on a particular structure, we spe-
cify prior distributions on the corresponding edge
weights p(®; | S;) (i.e., the prior distribution of the
effect size). The priors provide a way to formalize the-
ory and incorporate advanced knowledge (e.g., results
from previous research; Lindley, 2004; Vanpaemel &
Lee, 2012), or they can be used to express ignorance
using a default or objective prior specification (e.g.,
Consonni et al., 2018). In the appendix, we provide
details about the prior distributions implemented in
three popular R packages for analyzing MRF models.

Regardless of how we specify the priors, Bayes’ rule
weighs the prior distribution with the information
coming from the observed data to update it to a pos-
terior distribution,

p(data | O, S)p(O; | Si)p(Ss)
p(data) '

P(Qs) S | data) =

This joint posterior distribution expresses everything
that we know about the structure and parameter values
of the network after seeing the data and is central to
the Bayesian analysis of graphical models. The different
Bayesian tests for conditional independence consider
different aspects of this joint posterior. To make this
more explicit, we factor the joint posterior as follows

p(O,, S| data) = p(@; | S;, data) x p(S; | data),

and express it as a product of the posterior distribu-
tion of the parameters @, under the specific structure
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S, and the posterior distribution of the possible
structures with the parameters integrated out. The for-
mer is referred to as the conditional posterior distri-
bution for the network parameters (i.e., it is the
posterior distribution of the edge weights for a specific
structure S;) and the latter as the marginal posterior
distribution of the network structure (i.e., a posterior
of the structures without the parameter values for
the edge weights). Below, we will use the conditional
posterior distribution p(@; | S;, data) for Bayesian
parameter estimation, and the marginal posterior dis-
tribution p(S; | data) for Bayesian hypothesis testing.

Bayesian hypothesis testing: the Bayes factor

Two out of the three proposed Bayesian methods for
testing the conditional independence hypothesis that
we review in the next section make use of the Bayes
factor (Jeffreys, 1939; Kass & Raftery, 1995). The
Bayes factor quantifies the relative predictive perform-
ance of two rival hypotheses (e.g., the conditional
dependence of two variables or their conditional inde-
pendence), or of two competing models or structures.
Consider two competing network structures S, and
S;. The Bayes factor is defined as the change in beliefs
concerning the relative plausibility of the two struc-
tures before and after observing the data

p(Ss) | p(data]S;) _ p(Si|data)

p(Si) ~ p(datalS;)  p(Si|data) |

——  N———— N ,
Prior BF Posterior
odds odds

Specifically, the first factor on the left of the for-
mula above is the prior odds, that is, the relative
plausibility of the two structures before having seen
the data. The second factor is the Bayes factor which
indicates the statistical evidence or support for the
two structures in the data at hand. The term on the
right is the posterior odds, which indicates the relative
plausibility of the rival models after having seen the
data. In this paper, we assume that the prior odds are
equal to one by assuming p(S;) = p(S;), which makes
the Bayes factor equal to the posterior odds (see
Marsman et al., 2022, for a different approach).

The subscripts in the Bayes factor notation indicate
in which direction the support is expressed. BFg
indicates the relative support for S; over S; and BF
indicates the relative support for S; over S;. Observe
that the Bayes factor BFy is the reciprocal of BFy, ie.,
BF;, = 1/BFy. The Bayes factor BFy ranges from 0 to
00, values larger than one indicate a relative support
for S; while values smaller than one indicate the
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Figure 2. An example of a posterior distribution for a parameter 0, the line at the bottom of the density represents the 95% cen-
tral credible interval and the shaded gray region represents the 95% highest density interval (HDI). The two dashed vertical lines
around zero represent the region of practical equivalence (ROPE, introduced in the next section).

relative support for S;. If the Bayes factor is equal to
one, both structures predicted the data equally well. In
practice, we usually interpret Bayes factors between 1/10
and 10 as evidence that is insufficiently compelling.®

Bayesian estimation: the posterior distribution
of partial associations

One of the three Bayesian methods for testing the
conditional independence hypothesis that we review
in the next section makes use of Bayesian estimation.
In practical situations, we often wish to estimate the
parameters @' for a particular structure S’. This could
be the structure with the highest posterior probability
p(S' | data), the median probability structure (e.g.,
Barbieri & Berger, 2004; Marsman et al., 2022) that
consists of all relations for which the posterior inclu-
sion probability (defined in the section on Bayesian
model averaging) is greater than a half, or it could be
the complete structure that includes all relations. The
posterior distribution for a single structure S is

p(data | @', S') xp(@ | S)
p(data | §') ’

p(@ | S, data) =

where p(@' | S') denotes the prior distribution for
the parameters under the structure S'. Given a single
parameter 0, the prior p(@;j | ') assigns a relative
plausibility to each value of the parameter. The
information in the data is then used to update
this prior distribution into a posterior distribution
p(0; | S', data). In the posterior distribution, the
plausibility of parameter values that predict the data

®In principle, Bayes factors are a continuous measure of evidence and
therefore do not require strict cutoff values. But even if we do, there is
no hard and fast rule for what the cutoff should be, and practitioners
may prefer other values (Jeffreys, 1961; Kass & Raftery, 1995).

well increases, while the plausibility of parameter val-
ues that predict the data poorly decreases
(Wagenmakers et al., 2016).

