MULTIVARIATE BEHAVIORAL RESEARCH
2024, VOL. 59, NO. 6, 1111-1122

3 OPEN ACCESS

The Curious Case of the Cross-Sectional Correlation

E. L. Hamaker

Methodology and Statistics, Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, The Netherlands

ABSTRACT

The cross-sectional correlation is frequently used to summarize psychological data, and can
be considered the basis for many statistical techniques. However, the work of Peter
Molenaar on ergodicity has raised concerns about the meaning and utility of this measure,
especially when the interest is in discovering general laws that apply to (all) individuals.
Through using Cattell's databox and adopting a multilevel perspective, this paper provides
a closer look at the cross-sectional correlation, with the goal to better understand its mean-
ing when ergodicity is absent. An analytical expression is presented that shows the cross-
sectional correlation is a function of the between-person correlation (based on person-spe-
cific means), and the within-person correlation (based on individuals’ temporal deviations
from their person-specific means). Two curiosities related to this expression of the cross-sec-
tional correlation are elaborated on, that is: a) the difference between the within-person cor-
relation and the (average) person-specific correlation; and b) the unexpected scenarios that
can arise because the cross-sectional correlation is a weighted sum rather than a weighted
average of the between-person and within-person correlations. Seven specific examples are
presented to illustrate various ways in which these two curiosities may combine; R code is
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provided, which allows researchers to investigate additional scenarios.

In 2004, Peter Molenaar published his manifesto on
psychology as an idiographic science, in which he
called into question the preoccupation with individual
differences that had dominated psychological research
for decades (Molenaar, 2004). At the core of this cri-
tique is the concept of ergodicity, which Molenaar
borrowed from the field of thermodynamics and the
time series literature (cf. Hamilton, 1994). For a psy-
chological phenomenon to be ergodic, all individuals
should be characterized by the same moments—
including means, variances, and covariances—over
time; if so, it becomes possible to generalize results
obtained at the level of the population to the individ-
ual, and vice versa (Hamaker, 2012). Since the ergodi-
city conditions are extremely limiting and are
therefore unlikely to hold in psychological research,
Molenaar (2004) argued that the common practice of
using cross-sectional results to uncover general laws
that are assumed to apply to each individual is
unfounded (see also Cattell et al., 1947; Epstein, 1980;
Grice, 2004; Hamaker et al., 2005; Lamiell, 1998).

To investigate ergodicity in psychological practice,
Fisher et al. (2018) recently performed a systematic
comparison of group-based and individual-based
results, using six empirical datasets with self-reported
affect measures and physiological measures. Two of
their findings are of particular interest here. First,
there was considerable variation among individuals in
their person-specific correlation. This already implies
that ergodicity does not hold, and that the cross-sec-
tional correlation cannot adequately represent each
and every individual (cf. Hamaker, 2012). Second, the
average person-specific correlation differed consider-
ably from the cross-sectional correlation, at least in
several datasets. The latter finding contradicts the
intuition that cross-sectional results, if not representa-
tive of each and every individual, should at least form
a reflection of “the average person” (cf. McCrae &
John, 1992; van Borkulo et al., 2015).

If the cross-sectional correlation does not represent
every person, nor the average person, the question
arises as to what the meaning and utility of the cross-
sectional correlation are. To evaluate that question, we

© 2023 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed,
or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with

their consent.



1112 (&) E L HAMAKER

need to know how the cross-sectional correlation and
the (average) person-specific correlation are related,
especially when ergodicity is absent. While there have
been various attempts to relate these two correlations
(Hamaker et al., 2005; Hsu et al., 2022; Schmitz,
2000), an exact mathematical expression is still lacking
from the literature. The purpose of the current paper
is therefore to establish the actual connection between
the cross-sectional correlation and the average person-
specific correlation.

This paper is organized as follows. In the first section,
Cattell’s databox is used to present an intuitive account
of the cross-sectional correlation, and the person-specific
correlation. The second section is based on taking a
multilevel perspective to derive an analytical expression
for the cross-sectional correlation as a weighted sum of
the correlation across individuals of their person-specific
means (i.e., the between-person (BP) correlation), and
the correlation across individuals between the occasion-
specific within-person deviations of individuals from
their person-specific means (i.e., the within-person (WP)
correlation). While this expression has appeared in the
literature before (e.g., Dansereau et al., 1984; Robinson,
1950; Williams, 1974), there are two curiosities related
to it that have not been treated yet, that is: a) the WP
correlation in the expression for the cross-sectional cor-
relation is not necessarily the same as the average per-
son-specific correlation, which we are actually interested
in; and b) because the cross-sectional correlation is a
weighted sum rather than a weighted average of the WP
and BP correlations, the cross-sectional correlation will
not necessarily fall in between these two correlations.
These two curiosities are further illustrated in the fourth
section, where seven specific scenarios are presented in
detail. The paper ends with a discussion.

Two correlations from Cattell’s databox

The cross-sectional correlation is one of the most fre-
quently used measures that psychologists use to describe
the relation between two variables. In addition, it can be
considered the backbone of many of our most popular
statistical techniques, such as regression analysis, factor
analysis, and path analysis.1 However, the usefulness of
the cross-sectional correlation for gaining insight into
processes that take place within individuals over time,
has been questioned regularly for decades. It has been
argued that the latter requires a within-person, and even
a person-specific approach.

