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ABSTRACT

Indicators of affect dynamics (IADs) capture temporal dependencies and instability in affect-
ive trajectories over time. However, the relevance of IADs for the prediction of time-
invariant outcomes (e.g., depressive symptoms) was recently challenged due to results sug-
gesting low predictive utility beyond intraindividual means and variances. We argue that
these results may in part be explained by mathematical redundancies between IADs and
static variability as well as the chosen modeling strategy. In three extensive simulation stud-
ies we investigate the accuracy and power for detecting non-null relations between IADs
and an outcome variable in different relevant settings, illustrating the effect of the length of
a time series, the presence of missing values or measurement error, as well as of errone-
ously fixing innovation variances to be equal across persons. We show that, if uncertainty in
individual |AD estimates is not accounted for, relations between IADs (i.e., autoregressive
effects) and a time-invariant outcome are underestimated even in large samples and pro-
pose the use of a latent multilevel one-step approach. In an empirical application we illus-
trate that the different modeling approaches can lead to different substantive conclusions

regarding the role of negative affect inertia in the prediction of depressive symptoms.

Emotions are dynamic in nature (e.g., Kuppens,
Oravecz, et al., 2010) and studying the temporal
aspects of affect trajectories via means of ambulatory
assessments (AA) is a promising way to broaden the
understanding of inter-individual differences in emo-
tion dynamics and their role in psychological health
(Koval et al., 2015; Kuppens, Allen, & Sheeber, 2010;
van de Leemput et al, 2014). That is, regularities in
short-term fluctuations of affective experience, such as
the tendency of emotional states to carry over from
one moment to the next, referred to as emotional iner-
tia (Suls et al., 1998), or inter-individual differences in
emotional variability and instability potentially carry
meaningful information on inter-individual differences
associated with relevant psychological outcomes and
psychopathological symptomatology (Hamaker et al.,
2018; Wang et al.,, 2012). In this vein, high levels of
emotional inertia were hypothesized to reflect a
decreased ability to adapt to significant events and
regulate emotions effectively and, consequently, to

indicate  dysfunctional ~ emotional  responding
(Kuppens, Allen, & Sheeber, 2010). Indeed, emotional
inertia was observed to be linked with a variety of
indicators of psychological health (Houben et al,
2015), such as concurrent levels of different clinical
(e.g., depressive symptoms, Brose et al., 2015; Koval
et al., 2012, 2013; Nelson et al., 2020; Wenzel &
Brose, 2023)
Kuppens, Allen, & Sheeber, 2010) outcomes, and
shown to function as a prospective predictor of major
depressive disorder onset (Kuppens et al., 2012; van
de Leemput et al, 2014; for an opposing view, see
Houben & Kuppens, 2020). Similarly, van Roekel
et al. (2018) found variations in a genetic risk factor
for emotional dysregulation to be meaningfully linked
with inertia but not mean levels of negative affect.
Emotional inertia is commonly measured as the

and non-clinical (e.g., self-esteem,

autocorrelation of a time series or the autoregressive
effect (AR) in an autoregressive model of order 1 (ie.,
with time lag 1). Besides AR, a variety of indicators of
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affect dynamics (IADs), aiming to capture unique
aspects of regularities in affect trajectories, such as
mean squared successive differences (MSSD), were
introduced (for an overview, see Dejonckheere et al,
2019) and linked to clinical (e.g., Heller et al., 2019;
Santangelo et al., 2017; Trull et al., 2008) and non-
clinical outcomes (e.g., Houben et al., 2015).

Recent findings question the relevance of IADs as
predictors of clinical (Bos et al, 2019; Dejonckheere
et al, 2019; Houben & Kuppens, 2020) and non-
clinical (Wendt et al,, 2020) outcomes beyond static
mean levels and intraindividual standard deviations
(ISD). The authors concluded that after accounting
for overlap between the more parsimonious static and
the dynamic IADs, the latter are of little predictive
value and thus, suggest to select ISD above dynamic
IADs as a predictor of well-being. In this paper, we
argue and show that results on the predictive power
of IADs may be largely influenced by the chosen
modeling strategy. In the following, we focus on IADs
and ISD as measures of variability, instability, or
(affective) dynamics, and do only shortly discuss ques-
tions regarding the predictive utility above mean levels
(see, e.g., Dejonckheere et al., 2019).