Instead of reporting the full posterior distribution
for each element in @', we often report it in terms of
a measure of location (i.e., the posterior mean, median,
or mode) and spread (i.e., the posterior variance), or in
terms of an x% credible interval (see van Doorn et al.,
2021). An x% credible interval contains x% of the
probability mass of the posterior distribution. Two
popular ways to create an x% credible interval are the
highest posterior density interval, which is the shortest
possible credible interval that contains x% of the pos-
terior mass, and the x% central credible interval, which
is obtained by clipping (100 — x)/2% from each tail of
the posterior distribution. Figure 2 shows a fictional
example of a posterior distribution that has a 95% cen-
tral credible interval and a 95% highest density interval.
The posterior is a probability density with the gray
area under its curve containing 95% of its total prob-
ability. Note that the highest density interval is shorter
than the central credible interval, even though both
capture 95% of the posterior.

Equipped with these Bayesian concepts, we next
turn to the three proposed Bayesian approaches for
testing conditional independence.

Three Bayesian methods for testing
conditional independence

Approach 1: Credible interval

In frequentist statistics, an assessment of whether or
not the null value 6, falls within the x% confidence
interval for a parameter 0;; (sometimes considered as
estimation, but see Morey et al., 2016) is equivalent to
the test of the null hypothesis,



H() . 0,']‘:8(),

with a significance level of o= (100 —-x)%: We
would reject H, with significance level « if the null
value falls outside the (100 — o)% confidence interval
(cf. Figure 2). It is tempting to extend this testing
approach to Bayesian statistics by using an x% cred-
ible interval to test whether or not we could reject
Hy. But from which posterior distribution should we
take the credible interval for the partial associations?
In practice, this is usually done using a complete
structure Sc¢ that includes all relations (e.g., the bot-
tom right structure in Figure 1). However, this
approach implies that the relation between nodes i
and j is a priori assumed to exist, and we are thus
testing a hypothesis that we assume to be false from
the outset (e.g., Jeffreys, 1939). This signals a bias
against the null hypothesis, which is common in clas-
sical null hypothesis significance tests.

In practice, the logic behind credible interval-based
tests may indeed lead to contradictions, since compari-
sons between the null hypothesis and its complement
using the Bayes factor, for example, may signal support
for the null hypothesis of conditional independence,
while the null value 0, would fall outside the credible
interval. See Berger and Delampady (1987) and
Wagenmakers et al. (2020) for detailed discussions of
this issue. Null hypothesis tests based on the credible
interval can also lead to ambiguous results, because if
the null value would fall within the interval, we cannot
interpret this as support for the null hypothesis because
the test cannot distinguish between the potential causes
of this failure to reject (i.e., absence of evidence or evi-
dence of absence). In order to test for conditional inde-
pendence, we must therefore be able to quantify
support in favor of the null hypothesis.

Despite this complication, credible interval-based
tests have been used to test for conditional independ-
ence in the Bayesian graphical modeling literature.
For example, Jongerling et al. (2023) use credible
intervals to perform edge selection (i.e., conditional
independence testing) in GGMs with the goal of esti-
mating the posterior distribution of centrality meas-
ures. Williams (2021) used a generalization of the
credible interval test based on the idea that we can
specify a region in the parameter space that is essen-
tially zero—the region of practical equivalence (ROPE,
Kruschke, 2011)—and then exclude an edge if x% of
the posterior distribution of the partial association is
inside the ROPE, otherwise include it (cf. Figure 2).
In a slightly different way, Marsman et al. (2022) also
used credible intervals for edge selection. They used a
continuous spike and slab prior on the partial
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associations of an Ising model, where the intersection
of the spike and slab components occurs at an
approximate x% credible interval. This is very similar
to using ROPE for edge selection; to set the spike-
and-slab prior, Marsman et al. (2022) also start with a
posterior distribution that assumes the effect is pre-
sent (based on the unit-information prior; Kass &
Wasserman, 1995). However, unlike the credible inter-
val test and the ROPE approach, the approach in
Marsman et al. (2022) can distinguish the potential
causes underlying the edge exclusion because it
assigns prior weights to the edge inclusion and exclu-
sion hypotheses.

Thus, our concerns with credible interval-based tests
are directed at their conceptual underpinnings, particu-
larly their inability to quantify support for the null
hypothesis. To quantify this support, we need an evi-
dential measure that contrasts the competing hypothe-
ses of conditional dependence and independence, i.e.,
the Bayes factor. For a review of (log) Bayes factors as
weight of evidence see, for example, Good (1985).

Approach 2: The single-model Bayes factor

The Bayes factor is the gold standard for Bayesian
hypothesis testing (Berger & Pericchi, 2015), and
around the same time that graphical models became
popular in psychology, Bayes factor hypothesis testing
became popular in psychological research. In large
part, this increased popularity of the Bayes factor in
psychology is a response to the misuse of the null
hypothesis significance test (NHST) in psychological
research and the limited replicability (Ioannidis, 2005;
Open Science Foundation, 2015) of many psycho-
logical findings established with NHST (e.g.,
Wagenmakers, 2007; Wagenmakers et al., 2011). Some
of the concerns that methodologists have with NHST
also play a role in the credible interval test of the pre-
vious section. One of the more prominent concerns is
that the adequacy or inadequacy of the null hypothesis
is not compared against an alternative. Thus, rejection
of the null hypothesis should not be taken as evidence
in favor of the alternative hypothesis, which may be
just as inadequate as the null hypothesis (or even more
inadequate). The Bayes factor, however, compares the
predictive adequacy of the null hypothesis against that
of an alternative, and as such can separate evidence for
the absence of an effect, evidence for the presence of
an effect, but also the absence of evidence in either dir-
ection (e.g., Dienes, 2014; Keysers et al., 2020). Thus,
Bayes factor testing is a significant step forward for
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psychological network analysis. However, we are con-
cerned with the way it is commonly formulated.