TWhile many of these techniques are based on the covariances, their
standardized versions—and thus the standardized results from these
analyses—are based on the correlations.
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Figure 1. Example of Cattel's databox, showing how data can
be thought to come from three different dimensions: variables
(here only two), persons, and occasions. It further shows that a
cross-section of two variables consists of many individuals at
one occasion, whereas a person-specific (N=1) study consists
of many occasions from a single person.

To obtain an initial understanding of the cross-sec-
tional correlation and the person-specific correlation that
Fisher et al. (2018) compared, consider Cattell’s databox
(e.g., Cattell, 1952). In Figure 1 an example is given
based on just two variables X and Y (see also Hamaker
& Ryan, 2019). Keeping the variables fixed, there are
two directions in which we can take a slice from this
databox. First, we can focus on multiple individuals at
one time point, which is referred to as a cross-section.
For this, the cross-sectional correlation between X and Y
(also referred to as group-based, individual differences, or
interindividual correlation), can be expresses as

_ cov(Xy, Yy)
\/var(Xt) \/var(Yt) '

When we assume stationarity, the subscript ¢ can be
dropped from this expression.

Alternatively, we can focus on one person and a lot
of time points, in an N=1 approach. The person-spe-
cific correlation (also referred to as the individual-
based or intraindividual correlation) for person P=p
can be expressed as

Pt 1)

o cov(X, Y|P)
P \/var(X|P)\/var(Y|P)'

This person-specific correlation may be different for
each person, due to individual differences in one or
both person-specific variances and/or the person-spe-
cific covariance. Hence, it is well capable of capturing
idiosyncracies.

When ergodicity (and therefore stationarity;
Hamilton, 1994) holds, the two slices are characterized
by the exact same means, variances and covariances
(and skewness and kurtosis); as a result, p = k,, that
is, the two correlations will be exactly the same.
However, when ergodicity is absent, means, variances,
covariances and thus correlations, may differ. This
raises the question as to how the cross-sectional

(2)




correlation and the person-specific correlation are
related then.

Decomposing the cross-sectional correlation
from a multilevel perspective

To gain more insight in the cross-sectional correlation
and how it relates to the person-specific correlation, it
is helpful to take a multilevel perspective, in which
the score on variable X for person p at time t can be
represented by the person-specific mean E[X|P = p],
and a temporal, occasion-specific within-person devi-
ation from that person-specific mean, denoted as
Xw,pt> that is,

Xpt = E[X|P = p| + xw,pt- 3)

In the multilevel context, the first term on the right-
hand side is referred to as the BP component as it
only varies between persons, while the second term is
referred to as the WP component as it varies within a
person over time. When there is a second variable Y,
a similar decomposition can be applied to that as well.

The person-specific correlation presented in the
previous section is the correlation between the WP
components Xy, and yw,,; of a particular person
across time. In contrast, the cross-sectional correlation
is based on both the BP and the WP components of
X and Y, and can be expressed as a weighted sum of
the correlation between the BP components and a
correlation based on the WP components. To see this,
we begin with rewriting the cross-sectional covariance
and variances, which are included in Eq. (1), and then
we use these to get an alternative expression for the
cross-sectional correlation.

The cross-sectional covariance of X and Y as the
sum of two components

By using the law of total covariance,” we can write
cov(X,Y) = cov(E[X|P], E[Y|P]) + E[cov(X, Y|P)]
= 0Bx,BY + Owx, wy> (4)

where: a) apx gy = cov(E[X|P],E[Y|P]) is the covari-
ance between the person-specific means on the two
variables (i.e., based on the BP components); and b)
owx, wy = E[cov(X, Y|P)] is the average person-specific
covariance between the variables (i.e., based on the
WP components).
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The cross-sectional variance of X as a sum of
two components

. . 3
Using the law of total variance,” we can express the
cross-sectional variance of X as

var(X) = var(E[X|P]) + E[var(X|P)] = gy + 0y
(5)

where: a) 9%, = var(E[X]|P]) is the variance of the per-
son-specific means on X (i.e., based on the BP compo-
nents); and b) %, = E[var(X|P)] is the average
person-specific variance based on the individual devia-
tions from the person-specific means (i.e., based on
the WP components). The cross-sectional variance of
variable Y can be rewritten in the same way, that

is var(Y) = o3y + oy

Rewriting the cross-sectional correlation of X
and Y

We can now rewrite the cross-sectional correlation as the
weighted sum of two other correlations, one concerning
the BP components, and another concerning the WP
components. To this end, we start with plugging the
expression for the covariance obtained in Eq. (4) into the
expression for the cross-sectional correlation, to get

__ OBX,BY T Owx,wy _ OBX,BY
0x0y 0x0y

OWX, Wy
+ .
0x0y

(6)

When we focus on the first term on the right-hand
side of Eq (6), and multlply this with O'BXo'By/O'BXo'BY
(where opx and opy are the square roots of the var-
iances of the person-specific means of X and Y; see
the first term on the right-hand side of Eq. (5)). This

gives us
O0BX,BY OBx _ OBY

=— X — X pp.
OBXOBY 0x Oy

OBX,BY _ OBXOBY %
0x0y

0x0y

Similarly, we can rewrite the second term on the right-
hand side of Eq. (6), by multiplying it with
owxowy/owxowy (where owx and owy are the
square roots of the average person-specific variances
on X and Y; see the second term on the right-hand
side of Eq. (5)). This gives us

OWX, WY _ OWwxXOwy %

0x0y 0x0y

Owx
= X

OwxXoOwy 0x Oy

OWX, Wy

X Py

Substituting these expressions back into Eq. (6), we
get
p =2 T o+ T TV sy
ox Oy ox gy (7)
= Npx My P+ Nwx Nwy Pw>

2See: https://en.wikipedia.org/wiki/Law_of_total_covariance

3See: https://en.wikipedia.org/wiki/Law_of_total_variance
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Table 1. Five correlations that can be used to describe the way X and Y are related.