The findings of little predictive value added by
dynamic IADs impose strong implications for
researchers investigating the relation between IADs
and a (time-invariant) criterion outcome of interest.
Specifically, the argument implies that randomly reor-
dering the measurements in a subject’s time-series is
not concomitant with a loss of information (with
respect to the predictive power for explaining a time-
invariant outcome)—as random reordering only
affects the dynamic but not the static IADs (Ebner-
Priemer et al., 2009)—thereby assuming that instabil-
ity (as opposed to variability) and inertia are of minor
importance. Consequently, researcher and participant
burden could be reduced to a substantial degree, as
less measurement occasions are necessary to reliably
estimate person-specific means and intraindividual
variances as compared to dynamic indicators (Du &
Wang, 2018). Given the effort invested in conducting
AA studies, this conclusion calls for further explor-
ation of factors influencing the predictive power of
IADs beyond static indicators, to inform the planning
and analysis stages of AA studies. As discussed by
Dejonckheere et al. (2019), reasons for the reported
lack of predictive power of affect dynamics for psy-
chological well-being might be located in current
research practices and the authors list several poten-
tially relevant methodological and measurement-
related aspects. In the following, we will focus on the

aspect of the chosen modeling strategy, that is, data-
analytical considerations.

Factors limiting (unique) predictive power of
dynamic parameters

In the present article, we investigate how common
modeling strategies impact inferences made on the
(unique) role of IADs. We argue that the test of
IADs’ unique contributions beyond their static coun-
terparts (i.e., affect variability) in the studies question-
ing the relevance of IADs was potentially overly
conservative. Based on the mathematical relations
between the different IADs and the static variability of
univariate time series, we will shed light on different
factors that determine the reliability and the predictive
power of these measures. There are several factors
that are of primary interest in this context, which will
be discussed in the following. We start with an illus-
tration of the relations between IADs and static vari-
ability of univariate time series and the resulting
implications for their combined use as predictors.

Statistical overlap between IADs and static
variability

IADs aim at capturing distinct aspects of (affective)
trajectories across time. Instability in affect is com-
monly measured by the MSSD (von Neumann et al,
1941). The MSSD; of a univariate time-series of length
T of a person i is calculated by taking the mean of
squared differences between all consecutive measure-
ments x;; and Xj(y1),

1 T—
MSSD; = —— !

T 121 (xi¢ — xi(t+1))2- (1)

Evidently, if the affective states of a person exhibit
large moment-to-moment fluctuations (high instabil-
ity), the process is also characterized by a large overall
variability. However, instability and its formalization as
MSSD; differ from mere (static) variability as they take
the temporal ordering of measurements into account.
Hence, given a constant affective variability, the
(in)stability of the underlying process may vary (see
Jahng et al., 2008). Consider a stationary time-series fol-
lowing a first-order autoregressive (AR(1)) process with

Xit = ¢ + @pxxi—1) + Cie 2)

where the index i denotes the person, ¢ the time point,
@; the AR effect, and the regression residuals (j,
referred to as innovations, capture fluctuation in x;
that is not predicted by x;,_;). A process with high
serial dependency (high ¢;) is characterized by a



prolonged refractory period before it returns to its
equilibrium state. Hence, once a higher or lower than
usual emotional state is entered, longer time is needed
before returning to the habitual level. The second
element in (2) that drives the process’s dynamics is
the innovations, {;;, also referred to as perturbations
or system shocks (Jongerling et al., 2015). In practice,
all internal and external/contextual influences the
model does not account for end up as unexplained
variation in the innovations (Jongerling et al., 2015).
In this model, differences between ISD? and MSSD;
emerge from the serial dependency inherent in the
process (Jahng et al, 2008), with