We consider the Bayes factor test for the condi-
tional independence of the variables i and j in the net-
work, i.e., we consider the following two hypotheses

Hoi@ijzo, and H]Q,]?éo

If we wish to assign prior probabilities to these
hypotheses, it is easier to reformulate them in terms
of the edge indicators and model the size of the effect
0;; conditional on the presence of the effect. That is,
we model p(®;|S;) such that we can impose a prior
on the hypothesis or model S;. Then, our hypotheses
can be reformulated as

Ho:7; =0, and H; :p; = 1.

By formulating the hypothesis in terms of the edge
indicator rather than the edge weight, we immediately
encounter a problem. We cannot yet isolate the effect
of a single relationship, i.e., the edge indicator, and
thus we must now carefully consider how to set up
the Bayes factor. The way this is usually done is by
comparing two structures S; and S, that are identical
except that the relation between the variables i and j
is present in S; but is absent in S;. In this way, com-
paring S; with S; using the Bayes factor gives us a
Bayes factor test for H; versus H,. Although it is not
made explicit, in practice the complete structure S; =
Sc is used here, as in the case of the credible interval
test we discussed earlier.

Note that the Bayes factor test for conditional inde-
pendence we formulated above is not uniquely defined.
In principle, we could compare any two structures S;
and S;, as long as they are identical except that the
relation between the variables i and j is present in S;
but not in S;. For our hypothetical three-variable
example, this means that we have three ways to test the
conditional independence of variables A and I. We
could contrast S; = S; with §; =81, S = S5 versus
S; =38, or § =S8g versus S; = Sg. Each of these
comparisons is a valid comparison in terms of contrast-
ing the effect of the relation (i.e., assessing conditional
independence). However, in each case we are making a
different assumption about the other relationships in
the network. We will refer to any such Bayes factor test
as a single-model Bayes factor, since it assumes a single
model for the remaining relationships in the network.
The single-model Bayes factor test is sensitive to the
assumption concerning the overall network structure
because partial associations are sensitive to the other
partial associations in the model or structure. To illus-
trate, consider the relation between variables A and I in

our three-variable example. First, in order to compute
its value in our example, we express the Bayes factor as
a function of the prior and posterior probabilities:

p(S, | data) /p(&)

BF;; =

p(S: | data) /' p(S:)

— =
Posterior Prior
odds odds

The posterior probabilities for each of the eight
structures are shown in Figure 1. When we assume
that each of the structures is equally plausible a priori,
the prior probabilities are equal to one and the Bayes
factors are equal to the posterior probabilities. Thus,
the Bayes factors for the three possible model pairs
are obtained as follows:

_ p(Ss|data)  .016

= = = 0.23,
7 p(S)|data) .07
BE., :p(85|data) _ 019 0.17,
p(Sy|data) .11
BFss = p(Sgldata) _ .03 _ 0.05.

~ p(Se|data) .66

This demonstration confirms that the single-model
Bayes factor can, in fact, be sensitive to our choice for
the remaining relations in the network. The first two
Bayes factors (i.e.,, BF3;; =0.23 and BFs; =0.17)
showed weak evidence for exclusion, while the third
Bayes factor showed strong evidence for exclusion
(i.e., BFgs = 0.05). But which Bayes factor test should
we use?

Williams and Mulder (2020a) proposed the single-
model Bayes factor for testing conditional independ-
ence in GGMs (see also Giudici, 1995). In their
approach, the complete structure is used as a basis for
comparison. In the next section, we show that this
method works well when the data generating structure
has relatively many relations, consistent with the mod-
el’s assumption, but it starts to perform less well when
the data generating structure is sparse and has rela-
tively few connections. Since we are typically highly
uncertain about which particular structure would
underlie our data (see Marsman et al., 2022; Marsman
& Haslbeck, 2023), the foundations of the single-
model Bayes factor can be unstable.

Approach 3: The inclusion Bayes factor

We can use Bayesian model averaging (BMA; Hoeting
et al., 1999; Kaplan, 2021) to overcome the sensitivity
of the single-model Bayes factor to our assumptions
about the remaining relationships in the network.
When we consider the single-model Bayes factor, we



must assume that the network is based on some struc-
ture. In practice, however, we usually do not know
what that structure is. To account for our uncertainty
about the structure of the network, BMA considers all
possible structures and weights the outcome of each
structure by its posterior probability; the relative
plausibility that the structure produced the data at
hand. By weighting the outcome of each structure by
its posterior probability, BMA accounts for the uncer-
tainty we have about which structure is at play
(Hinne et al., 2020; Huth, de Ron, et al, 2023).
Mohammadi and Wit (2015) and Marsman et al.
(2022) applied BMA to graphical models.

We focus here on the posterior inclusion probability,
the posterior probability of including an effect, which
we use to estimate the inclusion Bayes factor; the Bayes
factor test that pits the conditional dependence hypoth-
esis against the conditional independence hypothesis.
Although we do not consider it here, BMA is also use-
ful for estimating the marginal posterior distribution
for the partial associations; a robust estimate of the
effect size that incorporates the uncertainty in the par-
ameter and the uncertainty in its selection.