Equation Description
0, . . . .
p= JXX('TYY = ‘;—BXX%pB + “J—V)V:(%pw Cross-sectional correlation based on correlating the scores on X and Y (at a particular

occasion t) across persons

g = Oax,8r cov(E[X|P, E[Y|P])
Gax OBy var(E[X|P])+/var(E[Y|P]) across persons
oy = T _ E[cov(X, Y|P)]
owxowr .\ [E[var(X|P)]\/E[var(Y|P)]
o — oV YIP)
P var(X|P)y/var(Y|P)
- E[%}

= Between-person correlation based on correlating the person-specific means on X and Y

Within-person correlation based on correlating the occasion-specific deviations from person-
specific means on X and Y (at a particular t) across persons

Person-specific correlation based on correlating X and Y over time for person P=p (i.e,,
Cattell’s intra-individual correlation)

Average person-specific correlation based on taking the average of the person-specific
correlation x, across persons

Note: Mathematical expressions and substantive descriptions of five different correlations that can be used to summarize the relation between variables X
and Y. The first three correlations (cross-sectional, between-person and within-person) are associated with the known expression provided in Eq. (7).
The person-specific and average person-specific correlations come from the literature inspired by Cattell’s work.

where 7py = UBX/UX» Ny = GBY/GY: Nwx = Owx/0x
and 71y = owy/oy. Note that

2 2

o o

2 _ OBx > _ Oy

Mpx = ) and gy = )
X Y

represent the intraclass correlations for X and Y, that
is, the proportions of total variance that can be attrib-
uted to stable differences between individuals in X
and Y. Similarly,

2 2 2

2 _%wx _y _%BX g 20 = %wy OBy
Mwx =—> = 2 Mwy =—>5 = 2
0% Ox Oy Oy

represent the proportions of variance in X and Y that
are not accounted for by stable
between persons.

Hence, from Eq. (7) it is clear that the cross-sec-
tional correlation p can be perceived of as a weighted
sum of the BP correlation pp (i.e., the correlation
between the person-specific means), and the WP cor-
relation py (i.e., the correlation based on individuals’
temporal within-person deviations from their person-
specific means). The weights in this sum depend on
the intraclass correlations of X and Y.*

Equation (7) is known in the organizational litera-
ture as within and between analysis (WABA), pre-
sented by Dansereau et al. (1984), who credit
Robinson (1950) for its origin. More recently, Hsu
et al. (2022) have presented the same expression in
discussing the limitations of the cross-sectional correl-
ation when the goal is to find the relation between
enduring (trait-like) differences between individuals
(i.e., pp); they reference classical test theory literature
on the effect of correlated errors as the source of this

differences

“Noémi Schuurman developed an interactive app that allows the user to
specify different intraclass correlations and BP and WP correlations to see
what  cross-sectional correlation results from this. See: https://
noemikschuurman.shinyapps.io/withinbetweenapp/.

expression (Saccenti et al, 2020; Williams, 1974;
Zimmerman & Williams, 1977).

Two curiosities regarding the cross-sectional
correlation

While at first sight, the expression in Eq. (7) of the
cross-sectional correlation as a weighted sum seems
pretty straight-forward, there are two curiosities asso-
ciated with it that are of particular interest to us here,
that is: 1) the WP correlation py, is not necessarily
the same as the average person-specific correlation x;
and 2) the weights in Eq. (7) do not necessarily add
up to 1, which may have unexpected consequences.
Both aspects are elaborated on below. For reference,
the  various correlations (i.e., mathematical
expressions and substantive descriptions) are pre-
sented in Table 1.

The discrepancy between p\y and the average
person-specific correlation k

When considering the expression for the cross-sec-
tional correlation in Eq. (7), it is probably tempting to
assume that the WP correlation py, represents the
average person-specific correlation x (that is, the aver-
age across individuals of the person-specific correl-
ation x, presented in Eq. (2)). It is based on the
average person-specific covariance and variances, and
can be expressed as

- Twx.wy _ E[cov(X, Y|P)]
Y swxowy \/E[var(X|P)]\/E[VW(Y|P)]‘

In contrast, however, the average person-specific cor-
relation is obtained by taking the expectation of the
person-specific correlation, that is,

B cov(X, Y|P)

© \/var(X|P)+/var(Y|P)




Table 2. Seven examples illustrating the relation between various correlations.
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Parameter Type Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
néx set 0.4 0.1 0.2 0.2 0 0.4 0.4
Nay set 0.5 0.9 0.8 0.8 0 0.5 0.4
cov(X, Y|P) set 17 111 4/5 1/5 1”7 17 11
var(X|P) = var(Y|P) set 1.25/5 1.25/5 10/10 2/10 1.25/5 1.25/5 1.25/5
Kp comp. 0.8/0.2 0.8/0.2 0.4/0.5 0.5/0.5 0.8/0.2 0.8/0.2 0.8/0.2
K comp. 0.500 0.500 0.450 0.500 0.500 0.500 0.500
Pw comp. 0.320 0.320 0.450 0.500 0.320 0.320 0.320
P8 set 0.500 0.500 0.450 0.500 - 0 0.320
p comp. 0.399 0.246 0.360 0.400 0.320 0.175 0.320
o est. 0.393 0.229 0.354 0.408 0.340 0.168 0.317