MSSD; = 2xISD} (1 — ¢;). (3)

For ¢; =0, the MSSD; is perfectly correlated with
ISD?, ie., equaling 2xISD?. Analogously, in the
AR(1)-model, the intraindividual variance can be
expressed as (Hamilton, 1994):

2
O-li

(1-o7)
with o%l. denoting the i-th person’s variance of the
innovations {;;. Equation (4) illustrates that differences
between ISD; and ¢?; emerge if observations are non-
independent (i.e., ¢; # 0), with the static variability of
a time-series being a function of two dynamic compo-
nents, ¢; and aéi. Given an AR-process, individual
differences in static variability can be driven by both
aspects, with identical levels of ISD; being generated
by qualitatively different underlying dynamic proc-
esses. Entering (4) into (3) illustrates that the MSSD;
of a time-series following an AR(1) process can also
be expressed as a function of ¢; and aéi

mssp,—2(— %) _ 2% 5)
=20 0men)) T T ey

Consequently, both person-specific ISD? (and
thereby ISD;) and MSSD; are a function of the first-
order AR effect and the aéi in an AR(1) model, how-
ever, differ regarding the impact of increased levels of
@;. Note that, Equations (3)-(5) apply to the popula-
tion parameters in an AR(1) model but not necessarily
to the sample statistics.

ISD; = (4)

Implications for interindividual differences in IADs
beyond ISD

As evident from Equations (3)-(5) and given an
AR(1) model holds, inter-individual differences in
MSSD and ISD can be expressed as combinations of
differences in AR and the innovation variance. In
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empirical applications, ¢; and o*%i may show different
associations with an outcome of interest which can be
obscured if using MSSD or ISD as predictors of the
outcome. That is, decomposing combined IADs (i.e.,
MSSD;) into their underlying components may reveal
otherwise masked relations with third-variable out-
comes (Wang et al.,, 2012).

Assumption of constant innovation variance

Given the AR(1) model, if ¢; is constant across subjects,
person-specific ISD? and MSSD; are both linear transfor-
mations of agi and thereby perfectly correlated.
Similarly, when aéi is constant across subjects, the only
source of inter-individual differences in ISD? (and ISD;)
lies in subjects’ differences in ¢; (see Equation (4)). Note
that this contradicts the practice to estimate individual
¢; parameters and test their incremental contribution
beyond ISD for the prediction of a time-invariant out-
come under the assumption of a constant a%i. In essence,
whenever ¢, or agi are truly constant across individuals,
high redundancies between IADs and ISD ought to be
expected, limiting the possibility of incremental contri-
butions made by IADs beyond ISD.

We argue that the assumptions of a constant agi is
potentially too restrictive in applied settings and should
(when indicated) be discarded (Jongerling et al., 2015).
Besides capturing potentially relevant information
regarding inter-individual differences in dynamics,
falsely ignoring inter-individual differences in innov-
ation variances negatively affects the recovery of individ-
ual ¢; estimates (Asparouhov et al, 2018; Jongerling
et al, 2015), thereby limiting their predictive utility.
Nevertheless, the possibility of inter-individual differen-
ces in ¢7; was disregarded in studies questioning the pre-
dictive utility of IADs (Dejonckheere et al., 2019;
Houben & Kuppens 2020; Wendt et al., 2020) as well as
in simulation studies comparing the performance of
person-specific and multilevel estimation approaches
(Liu, 2017, 2018; Liu et al., 2021). Though closely linked
to ISD in stationary time series, innovation variances
can be regarded as conceptually different from ISD
(Jongerling et al., 2015), as they capture the variation in
emotional states that cannot be predicted by the previ-
ous states and thereby provide a measure of a time ser-
ies’ instability.