We can express the posterior probability of includ-
ing the edge between variables i and j as the sum of
the posterior probabilities over all structures that
include the edge. Let SU) denote the set of structures
that include an edge between variables i and j, then
the inclusion probability can be computed as

Py = 1ldata) = 3~ p(8'data),
S'est
which weights the posterior plausibility of the inclu-
sion of the relation in the network structure. For
example, the posterior inclusion probability of includ-
ing the relation between variables A and I (ie,
y4r = 1) in Figure 1 is equal to

p(yar = 1|data) = p(S;|data) + p(Ss|data)
+ p(S7|data) + p(Ss|data)
=.016 + .019 + .005 + .03 = .07.

Since the posterior probabilities for edge inclusion
and exclusion sum to one, the corresponding prob-
ability of exclusion is p(y,; = 0|data) =1 —p(y,; =
1|data) = .93. The Bayes factor for inclusion can now
be determined as follows (Huth, de Ron, et al., 2023;
Marsman et al., 2022; Marsman & Haslbeck, 2023)

pldata | 7, =1) pl(y; =1 | data) / Pl =1)

p(data [ 7;=0)  p(y;=0]data) / p(;=0)
———
Posterior Prior

inclusion odds inclusion odds

Inclusion
Bayes factor
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The inclusion Bayes factor quantifies the weighted
evidence for the inclusion of the relationship across
all structures. As such, the inclusion Bayes factor
provides a simple measure to distinguish between
inconclusive evidence and conclusive conditional inde-
pendence between two nodes. When we assume that
all structures are equally likely a priori, the prior
inclusion probability for individual edges is equal to
1/2. The prior odds then equal to 1, and we see that
the inclusion Bayes factor for including the edge
between variables A and I is equal to .07/.93 ~ .074,
which means that based on the information in our
data, we have strong evidence that an edge between
variables A and I should be excluded from the net-
work, in other words, we have strong evidence for
conditional independence (i.e., the exclusion Bayes
factor is 1/.074 ~ 13.5). Note that the inclusion Bayes
factor does not depend on the remaining relationships
in the network, since it averages the network struc-
tures and thus overcomes the dependence of the sin-
gle-model Bayes factor on assumptions about the
remaining relationships.

Simulation study

We performed a simulation study to compare the accur-
acy of edge selection using the three methods in the case
of a GGM using the BDgraph R package (Mohammadi
& Wit, 2019). The R code we used in our simulations is
available in the repository at https://osf.io/2x74v/. We
simulated several conditions. Specifically, we varied the
size of the network, p = {10, 30, 50}, the number of
observations, n = {100, 200, 500, 1,000, 5,000}, the
size of the focal edge weight between variables 1 and 2
(ie., partial correlation), 0, = {0, .1, .25, .4}, and
the density of the rest of the network (i.e., the number of
relations in the rest of the network). We simulated the
structures based on a random graph. We varied the
density (D) of the network so that the probability of an
edge between two nodes was either .2, 0.5, or .8. Given
the generated structure, we sampled the remaining edge
weights from a g-Wishart distribution (Roverato, 2002).
Since manipulating the edge weight between variables 1
and 2 could result in a precision matrix that is not posi-
tive semi definite we continued sampling precision
matrices until we found one that was positive semi
definite.

We obtain the single-model (non-BMA) parameters,
by sampling from their posterior distribution of the
edge weights based on the full model. In this case this
posterior distribution is a g-Wishart distribution
(Lenkoski, 2013; Roverato, 2002). We obtain the single-
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Figure 3. Average Brier score for each of the four measures as a function of the sample size plotted for each value of the edge

weight, number of variables (p), and network density (D).

model Bayes factors by computing the fraction of the
normalizing constants (i.e., marginal likelihoods) of the
g-Wishart distributions under the fully connected
structure and a structure that excludes the focal edge.
For BMA analysis we used the default settings from the
function bdgraph. For each dataset, using 10,000
iterations,” we computed for the focal edge weight 0,,:

1. The central credible interval for the single-model
parameter estimate, and whether or not it included
the test-relevant value of 0. We then transformed
this into a quasi-inclusion probability, which was 1
if the interval included 0 and 0 otherwise, to make
it comparable to the other measure. We computed
two variants of the credible interval: (i) the stand-
ard 95% central credible interval and (ii) an

“Note that we ran the MCMC procedures for a fixed number of iterations,
and did not check for convergence of the individual Markov chains.
Although our experience is that the implemented procedures tend to
converge quickly, there is no guarantee that the chains that were used in
our simulations actually did.

adaptive credible interval. The latter is equivalent
to ROPE (for more details, see, Kruschke, 2011).
The single-model posterior edge inclusion
probability. The single-model posterior inclusion
probability is calculated from the single-model
Bayes factor as follows

BF1p O1o
p(y; = 1|data) = T+ BF, Oy’
where BF)( is the single-model Bayes factor in
favor of conditional dependence and Ojq is the
prior odds. We assumed full structure for the
remaining relationships in the network and used
Oj0 =1 in our analysis.
The posterior edge inclusion probability obtained
from Bayesian model averaging.

We computed the Brier score (Brier, 1950), which

quantifies the mean squared difference between pre-
dicted probabilities and actual outcomes for a binary
event (in this case the presence of an edge), with
lower scores indicating better predictive performance.