Note: Seven examples that illustrate how and why the cross-sectional correlation p can differ from the average person-specific correlation x. Quantities of
interest are: the intraclass correlations 72, and n2,; the person-specific covariances cov(X, Y|P), variances var(X|P) and var(Y|P), and correlations &,
(the values of these are specified for two subpopulations, before and after the/; these subpopulations each make up exactly half of the total popula-
tion); the average person-specific correlation x; the within-person correlation py; the between-person correlation pg; the cross-sectional correlation p,
and the estimated cross-sectional correlation p based on simulated data of 1,000 persons. Second column indicates whether a particular parameter was
set to a certain value, computed (comp.) based on other parameters, or estimated (est.) from the simulated data.

In the Appendix it is shown that the latter can be
rewritten as

1 1
K = E|cov(X, Y |P)|E E
lcov(X, Y|P)] var(X|P) var(Y|P)
E{cov(X, Y|P)|cov ,
+E[cov( 2] (\/var(X\P) \/wzr(Y|P))
+cov(cov(X, Y|P !

) \/var(X|P) \/var(Y|P))’

and the difference between py, and « is further elabo-
rated on there. The results (for the case where
E[cov(X, Y|P)] is positive) can be summarized as: a)
the first term will in general be larger than py, (there
are some particular situations where the two are
exactly the same); b) the second term is probably
positive; and ¢) the third term is probably negative or
zero. The latter may thus counter the difference that
the first and second term create; yet, it seems reason-
able to state that in general we should expect py, < K
when E[cov(X, Y|P)] > 0 (and, when E[cov(X, Y|P)] <
0, we should expect k < py).

To see some of this in practice, we consider a scen-
ario in which we have two subpopulations. All indi-
viduals in the first subpopulation are characterized by
the same person-specific covariance cov(X,Y|P) = 1,
and person-specific variances var(X|P) = var(Y|P) =
2.5; hence, all these individuals have x, =1/2.5=
0.4. In the second subpopulation, again all individuals
have  the same  person-specific ~ covariance
cov(X, Y|P) = 1. Moreover, all persons in the second
sub-population have the same person-specific variances
for X and Y, that is var(X|P) = var(Y|P). For the lat-
ter, we consider different values, ranging from a very
large value (i.e., var(X|P) = var(Y|P) = 20) so that the
person-specific correlation is about 0, to the smallest
possible number given the covariance value (i.e.,
var(X|P) = var(Y|P) = 1), so that the person-specific

correlation is 1. The two correlations that characteriz-
ing the members of the two subpopulations are plotted
in Figure 2, against Q = 1//var(X|P)var(Y|P) for the
second subpopulation (which is actually identical to the
correlation in the second subpopulation): The horizon-
tal solid line represents the first subpopulation, whereas
the increasing solid line represents the second subpo-
pulation. In addition, the average person-specific cor-
relation x (represented by the straight dashed line) is
shown; it falls exactly in between the two values that
represent the x,’s of the individuals in the two subpo-
pulations, because both subpopulation make up exactly
half of the total population. Finally, Figure 2 also con-
tains the WP correlation py, (represented by the curved
dotted line), based on dividing the average person-spe-
cific covariance (here 1) by the square roots of the
average variances. We can see that py, is identical to
the average person-specific correlation x, when the two
subpopulations are identical (i.e., when there is ergodi-
city); for all other cases we get py, < k.

Clearly, the current set-up with only two subpopu-
lations to create heterogeneity in the population is
quite unrealistic; it seems much more reasonable to
expect continuous individual differences in the per-
son-specific variances and covariance of X and Y.
Furthermore, while here we had var(X|P) = var(Y|P)
or all persons, in reality, it is more likely that the per-
son-specific variances are not (exactly) the same, even
though they may be positively related (as individuals
who vary more on X may also tend to vary more on
Y). However, the current illustration shows that even
with the exact same covariance for every one, and
only two possible values for the person-specific var-
iances, the difference between the average within-per-
son correlation k and the correlation of within-person
deviations py, can be quite substantial. This implies
that even if the cross-sectional correlation is the same
as the within-person correlation p = p,, (because
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K1, X2, K, and pwy
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Q

Figure 2. lllustration of how the average person-specific cor-
relation x (dashed line) falls in between the person-specific
correlations that characterize the two subpopulations (i.e., xp,
represented by the two solid lines), and how the within-person
correlation py, from the expression for the cross-sectional cor-
relation (dotted line) deviates from this, depending on the per-
son-specific variances. Q = 1/y/var(X|P)var(Y|P) in the
second subpopulation is varied by varying the person-specific
variances of X and Y, while all else (i.e., person-specific covari-
ance in second subpopulation, and person-specific variances
and covariance in first subpopulation) are held constant.

there are no stable between-person differences for
instance), this still does not imply it will be an
adequate reflection of the average person-specific cor-
relation «.