Two-step modeling strategies

A common modeling approach is to recover and save
individual TAD estimates in a first step and subse-
quently use the saved values for the prediction of an
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outcome in a second step, therefore referred to as
two-step approach. This procedure comes with the
shortcoming of treating estimates as observed varia-
bles and ignoring estimation uncertainty. The two-
step approach was found to produce negatively biased
regression parameter estimates and low coverage rates
when using empirical bayes estimates of random
effects from a multilevel model as predictor variables
(Liu et al., 2021). The amount of bias was related to
the reliability of individual parameter estimates and
disappeared using a one-step approach. In a one-step
approach, individual parameter estimation and out-
come prediction are combined within the same model.
Choosing a two-step or a one-step approach can lead
to differing conclusion regarding the unique predictive
utility of IADs, such as emotional inertia in the pre-
diction of depressive symptoms (Wenzel & Brose,
2023). Nevertheless, the two-step approach was still
widely adopted in recent studies of affect dynamics
(e.g, Burchert et al., 2021; Nowak & Lincoln, 2023;
Panaite et al., 2020; Wang et al., 2012). Given that dif-
ferences between the two-step and one-step
approaches arise from differences in handling uncer-
tainty in TAD estimates, factors influencing recovery
of individual IADs will be discussed in the following.

Individual parameter reliability

Several factors are of primary interest in this context.
Du and Wang (2018) showed that the static compo-
nents (i.e., intraindividual means and variances) of
univariate time-series are generally better recovered
than dynamic parameters (ie., ¢; and MSSD;).
Regarding their predictive utility, this suggests that
the latter are potentially more strongly affected by
regression attenuation, namely the phenomenon that
regression weights of low-reliability predictors are
underestimated in simple regression and potentially
distorted in multiple regression models.

Number of time points and persons

The reliability of individual ¢, estimates was found to
decrease with decreasing numbers of time points (T)
available per person (Du & Wang, 2018), with a sub-
stantially smaller impact of T on the estimates of indi-
vidual means and ISD;. In the N=1 setting, a general
recommendation for the estimation of ¢, in univariate
time-series is a minimum of T =50, however, in two-
level AR(1) models less T' may be sufficient as the per-
son sample size (N) increases (Liu, 2017, 2018;
Schultzberg & Muthén, 2018). Furthermore, prior
results are based on the restrictive assumption of a

constant innovation variance across subjects (see Liu,
2017, 2018). Investigating multilevel AR models with
random innovation variances, Schultzberg & Muthén
(2018) find compensating effects of N and T as well
as higher T requirements when person-specific ¢; and
ln(agi) serve as predictors as compared to serving as
outcomes of external variables.

Missing values

Closely related to the number of available time points
is a problem frequently observed in AA studies,
namely missing data. When the number of T per indi-
vidual is unbalanced, reliabilities of individual ¢; esti-
mates will differ across individuals. In this case,
multilevel models, which borrow information from
the other cluster-level units (here, individuals), may
be advantageous. Low compliance rates are especially
relevant for the estimation of dynamic IADs (ie., ¢;
and MSSD;), as a missing value at time ¢ is also lack-
ing as lagged predictor at ¢+ 1.

Measurement error

Lastly, the presence of measurement error in the
observed time series may play an important role with
respect to the IADs’ reliability and the power to detect
predictive effects of IADs. Measurement error is com-
mon in psychological data and the presence of meas-
urement error in an observed times series may lead to
the underestimation of individual ¢; (Schuurman
et al., 2015). Similarly, reliabilities of individual IADs
(especially ¢;) were found to be more sensitive to the
presence of measurement error as compared to static
intraindividual means and variances (Du & Wang,
2018). Consequently, accounting for measurement
error in the observed variables when estimating IADs
is tantamount. To this end, approaches combining
latent variable modeling with multilevel time-series
modeling can be used. Here, we propose to use one-
step, multilevel models that specify ¢; effects on the
level of within-person latent factors (see, e.g.,
Asparouhov et al., 2018; Schuurman & Hamaker,
2019). These models additionally provide the advan-
tage that, to account for inter-individual differences in
trait levels, variables are centered on the latent
cluster-means (Asparouhov et al., 2018; Asparouhov
& Muthén, 2019; Hamaker & Grasman, 2014) instead
of relying on a lagged variable centered at the
observed sample mean. The latter approach is known
to produce a bias in the ¢, estimates that depends on
the level of AR as well as T, termed Nickell’s bias
(Nickell, 1981). For “reasonably large values of T~
(Nickell, 1981, p.1422), Nickells’ bias is approximated



by w, which suggests a higher negative bias in
positive autoregressive effects that decreases with

higher T.