For each metric and condition Figure 3 shows that
when the focal parameter has an edge weight equal to
zero (i.e., conditional independence), the inclusion
Bayes factor and the adaptive credible interval per-
form best across different sample sizes, numbers of
variables, and network densities. We can also observe
that the performance of the single-model Bayes factor
becomes worse as the network density and the num-
ber of variables increase. All methods tend to perform
better as a function of sample size. When the edge is
present, even with a value of 0;; = 0.1, we see that
the situation is reversed, in other words, the 95% cen-
tral credible interval and the single-model Bayes factor
perform better than the inclusion Bayes factor and the
adaptive credible interval, especially for N < 1,000.
When the value of the partial correlation is 0.25 and
0.4, all of the methods tend to perform quite well.
Figure 3 shows that the density of the network has
an influence on which method performs best. To get
a clearer picture of the overall performance, we first
aggregate the accuracy of the methods across effect
sizes and compute the values for the area under the
receiver operating characteristic curve (AUC) for each
measure. The receiver operating characteristic (ROC)
curve plots the tradeoff between the true positive rate
(sensitivity) and the false positive rate (1 - specificity)
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as we vary the classification threshold. Therefore, the
AUC is a performance measure of how well the meth-
ods can capture the truth—in this case, whether the
edge is truly present. Methods with a higher AUC
value (closer to 1) can better discriminate between
present and absent edges than methods with lower
AUC values (see Fawcett, 2006, for an introduction to
ROC curves and AUC values). As can be seen from
the results presented in Figure 4, the inclusion Bayes
factor performs better than the single-model Bayes
factor for low and medium network density levels,
especially for smaller sample sizes, but performs worse
when the network density is high. When the density
is high, the structure assumed by the single-model
Bayes factor is close to the true underlying network
structure (i.e., both are densely connected), and thus
the single-model Bayes factor has an advantage under
this condition. The BMA approach still assumes dif-
ferent structures for the data and is therefore subopti-
mal when the true structure is dense. The 95%
credible interval shows the worst performance overall.

Since the two Bayes factor approaches are the only
formal ways to test for conditional independence
hypotheses, we wish to compare their performance in
some more detail. Figure 5 plots the proportion of
times the Bayes factors made a correct decision in

Density: 0.2

Density: 0.5

Density: 0.8

oL :d
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- Inclusion-BF
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IR AN
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Figure 4. AUC values as a function of the sample size plotted for different values of the network density and number of variables p.
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Figure 5. The proportion of times that the two Bayes factors found evidence in favor of the true hypothesis, as a function of the
sample size plotted for each value of the edge weight, number of variables (p), and network density (D).

detecting evidence for the true hypothesis. As can be
seen, and as expected based on the previous plots,
when the edge is absent (i.e., when 0,, = 0), the inclu-
sion Bayes factor outperforms the single-model Bayes
factor in all simulation conditions. This suggests that
the inclusion Bayes factor is quite good at capturing
evidence in favor of conditional independence. When
the edge is present, its weight is small, and the network
is small and sparse, the two Bayes factors show similar
performance. In contrast, as can also be seen in
Figure 4, as the network becomes larger and more
densely connected, the single-model Bayes factor begins
to outperform the inclusion Bayes factor. As the true
value for the edge weight increases, both methods per-
form very well, especially for large sample sizes.

Empirical example

To illustrate the difference between the two Bayes fac-
tors we consider the analysis of a data set from a
study by Gojkovi¢ et al. (2022) on the network struc-
ture of empathy, narcissism, and the Dark Triad (i.e.,

the combination of narcissism, psychopathy, and
Machiavellianism) personality traits. The data are pub-
licly available at https://osf.io/7jcks/. It consists of
eight variables, each measured by a battery of Likert-
scale items. The narcissism, psychopathy, and
Machiavellianism variables are based on the 27 items
from the Short Dark Triad (i.e, each variable is a sum
of responses to 9 different items Jones & Paulhus,
2014); the cognitive empathy, affective resonance, and
affective dissonance variables are based on the 36
items from the Affective and Cognitive Measure of
Empathy (Vachon & Lynam, 2016); the narcissistic
admiration and narcissistic rivalry variables are based
on the 18 items from the Narcissistic admiration
(Adm)iration and Narcissistic Rivalry (Back et al.,
2013). The affective dissonance items were inversely
coded so that a higher summed score corresponded to
a higher level of affective dissonance. The study was
based on a sample of 263 high school and university
students from Vojvodina, Serbia.

Since we wish to see if there is a difference in the
conclusion we would draw from using the two Bayes
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Figure 6. The (natural) logarithm of the Bayes factors plotted against the posterior mean of the corresponding edge weight. The
left panel shows the results for the inclusion Bayes factor, and the right panel shows the results for the single-model Bayes factor.
Bayes factor values greater than or equal to one hundred are set equal to one hundred (i.e, log (BFio) = 4.6).

factors, we analyzed the network structure of the eight
variables with a GGM using both the single-model
and multi-model or BMA perspectives. For the single-
model analysis, we estimated the parameters of a fully
connected GGM by drawing one million samples
from the corresponding posterior distribution, which
in this case is a g-Wishart distribution (Lenkoski,
2013; Roverato, 2002). The Bayes factor was computed
for each of the 8 x (8 —1)/2 =28 edges in the net-
work by computing the ratio of the marginal likeli-
hood with all edges present to the marginal likelihood
with the focal relationship excluded. We used the
BDgraph package to sample from the g-Wishart dis-
tribution and to compute the marginal likelihood. For
the multi-model analysis, we also used the BDgraph
package, which estimates the posterior inclusion prob-
abilities using a Markov chain Monte Carlo proced-
ure. We used one million iterations for each Markov
chain. In each of these analyses, we used the default
settings of BDgraph, setting a g-Wishart prior on the
precision matrix @ and assuming a prior inclusion
probability of 1/2 for all edges.