The cross-sectional correlation as a weighted sum
(not a weighted average)

Another misconception that may arise when consider-
ing the expression in Eq. (7), is the assumption that
the cross-sectional correlation will always fall some-
where in between the BP and the WP correlation. For
instance, in Schmitz (2000) a formula is presented, in
which the weights equal #* and 1 —#?; this corre-
sponds to the specific case where 73, = 173, meaning
that the two variables have the exact same intraclass
correlations. In that case, the two weights add up to 1,
and p will fall in between py and pz. However, when
the intraclass correlations differ from each other, the
two weights do not add up to 1, as shown in Figure 3.
The diagonal from bottom left to top right shows the
scenarios in which the two intraclass correlations are
identical and the weights add up to 1; in all other
scenarios the sum of the weights is less then one.

o
©

o
o

o
3

Sum of the weights
1.0

o
o

o
~

Intraclass correlation of Y
o o
w [

o
IN)

o

01 02 03 04 05 06 07 08 09
Intraclass correlation of X

Figure 3. Heatmap showing the sum of the two weights (i.e.,
NaxMay + NwxNwy @s @ function of the intraclass correlation
(i.e., proportion of BP variance) in X (i.e, n3,) and Y (i.e., n3,).
Lighter colors indicate higher values.

To explore the possible implications of this, con-
sider the concrete examples in Figure 4. Each panel is
based on a specific combination of a BP correlation
pp that is represented as the dotted (blue) line, and a
WP correlation py, that is represented as the dashed
(red) line. The solid (purple) lines represent the cross-
sectional correlation p for different combinations of
intraclass correlations 7%, and n%y. On the x-axis is
the intraclass correlation for variable X, while the dif-
ferent shades of the solid lines represent different
intraclass correlations for Y (where the darkest line
represents 73, = 0.1, and the lightest line repre-
sent 15, = 0.9).

It can be seen that the solid lines representing the
cross-sectional correlation, occasionally drop below
both the dashed and dotted lines, which implies that
in these cases the cross-sectional correlation p no lon-
ger lies between the BP correlation pp and the WP
correlation py. This is more likely to occur when: a)
the intraclass correlations for X and Y are very differ-
ent, such that the sum of the weights deviates (a lot)
from one (ie., lighter lines on the left, and darker
lines on the right in every panel); b) the BP correl-
ation and WP correlation are very similar, (e.g., com-
pare the first and second panel of Figure 4); and ¢)
the BP correlation and WP correlation are stronger
(e.g., compare first and third panel of Figure 4). The
most curious case is formed by the scenario where the
BP correlation and the WP correlation are identical
(see the fourth panel of Figure 4): When these two
correlations are the same, this implies that the cross-
sectional correlation will be closer to zero than the
two (p < py = pg), unless the intraclass correlations
for X and Y are exactly the same.
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Figure 4. Solid (purple) lines represent the cross-sectional correlation plotted against intraclass correlation of X (i.e., nﬁx). Darkest
line is for an intraclass correlation of Y (i.e., #3,) of 0.1, while the lightest line represents the scenario when it is 0.9. Dashed (red)
line represents the WP correlation py; dotted (blue) line represents the BP correlation pg.

Conclusion

Despite the simplicity of the expression for the cross-
sectional correlation, its relation with the average per-
son-specific ~ correlation is quite complicated.
Specifically, the first curiosity presented here is that
even though the WP correlation is based on dividing
the average person-specific covariance (i.e., owx, wy =
E[cov(X, Y|P)] by the square roots of the average per-
son-specific variances (i.e., owx = \/E[var(X|P)] and
owy = \/E[var(Y|P)]), the resulting correlation is not
(necessarily) identical to the average person-specific
correlation k (see the Appendix for details). The
second curiosity presented here is that the cross-sec-
tional correlation may not fall in between the WP and
BP correlations, but that it may lie closer to zero than
the smallest of the two; this is especially likely to
occur when the WP and BP correlations are identical.

IHlustrations

To obtain more insight in the two curiosities and how
they may combine, seven specific examples are con-
sidered and compared here. More details about the
set-up, as well as annotated R-code that can be used
to simulate data under various scenarios, can be found
at the website with supporting materials.’

As before, heterogeneity in the within-person part
is created by having two subpopulations with their
own parameters, while within each subpopulation all
individuals have the same person-specific parameters
(i.e., person-specific variances var(X|P) and var(Y|P),
and a person specific covariance cov(X,Y|P)).
Furthermore, for simplicity var(X|P) = var(Y|P)
within each subpopulation. Based on this, we can
compute: a) the person-specific correlation k, that
characterizes all the members of a subpopulation (i.e.,
we will have two values for x,’s); b) the average

Supporting materials can be found at: https://ellenhamaker.github.io/
cross-sectional-correlation/.

person-specific correlation x (which is simply the
average of the two x,’s, as both subpopulations make
up exactly half of the population); c) the average per-
son-specific variances 3, = E[var(X|P)] and o3,y =
E[var(Y|P)], and the average person-specific covari-
ance a2,y = E[cov(X, Y|P)] (again, simply the average
of the values that define the two subpopulations); and
d) based on these, the WP correlation py =
owx, wy/owxowy. Subsequently, given specific intra-
class correlations 13y and 53, and a BP correlation
Pp, we can: e) compute the between-person variances
0%y and o3, (using the average within-person varian-
ces computed above in a3y = (ahxNiy)/ (1 — Nhy)
and o3y, = (63yn3y)/(1 — n3y); for a derivation of
these expressions, see the supporting website); f) the
between-person covariance (i.e., 0px,py = OpxOByP3);
and g) the cross-sectional correlation p (using the WP
correlation, BP correlation, and the intraclass
correlations).