Current study

Taken together, studies questioning the predictive util-
ity of measures of temporal dependency potentially
underestimated the true relations with outcome varia-
bles (Dejonckheere et al., 2019; Houben & Kuppens,
2020; Wendt et al,, 2020) due to low reliability in
individual parameter estimates, the restrictive assump-
tion of constant innovation variances, and ignoring
measurement error in the time-series. Using data on
negative affect and depressive symptoms, we illustrate
the impact of the modeling choices discussed above
on the substantive conclusions regarding the predict-
ive power of IADs in an empirical example. In three
simulation studies, we examine the factors outlined
above for their (combined) impact on estimation
accuracy and power to detect true, non-null relations
between dynamic IADs and a time-invariant external
criterion (EC) under different modeling strategies and
AA study design factors (e.g., number of subjects and
time points). Based on the presented relations between
IADs and ISD, the interplay of individual ¢; and o7,
is expected to affect the predictive utility of IADs
when testing for unique contributions above ISD.

Modeling strategies

We compared two commonly applied two-step
approaches for regressing time-invariant outcomes on
(multiple) TAD estimates with two alternative simul-
taneous or one-step approaches.

Two-step approaches

Person-specific two-step (PS;._step)

In this approach, individual parameters (such as
autoregressive effects ¢; and innovation variances
(transformed to In[o?]) are estimated using separate
linear regression models for each individual in a first
step. Analogously, ISD and MSSD are also estimated
from N=1 models. In a second step, the obtained
individual point estimates are used as predictors in
(multiple) regression models to predict a time-
invariant outcome.

Multilevel two-step (ML;_gtep)
This approach is similar to PS; g, in that it is a two-
step approach in which individual estimates are

MULTIVARIATE BEHAVIORAL RESEARCH 1203

obtained in a first step, with the difference that indi-
vidual ¢, effects are estimated as random effects in a
two-level AR(1) model, e.g., using restricted maximum
likelihood estimation as implemented in the lme4-
package (Bates et al., 2015). This approach was shown
to better compensate for low number of time points by
leveraging on the information from other subjects in
the multilevel model (e.g., for a comparison of PS; gep
and ML, _gp» see Liu, 2017, 2018). However, the model
assumes a constant innovation variance across individ-
uals, which may be overly restrictive in applied settings
(Jongerling et al., 2015). Falsely disregarding interindi-
vidual differences in innovation variances was shown to
negatively affect the recovery of ¢; estimates
(Asparouhov et al, 2018; Jongerling et al, 2015).
Individual ¢; estimates will further be affected by
Nickels” bias caused by centering the lagged predictor
on the observed mean. Note that for ML, g.p, outcome
prediction models involving innovation variances as
predictor are generally (and in the following) not con-
sidered, as they are assumed to be constant.

One-step approaches

Bayesian one-step (BAY)

To overcome limitations of PS, g, and ML, gep, We
suggest using a one-step approach implemented using
Bayesian Markov-Chain Monte-Carlo (MCMC) esti-
mation. In this approach (1) all model parameters
(including innovation variances) are estimated as
person-specific in a multilevel AR(1) model, (2) varia-
bles are latent-mean centered, and (3) the respective
random effects are included as predictors for the
time-invariant outcome within the same model (see,
e.g., Asparouhov et al, 2018). We estimated these
models via MCMC sampling using the free software
Stan (Carpenter et al., 2017) from R, via the interface
provided in the rstan-package (Stan Development
Team, 2023). An advantage of using Stan is that it
allows researchers to flexibly set up user-defined mod-
els, for instance, two-level AR(1) models with random
innovations which simultaneously estimate intraindi-
vidual variances.