Figure 6 illustrates that there is indeed a difference
between the inferences we would draw using the
inclusion Bayes factor and the single-model Bayes fac-
tor. We can see that the inclusion Bayes factor pro-
vides evidence for edge exclusion, i.e., for the
estimated parameters that are close to zero, as indi-
cated by the narrower” v” shape shown in the left
panel. In the BMA case, there is a more pronounced
shrinkage toward zero. Therefore, as shown in the

previous section, the inclusion Bayes factor offers
more pronounced evidence in support of conditional
independence than the single-model Bayes factor.
Figure 7 shows the edge evidence plots—networks
whose edges reflect strong evidence for edge inclusion
(using a cutoff of BF;y = 10). Based on the inclusion
Bayes factor in the left panel, we conclude that 13 of
the 28 possible edges are present in the network, and
based on the single-model Bayes factor in the right
panel, we conclude that 12 of them are present. For
the edge between the variables psychopathy (SD3P)
and affective resonance (ARe), the exclusion Bayes
factor is equal to BFy; = 9.1, close to the evidential
cutoff of 10, giving us evidence in favor of conditional
independence. For comparison, the largest single-
model Bayes factor in favor of edge exclusion is
between the variables admiration (Adm) and affective
resonance (ARe), and is only BFy = 2.5. Examining
the networks in Figure 7, we can see that, for
example, with the inclusion Bayes factor we find evi-
dence for the inclusion of an edge between the varia-
bles psychopathy (SD3P) and admiration (SD3N),
cognitive empathy (CEm) and admiration (SD3N),
but we have no evidence for the inclusion of the same
edges when we use the single-model Bayes factor.
Conversely, using the single-model Bayes factor, we
find evidence for the inclusion of an edge between the
variables cognitive empathy (CEm) and admiration
(Adm), for which we have inconclusive evidence
when using the inclusion Bayes factor. From our sim-
ulations, we know that When the network structure is
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Figure 7. Edge evidence plots based on the inclusion Bayes factor on the left and the single-model Bayes factor on the right. The
blue solid lines indicate edges for which there is a BF;o > 10, the dashed red line indicates an inclusion Bayes factor that almost
reaches the exclusion threshold and the dashed grey lines indicate edges for which there is inconclusive evidence for edge
(in)exclusion.
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sparse, which appears to be the case in this example,
the inclusion Bayes factor can more accurately capture
the evidence, both for edge inclusion and edge
exclusion.

Since we argue that the credible and/or highest
density intervals should not be used for hypothesis
testing, we adhere to this principle in this section.
However, because these intervals are valuable meas-
ures of posterior parameter uncertainty, we present
plots of the 95% central credible intervals around each
posterior edge weight. We computed the 95% central
credible intervals for the BMA parameter estimates
and the 95% central credible intervals for the posterior
parameter estimates based on a structure that assumes
all edges are present. As can be seen in Figure 8, the
central credible intervals obtained from the two meth-
ods are different. We prefer the credible intervals
based on BMA because they account for both param-
eter uncertainty and structure uncertainty.

Discussion

In this paper, we have reviewed three different
Bayesian approaches to testing conditional independ-
ence hypotheses for a class of Markov random field
models used in network psychometrics. The first
method uses the posterior distribution of the partial
association 0;; to check whether it falls in the ROPE,
or similarly whether its x% credible interval contains
zero. Both scenarios would indicate that the hypoth-
esis of conditional independence of the variables i and
j cannot be rejected, but the drawback is that we can-
not use it to support the independence hypothesis.
The second approach used the single-model Bayes fac-
tor to test for conditional independence, which com-
pares two network structures S; and S; that are
identical except that the focal relationship is included
in S; but not in S;. Although this method could be
used to express support for the conditional independ-
ence hypothesis, its drawback is that it is sensitive to
the required choice of which relations are in the rest
of the network. The third approach uses BMA to
express the inclusion Bayes factor, which accounts for
the uncertainty about other relations in the network.
The inclusion Bayes factor is free from the conceptual
problems of credible interval-based tests and is opti-
mal when we are uncertain about the structure under-
lying our data.

In the simulations, we showed that the inclusion
Bayes factor was the best overall method for deter-
mining conditional independence. It also performed
well in determining conditional dependence, although
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the single-model Bayes factor outperformed the inclu-
sion Bayes factor in scenarios where the true network
structure is densely connected. In these scenarios,
which are close to the assumption of a fully connected
structure underlying the single model Bayes factor,
the inclusion Bayes factor loses power because it con-
tinues to consider alternative structures for the data at
hand. However, in practice, since we do not know
what the underlying structure is, the inclusion Bayes
factor is the most robust choice for inferring condi-
tional independence or dependence.