While all of these computations are based on ana-
lytical results, we can also simulate data once we
know the person-specific variances and covariance,
and the between-person variances and covariance. The
R code provided through the supporting website
allows the user to decide on the number of times
points and persons (i.e., what part of Cattell’s databox
we want to observe); as part of the illustration, data
for 1,000 persons at 1,000 occasions were generated
for each example presented below; to verify the ana-
Iytical results, only data of the first time point were
analyzed to get p, an estimate of the cross-sectional
correlation. The parameter choices, analytically
derived parameters, and the estimated cross-sectional
correlation for all seven scenarios are presented in
Table 2.

Example 1. The first example is used to show that,
even when the average person-specific correlation and
the BP correlation are identical (i.e., k = pg), this
does not imply that the cross-sectional correlation will
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be identical to them. Due to individual differences in
the person-specific variances (either 1.25 or 5), while
the person-specific covariance is fixed across individu-
als (here 1), we have p,, < k. The intraclass correla-
tions are not very different (0.4 versus 0.5), and the
cross-sectional correlation falls in between the WP
and BP correlation. Hence, we
have pyy < p < pp =K.

Example 2. The second example is similar to the first,
but the intraclass correlations are much more different
now (0.1 versus 0.9). Hence, the values of x, py and
pp have not changed, but the cross-sectional correl-
ation p is different from before, due to the different
weighting of py and pp. Specifically, the cross-sec-
tional correlation no longer falls in between these two,
but instead we have p < py, < py = k.

Example 3. The purpose of the third example is to
show that the difference between x and pyy is related
to individual differences in the person-specific varian-
ces. In this case, we have fixed person-specific varian-
ces, but there are individual differences in the person-
specific covariance, so that there are still individual
differences in the person-specific correlation x,. Yet,
the lack of differences in the person-specific variances
ensures that now we have x = py,. The BP correlation
pp was set to the same value. However, because the
intraclass correlations differ from each other (0.2
versus 0.8), the cross-sectional correlation is still
smaller than all of them, SO we
have p < py = pp = K.

Example 4. In the fourth example, we go back to
having individual differences in the person-specific
variances, so we would again expect the average per-
son-specific correlation and the WP correlation to
differ from each other. However, the particular case
here is such that all individuals are characterized by
the exact same person-specific correlation (because
the person-specific covariance varies with the person-
specific variances), that is, we have x = k,. This
results in py, = k = k,. We set pg to be identical to
these. However, because there are different intraclass
correlations (0.2 versus 0.8), the cross-sectional cor-
relation lies closer to zero, that

is p<py=pp=K=kK,.

Example 5. The fifth example is based on a scenario
in which there are no stable between-person differen-
ces, that is, there are no differences across people in
the person-specific means. This implies that the intra-
class correlations for X and Y are both zero. For the

within part, we use the same parameters values as in
Examples 1 and 2, hence we have p, < k again. The
BP correlation is not defined, as there cannot be a
correlation when there are no differences at this level.
As a result, the cross-sectional correlation is identical
to the WP correlation. This can be summarized
as p = py < K.

Example 6. The sixth example is included to under-
score the difference between having no between-per-
son differences in means (i.e., Example 5), versus
having a correlation of zero between the person-spe-
cific means. The within part is the same as for
Examples 1, 2 and 5, and the intraclass correlations
are the same as in Example 1. With pz =0, we get a
cross-sectional correlation that falls in between the
WP correlation and the BP correlation. Hence, we
now have pp < p < py < K.

Example 7. The final example is to show that even
when the WP, BP, and cross-sectional correlations are
identical (i.e., p = py = pp), this still does not imply
this correlation represents the average person-specific
correlation. The within part in the example is the
same as in Example 6 (and thus 1, 2, and 5), resulting
in k = 0.5 and py, = 0.32. With p; = py, and identi-
cal intraclass correlations (here: 0.4), we have p =
pg = pw = 0.32, and thus p = pz = py < K.

Conclusion

Although the scenarios used here may be considered
quite unrealistic (e.g., because the heterogeneity across
individuals in the WP part results from having two
subpopulations that themselves are homogenous, or
because the intraclass correlations of X and Y are very
different from each other in some examples), these
numerical examples serve the specific purpose of illus-
trating how the two curiosities presented before may
combine. The examples show that the relations
between the cross-sectional correlation p and the aver-
age person-specific correlation x is quite remote, and
we should not try to infer one from the other.
Determining how much these correlations tend to dif-
fer in practice is not possible based on the results pre-
sented here. That requires researchers to obtain data
from both the persons dimensions and the time points
dimension of Cattell’s databox, and compute the per-
son-specific correlation per person and its average,
and compare this to the (average) cross-sectional cor-
relation (see Fisher et al., 2018).



Discussion

In this paper the relation between the cross-sectional
correlation and the average person-specific correlation
was investigated. It is clear that when ergodicity
holds—meaning that all individuals have the same
means, variances and covariance for X and Y—the
cross-sectional correlation and the average person-spe-
cific correlation will be identical. In that case, we
have: a) no individual differences in the person-spe-
cific correlation, and this is the same as the WP cor-
relation, that is, x, = k = py;; and b) pp will not exist
and 13, =nhy =0 (as there are no stable between-
person differences), so that Eq. (7) reduces to p =
pw-. However, when there are mean differences
between individuals, reflecting individual differences
in central tendency over time, the cross-sectional cor-
relation is a function of the correlation between these
person-specific means (the BP correlation pg), and the
correlation between the momentary deviations from
these person-specific means (the WP correlation py,).
Two curiosities related to this expression of the cross-
sectional correlation were discussed and illus-
trated here.