Latent bayesian one-step (BAY )

All of the above modeling strategies disregard poten-
tial measurement error in the time-series, with the
dynamics being modeled for observed variables or
using a composite score across multiple manifest
items. As an extension of the BAY approach, we
employed BAYq,,, which is a two-level dynamic factor
analysis (two-level DAFS) model (Asparouhov et al,
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2018; also see Molenaar, 1985; Zhang & Nesselroade,
2007). Assume that we have a k — dimensional vector
Y;; containing k observed indicator variables for per-
son i at time t. The observed variables are each
decomposed into their latent person-specific mean
(1;) across time and a latent-person-mean-centered,

time-specific deviation, YV

Yii=p; + Y;;' (6)

with g; and Y}V being the respective k — dimensional
vectors. At both the time invariant between-person as
well as the time-specific within-person level, a com-
mon latent factor is measured by the k indicators,
with

Yy = Awn + el (7)
W = o+ ApnP + &8 (8)

with o being a k — dimensional vector of intercept
parameters, Ay, and Ap being k — dimensional vec-
tors of factor loading parameters on the within- and
the between-level, respectively, and ¢}¥, and ¢ being k
— dimensional vectors of (measurement) error varia-
bles, with &%, ~ N(0,02,,) being serially uncorrelated,
and &, ~ N(0,0%;). Note that for simplicity we here
assume one common latent factor on the within-level
(n}¥) and the between-level (1?), respectively. For
more general formulations including several factors
see, for instance, Asparouhov et al. (2018). For identi-
fication purposes, 1) the first loading parameter in
Aw and Ap is set to one (or the variance of the
respective factor is set to equal one) and 2) one inter-
cept parameter oy is set to zero (or the mean of the
latent u; is set to zero). Note that the between-level
factor structure in Equation (8) can be adapted to
yield different factor structures. For instance, to model
indicator-specific stable trait variables, we could
refrain from specifying a between-level measurement
equation and estimate a variance-covariance matrix
for the separate p;. The autoregressive process is mod-
eled for the within-level latent variables 172;‘/ , that is

i = <Pi’7,~v<\;_1) + Cir )

with @; being the person-specific autoregressive effect
and (; denoting the dynamic residual or innovation,
with person-specific innovation varian-
ces, {iy ~ N(0,0%).

At the between-person level, the latent variables
and person-specific parameters n? (or y;), ¢;, and the
logarithm of aé (ie., ln[o’fi]) are assumed to follow a
multivariate normal distribution. Additionally, the
estimation of first-order correlations between all
person-specific parameters and the time-invariant

outcome is directly incorporated into the model,
which can be used to obtain the model-implied
(standardized) prediction parameter estimates. To
support empirical researchers in applying a latent-
variable one-step approach using Bayesian MCMC
techniques in Stan, we provide a comprehensive set
of ready-to-use materials. These include code tem-
plates for immediate implementation, user-friendly R
functions tailored to handle common challenges such
as missing data and overnight lags, and an explan-
ation of the underlying Stan code. Our goal is to
make it as easy as possible for researchers to adopt
and apply these models in their own work. In add-
ition, full analysis scripts for reproducing the simula-
tion studies and the empirical example are available
via the Open Science Framework at: https://osf.io/

bj7fq/.

Empirical example

To illustrate that findings on the predictive utility of
dynamic IADs can vary strongly with the choice of a
data-analytic approach and the affect variability meas-
ure used as covariate, we reanalyzed an empirical
dataset first published in Koval et al. (2013) and later
made publicly available by Dejonckheere et al. (2019)
as part of their meta-analysis. In this AA study, inter-
individual differences in IADs of negative affect and
their relationship with depressive symptoms measured
using the CES-D (Radloff, 1977) were investigated for
N =94 subjects (after data exclusion)® observed on 10
measurement occasions per day across seven days. For
the reanalysis, we quantified negative affect either as
the mean score or the latent factor measured by par-
ticipants’ responses to three negative affect items (sad,
anxious, and angry)’. The number of available obser-
varied across subjects from 43 to 73
(Mdn=61). In both previous studies, data were ana-
lyzed by adopting a two-step estimation procedure for
regressing depressive symptoms on individual IADs
(e.g., ISD, AR, MSSD) of negative affect. In Koval
et al. (2013) individual AR estimates were derived
from person-specific N=1 models (PS, ;) and in
Dejonckheere et al. (2019) as random effects from a