Critique: The correct model is probably not being
considered

The mathematics behind Bayesian model comparison
does not assume that any of the models under consid-
eration are correct in some abstract sense, as the for-
mulas only evaluate the predictive adequacy of the
models under consideration (see for instance,
O’Hagan, 2010, p. 167). Nevertheless, many statisti-
cians have argued that Bayesian model comparison
only makes sense if the correct model is in the collec-
tion of models under consideration—the M-closed
context (Bernardo & Smith, 1994, pp. 383-407). The
main concern of critics of Bayesian model compari-
son, and BMA in particular, is that the posterior dis-
tribution cannot converge to the correct model if it is
not in the collection of models under consideration—
the M-open context. Instead of converging to the
correct model, the posterior distribution would con-
verge to the model that is closest to the true model in
a Kullback-Leibler sense in the M-open context. This
model would be optimal in terms of its predictive
adequacy relative to the collection of models under
consideration.

Box’s famous adage “all models are wrong” (Box,
1976, p. 792) is often used to make the case that the
M-closed assumption is also wrong. There are two
ways in which we think the true model might differ
from the one we consider in psychological network
modeling. First, the network models we use typically
include main effects and pairwise relations (i.e., first
and second-order interactions). In principle, one
could consider models with third or higher-order
interactions, but these models are computationally
demanding. Second, we often have a substantive
motivation for choosing the variables to include in
our network, but this choice can have a huge impact
on the network structure. For example, two variables
will be conditionally dependent if we exclude their
common cause from the network, but conditionally
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independent if we include it. This is called the bound-
ary specification problem (Laumann et al., 1989; Neal
& Neal, 2023). However, it is likely that if we knew
which variable caused other variables, we would
include it in the network. Thus, while we agree that
the M-closed assumption is unlikely to hold in prac-
tice, we also agree with the continuation of the adage
that “all models are wrong, but some models are
useful” (Box & Draper, 1987, p. 424). With BMA, we
evaluate the predictive adequacy of the structures of
interpretable network models formulated on a sub-
stantively interesting subset of variables.

Limitation: There are no substantively motivated
or good default prior distributions for
psychological networks

The BMA approach requires us to specify our prior
knowledge and expectations about the structure of the
network. However, despite the large body of literature
on psychological network modeling, we still have a
limited understanding of their structure. The main
reason for this limited understanding is that Bayes
factor tests that can quantify the support for certain
relational patterns have only recently been proposed
and have not yet gained much traction. As a result,
we must rely on standard, objective specifications of
priors for psychometric topologies and their associated
parameters. These priors may be inappropriate for
psychological networks for two reasons. First, they
may give relatively little weight to the correct struc-
ture. In objective specifications, we usually assign a
uniform prior on the possible structures (cf. appen-
dix). Since there is often a huge collection of possible
structures for the network under consideration, only a
tiny fraction of the total probability is assigned to the
correct model. Thus, finding the right model is like
looking for a needle in a haystack. Therefore, it would
be helpful to know in advance what kind of model we
are looking for. Second, objective priors are often
developed in the context of regression models, and we
are unsure if these specifications make sense in the
network context. For example, in regression, it makes
sense to find a sparse collection of variables that can
make accurate predictions. This is because we wish to
choose the least complex model (i.e., the model with
the fewest number of predictors) that best predicts
new data. But, in the context of MRF models an
absent edge carries a strong assumption, namely of
conditional independence, which indicates that we
should not exclude edges by default. Although the
objective priors we use here assign equal probability

to including and excluding individual edges, we need
to investigate the suitability of these priors in the net-
work context. We encourage researchers to always
perform sensitivity analyses by estimating the models
under different prior specifications and examining
whether and how much the different specifications
alter the conclusions.

In order to advance the specification of good prior
densities, we need to advance our understanding of
psychometric network structures. Early discussions
about the underlying structures of psychometric net-
works were a reaction to the massive popularity of
lasso-based methods, which assume sparse network
structures. Alternatives to the lasso have been pro-
posed that either focus on densely connected networks
(e.g., Marsman et al., 2015), or that aim to strike a
balance between sparse and dense network topologies
(e.g., Chen et al, 2018), but these approaches have
not been widely adopted. This means that we must
interpret the sparsity of psychometric networks with
caution, especially when data are limited (Epskamp
et al., 2017; Williams et al., 2019).

Now that BMA allows us to test our predictions
about network topology, we are entering a new era of
network psychometrics. In the next decade, armed
with new Bayesian methodology, we hope to see an
advanced understanding of the structure of psycho-
metric networks, how they differ across measures and
populations, and which relationships have been
explained and which have not.

Limitation: There are few BMA methods for
analyzing psychological networks

For network researchers to adopt BMA for their anal-
yses, it is imperative that the methodology be imple-
mented in user-friendly software. Most psychological
network modeling analyses are performed in the stat-
istical software R, and two R packages now implement
BMA for network analysis. The BDgraph package’
includes methods for analyzing continuous, binary,
and ordinal variables (GGMs and latent GGMs; R.
Mohammadi & Wit, 2019), and the bgms package®
for analyzing MRFs of (mixed) binary and ordinal
variables (Marsman & Haslbeck, 2023). Since most
data sets in psychology contain binary and ordinal
variables, these two R packages already cover a lot of
ground. The BDgraph package is now also imple-
mented in the open-source statistical software JASP
(see Huth, de Ron, et al., 2023), which has a graphical

*https://cran.r-project.org/web/packages/BDgraph/index.html.
®https://cran.r-project.org/web/packages/bgms/index.html.



user interface that allows users to point and click on
their desired analyses (e.g., Love et al, 2019;
Wagenmakers, Love, et al., 2018). The JASP imple-
mentation opens BMA-based methods for psycho-
logical networks to researchers without experience
programming in R.