First, it was shown that while the WP correlation is
based in dividing the average person-specific covari-
ance by the square roots of the average person-specific
variances, this is not necessarily equal to the average
person-specific correlation. This is an important find-
ing, because it is the average person-specific correl-
ation—rather than the WP correlation—that is
considered most meaningful from a substantive point
of view. For instance, Fisher et al. (2018) considered
the average person-specific correlation when they
investigated the similarities and differences between
cross-sectional and person-specific results in empir-
ical data.

A second curiosity is that the cross-sectional correl-
ation does not necessarily fall between the BP correl-
ation (based on the person-specific means), and the
WP correlation (regardless of whether the latter is the
same or not as the average person-specific correl-
ation). Whether or not this is the case depends on the
combination of various factors. What may be the
most surprising result here is that when the BP correl-
ation is identical to the WP correlation, this actually
implies that the cross-sectional correlation will fall
closer to zero than these correlations (i.e., p < py =
pp in case of positive correlations), unless the intra-
class correlations of X and Y are identical
(n3x = n4y)- This implies that even when all individu-
als are characterized by the same person-specific cor-
relation, so that x, = k = py,, and the BP correlation
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is equal to this correlation as well, such that we could
say this correlation reflects a general law, we will still
get a different cross-sectional correlation unless the
intraclass correlations are exactly equal to each other.

Clearly, if we have data from both the person and
the occasion dimensions form Cattell’s databox, it is
possible to estimate all of these correlations. However,
when confronted with cross-sectional data, only p can
be estimated, and the other correlations as well as the
intraclass correlations remain unknown. In this con-
text, Brandt and Morgan (2022) state: “[...] the
multilevel space is unobserved in a cross-sectional
design. It is the dark matter of cross-sectional analysis,
because it exists, cannot be observed from collected
data, but nonetheless impacts what we observe” (p.3).
From the expression in Eq. (7) it can be seen that the
cross-sectional correlation depends on four unknowns,
that is, ps, pw» N5x and n%y,; moreover, the relation
between py, and the average person-specific correl-
ation x is even more complex (see the Appendix), and
depends on individual differences in the person-spe-
cific variances and how these are related and how
these relate to the person-specific covariance. As a
result the same cross-sectional correlation may arise
from wildly different constellations of these various
parameters, and it is not possible to back-engineer
which of these scenarios gave rise to the observed
cross-section.

When taking this one step further, we can think of
the observed cross-sectional data as being part of vari-
ous latent research designs, each of which may have a
different “multilevel space”. That is, the cross-section
could have been a wave in a longitudinal study that
had a time span of for instance a few weeks up to
multiple decades. These different time spans are asso-
ciated with different within-between decomposition: If
we have a time span of a month, the BP component
represent the person’s mean of that month; in con-
trast, if we have measures that cover two years, the
BP component represents the person’s mean over a 2-
year period. These two person-specific means of per-
son P=p do not have to be the same. This also has
major consequences for the WP component, which is
defined as the deviation between the measurement
and the person-specific mean (see Eq. (3)). That is,
when the month mean and the 2-year mean differ, a
particular observation will have different temporal
deviations from these two means, and it is even pos-
sible that one deviation is positive, whereas the other
is negative. These issues render the within-between
decomposition of cross-sectional data not only purely
hypothetical, but also fundamentally unidentified.
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While there are infinitely many combinations of
BP, WP, and average person-specific correlations that
may have given rise to a particular observed cross-sec-
tional correlation, and it is impossible to determine
which of these possible combinations represents the
underlying truth, this does not imply we should con-
sider the current treatise a mere intellectual exercise.
It is a well established fact, based on decades of
empirical research, that most (if not all) psychological
measures contain both stable and transient aspects
(including measurement error); in such cases the
cross-sectional correlation is thus based on a mix of a
BP and a WP correlation. Moreover, the recent surge
of intensive longitudinal studies has shown that there
are important individual differences in variability and
strength of relations between variables, such that there
may be a discrepancy between the WP correlation and
the average person-specific correlation. Hence, the
problem of how (not) to interpret the cross-sectional
correlation is actually omnipresent in psychological
research. Clearly, the cross-sectional correlation is a
summary measure of how individual differences on X
are related to individual differences on Y at a particu-
lar point in time; any other interpretation should be
considered highly speculative in the absence of further
evidence, and is perhaps best postponed until more
knowledge is obtained about the various correlations
in empirical practice (cf. Fisher et al., 2018).

In sum, while Peter Molenaar’s work on ergodicity
already established that the cross-sectional correlation
typically does not represent each and every individu-
al’s person-specific correlation, the current paper
added to this the analytical results that expose the
exact relation between these two correlations. The
results presented here show that it is impossible to
determine to what extent the cross-sectional correl-
ation deviates from the average person-specific correl-
ation without additional information. Moreover, since
standardized results from techniques like regression
analysis, structural equation modeling, network ana-
lysis, and factor analysis are based on the correlation
structure, the current concern is likely to be relevant
for these practices as well (Brandt & Morgan, 2022).
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Appendix

To see how the within-person correlation py, and the aver-
age person-specific correlation x differ from each other, we
start with expressing the latter as

v —E cov(X, Y|P)
\/var(X|P)+/var(Y|P)

=E|cov(X, Y|P

) 1 1
\/var(X|P) \/var(Y|P)} '

Hence, it is the expectation of the product of three random
variables, that is E[ABC|, where: A = cov(X, Y|P) is the per-
son-specific covariance between X and Y, B = 1/+/var(X|P)
is the inverse of the person-specific standard deviation of X,
and C =1/+/var(Y|P) is the inverse of the person-specific
standard deviation of Y.