Although we argue that Bayes factor approaches,

especially the inclusion Bayes factor, should be pre-
ferred for testing conditional independence hypothe-
ses, as shown in the empirical example, one can still
use the credible or highest density intervals around
the model-averaged parameter estimates (e.g., edge
weights) as measures of parameter uncertainty. For
these and many other advantages, the interested
reader is referred to the newly developed R package
easybgm (Huth, Keetelaar, et al., 2023), which allows
researchers with less programming experience to use
powerful packages such as bgms and BDgraph to
analyze their data and obtain (BMA) Bayes factors as
well as edge uncertainty plots.
The existing software for BMA-based methods for the
analysis of psychological networks covers several
important variable types—e.g., continuous, binary,
and ordinal variables—for cross-sectional applications
of networks. However, there are currently no software
solutions for networks with nominal, discrete, or count
variables, or for longitudinal data designs. The develop-
ment of BMA methods for analyzing these types of
variables and research designs, and their software
implementations, is a fruitful area for future research.

Challenge: Bayesian model averaging can be time
consuming

One of the main challenges of BMA is that it must
evaluate the collection of models under consideration.
In practice, it is rarely possible to enumerate all pos-
sible models, since the number of structures grows rap-
idly as the number of variables increases. Therefore,
the R packages that estimate these models rely on
Stochastic Search Variable Selection techniques (George
& McCulloch, 1993). These techniques are typically
implemented through Markov chain Monte Carlo algo-
rithms (MCMC, see van Ravenzwaaij et al.,, 2018, for
an accessible introduction) that iteratively simulate a
network structure and its associated parameters from
the joint posterior distribution. As mentioned in the
section on prior distributions, first an edge indicator
variable y;; is sampled, and then the corresponding
edge weight 0;; is assigned to a particular prior distri-
bution given the sampled value for the edge indicator.
Since the space of possible models is usually large, it is
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imperative to run such procedures for enough itera-
tions to sufficiently explore the joint posterior distribu-
tion. For some models, such as the GGM, this is
usually very fast for the size of data sets encountered in
psychology. However, for binary or ordinal models,
MCMC procedures can take a long time, depending on
the sample size. Fortunately, we only need to run the
procedure once to get the full Bayesian benefit.

Conclusion

We have provided a conceptual review of recent
Bayesian tests for conditional independence of varia-
bles in psychological networks. We argued that the
two Bayes factor tests are conceptually superior to fre-
quentist and credible interval-based tests for condi-
tional independence, in particular because they can
express support, or lack thereof, for conditional inde-
pendence and dependence between the network’s vari-
ables. We have shown that the single-model Bayes
factor is sensitive to the assumption that must be
made about the underlying network structure, while
the inclusion Bayes factor adequately accounts for the
structure uncertainty. Thus, the inclusion Bayes factor
provides researchers with a straightforward test of
conditional independence and dependence hypotheses.
We hope that the new Bayesian methodology, which
focuses on the analysis of the structure of psycho-
logical networks, (i.e., psychometric topology) will
help unravel the complex systems underlying psycho-
logical variables.
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Appendix. Prior distributions for MRF models
implemented in R packages

The Bayesian analysis of an MRF model requires specifying
two sets of prior distributions.

Priors on the structure

The prior probabilities on the network structure p(S;) can
be expressed by specifying a prior probability on the possible
value for each binary indicator variable y;. This is achieved
by assuming that each edge follows an independent Bernoulli
distribution with a prior inclusion probability m;. The R
packages bgms (Marsman, 2023) for analyzing MRF for bin-
ary and ordinal data and BDgraph (R. Mohammadi & Wit,
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2019) for analyzing GGMs both provide this as the default
option for the prior on the network structure. Setting this
prior with m; = 0.5 for all edges is considered an uninforma-
tive or objective choice, and this option is also referred to as
the uniform prior on the structure (e.g., Marsman et al,
2022). Of course, there are other prior options for the net-
work structure that take into account the number of present
edges (i.e, the complexity of the structure); we refer the inter-
ested reader to Huth, de Ron, et al. (2023) for an accessible
introduction to these priors and to Sekulovski, Keetelaar,
Haslbeck, and Marsman (2023) for a detailed discussion of
prior selection with particular emphasis on the priors imple-
mented in the R package bgms.

Priors on the edge weights

We also need to specify priors on the edge weight parame-
ters in @. The R package BDgraph specifies a g-Wishart
distribution (Roverato, 2002) on the precision matrix (i.e.,
the inverse of the covariance matrix) containing the
(untransformed) edge weight parameters for the GGM. The
g-Wishart distribution takes two parameters (i) the degrees
of freedom d, which is by default set to d=3, and (ii) a
scale matrix D, set by default to an uninformative p x p
identity matrix. The R package BGGM (Williams & Mulder,
2020b), which can also be used to analyze GGMs, specifies
either a Wishart or a Matrix F prior on the precision matrix
(Williams & Mulder, 2020a). The (g-)Wishart priors are
conjugate to the precision matrix and assure a posterior
density function on the space of positive semi definite
matrices. Note that the R package BGGM does not stipulate
priors on the network structure since it assumes that all
edges are present a priori. Finally, the R package bgms
specifies prior distributions on the individual edge weights
given the value of the edge indicator variable y;, ie.,
p(03]y;)- In other words, if y; = 0, the edge weight is set to
zero, and if y; =1, the edge is given a specific (diffuse)
prior distribution (e.g., a Cauchy distribution). For more
details, see Marsman and Haslbeck (2023) and Sekulovski
et al. (2023).
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