To rewrite the expectation of the product of three ran-
dom variables, we use E[ABC|] = E[AD] (i.e., D = BC), and
then make use of the fact that cov(AD) = E[AD]—
E[A]E[D]. This implies we can write

E[AD] = E[A]E[D] + cov(AD).
Plugging BC back in for D, and using the same trick again
for rewriting E[BC], we get

E[ABC] = E[AJE[BC] + cov(A, BC)
= E[A](E[BJE[C] + cov(B, C)) + cov(A, BC)
= E[A]E[BIE[C] + E[A]cov(B, C) + cov(A, BC).
Filling in the expressions for A, B, and C, we get the fol-
lowing expression for the average person-specific
correlation

1
\/var(X|P)

K = E[cov(X, YP)]E[

1
E L/var(Y|P)}
1

+E[cov(X, Y|P)]cov( ) (A1)

1
\/var(X|P)1’ \/var(Y|P)
' \/var(X|P) \/var(Y\P))'

When comparing this to the expression of the within-
person correlation, which we can write as

B E[cov(X, Y|P)]
v JEvar(XIP)]y/Elvar(Y]P)]
— Efcov(X, Y|P)] !
/E[var(X|P)] \/E[var(Y|P)]
it is clear that the average person-specific correlation is a
more complicated expression. Specifically, the second and
third term in Eq. (A1) depend on the way individual differ-
ences in person-specific variances and covariance are related
to each other; in contrast, the expression of the within-per-
son correlation shows there is no such information included
in py.
When considering the various terms in Eq. (Al) more
carefully, we can argue the following. Starting with the
second term, we see that it contains the covariance between

+cov(cov(X, Y|P)

(A2)
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the inverse square roots of the person-specific variances on
X and Y. If this covariance is zero, this term drops out.
However, it seems reasonable to assume that the covariance
is not zero: Individuals who vary more than others on X
are also likely to vary more on Y than others. Hence, we
may expect the covariance to be positive. In that case, even
when the person-specific covariance cov(X, Y|P) is the same
for all persons (i.e., it is a constant), this second term will
be non-zero. Assuming cov(X,Y|P) > 0, this term would
be positive.

When considering the third term, we see it is the covari-
ance between the person-specific covariance and the prod-
uct of the inverse square roots of the person-specific
variances. It is more difficult to convincingly reason in any
direction for this term, but suppose that individuals who
vary more on X and Y tend to also have larger covariances
between X and Y; in that case, we would find that this third
term becomes negative (as it would imply a negative covari-
ance between the covariance and the product of the inverses
of the square roots of the variances).

There are various scenarios in which the second and
third term will be zero. Ergodicity—meaning all individuals
would have the same person-specific variances and cova-
riances—is one of them. Another, somewhat less restrictive
scenario is when all individuals have the same person-spe-
cific covariance (so the third term drops out), and the per-
son-specific variances are unrelated (so the second term
becomes zero). Note that in this scenario the average per-
son-specific correlation x and the within-person correlation
pw will still not be the same.

The latter has to do with an important difference
between py, and the first term in Eq. (Al). Although both
contain the same average person-specific covariance
E[cov(X,Y|P)], in the expression for py we have
{E[var(X|P)]}""* and {E[var(Y|P)]}"/* (ie, first the
expectation is taken, then the inverse and square root),
whereas in the expression for x we have E[{var(X|P)} /?]
and E[{var(Y|P)} ] (ie., square root and inverse are

taken before taking the expectation). Based on Jensen’s
inequality, which states that for a convex function,
f(E[Z) < E[f(2)], we know that {E[var(X|P)]} '/* is
smaller or equal to {E[var(X\P)]}fl/ ?. From this it follows
that—if E[cov(X, Y|P)] > 0—we have pyy is smaller or equal
to the first term on the right-hand side of «.

To summarize the relation between k and py, in case of
a positive average person-specific covariance (i.e.,
E[cov(X,Y|P)] > 0), we can state that: a) the first term in
the expression of x will be larger than py; b) the second
term in x will most likely be positive; and c) the third term
is probably more likely to be negative or zero. Taken
together this suggests that we may expect x > py, >0,
although this is not necessarily always the case. When the
average person-specific covariance is negative (i.e.,
Elcov(X,Y|P)] < 0), we have: a) the first term in the
expression of x will be more negative than pyw; b) the
second term in x will most likely be negative; and c) the
third term is probably more likely to be positive or zero.
Hence, in that case we most likely have x < py, < 0.

There are two specific scenarios when x = p,,. When
ergodicity holds, the second and third term in Eq. (Al)
drop out, and the first term becomes identical to py; here
we have py =x=1x, for all persons. A slightly less
restrictive scenario is when all individuals have the same
person-specific variances; again, this would imply that the
second and third term of Eq. (Al) drop out, and the first
term equals py, so that x = py; yet, individuals could still
have different person-specific correlations r,, due to indi-
vidual differences in the person-specific covariance
E[cov(X, Y|P)]. A third scenario that was found as one of
the examples in the current paper, is when the person-spe-
cific correlations are the same, that is, x, = « for all p, even
though the person-specific variances and covariances dif-
fered; in this case the second and third term do not cancel
out, but somehow exactly cancel out the difference between
the first term in Eq. (A1) and the WP correlation pyy.
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