vations

"We excluded the data of one subject that showed no variation in at
least one of the three included negative emotion items.

2An additional item (depressed) was excluded from the analyses as we
encountered model convergence issues when using all four items as
indicators of a common latent factor. Results using observed mean scores
across all four indicators can be found in the supplementary material in
Table S14. General trends reported for the three-indicator solution remain
intact, with an increased amount of variance explained in the outcome
when depressed was included, probably due to the substantial overlap
with the criterion (e.g., depressive symptoms).
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Table 1. Results of separate multiple regression models regressing depressive symptoms (CES-D) on indicators of affect dynamics
(IADs) of negative affect as a function of estimation approach and affect variability measures (N = 94).

Controlling for ISD

Controlling for In(a?)

IAD Estimation Buo 95% Cl Biso 95% CI R Buo 95% Cl Binto?) 95% CI R?

MSSD  PSyep —006  [-042,029] 059  [0.23,094] 0282  —

AR MLy step 0.08 [-0.12,029] 049  [0.28,069] 0287 —
PS-step 0.07 [-0.12,025]  0.51 [032,070] 0285 017 [—0.01, 0.34] 0.50 [032,068] 0305
BAY 0.14 [-0.10,0.38]  0.47  [027,067] 0318 021 [-0.01, 0.42] 0.47 [030,063]  0.336
BAY — 0.31 [0.10, 0.51] 0.56 [038,0.72] 0401

Note. f: standardized regression weight; MSSD: mean squared successive differences; AR: first-order autoregressive effect; ISD: intra-individual variance;
In(oé): log-transformed innovation variance; PS;.p, = person-specific two-step approach; ML,.gp: multilevel two-step approach deriving individual AR
estimates as random effects from a two-level AR(1) model, BAY: Bayesian one-step approach using mean of observed indicators; BAY ... Bayesian one-
step approach with inclusion of a measurement model to account for measurement error in indicators of negative affect. For BAY models, R” was calcu-
lated as the proportion of the variance in predicted values and the total variance in depressive symptoms. Bold cells highlight significant prediction par-

ameter estimates.

two-level model (ML, p). Note that in the re-
analysis, we did not account for unequal measurement
intervals due to missed beeps or overnight-lags to
mimic the analysis approach administered in Koval
et al. (2013)°.

Results

Two-step individual (N = 1) AR(1) modeling and
multilevel modeling approaches with fixed innov-
ation variance

First, we calculated individual IADs per person (PS,_gep),
namely ISD, MSSD, and AR, the latter additionally
using the multilevel ML, ., approach. Subsequently,
we examined the distribution of person-specific
innovation variances (agi) derived from the
N=1AR(1) models, which ranged between 0.04 to
570 (M=1.06, SD=0.89). Note that these non-
negligible interindividual differences suggest a mis-
specification of the two-level AR(1) with constant (7%.
Furthermore, graphical inspection suggests that the
innovation variances follow a log-normal distribution
(see the extended report on the respective OSF-
repository).

Using these individual IADs, bivariate associations
between depressive symptoms (CES-D) and IADs
were all positive and significant (ISD: r =10.53, 95% CI
= [0.36, 0.66]; MSSD: r=0.45, 95% CI = [0.26, 0.59];
AR using PS;_gep: =10.25, 95% CI = [0.04, 0.42], AR
using ML, _gep: 7= 0.34, 95% CI = [0.14, 0.51]). Visual
inspection of the bivariate associations between CES-
D and IADs did not reveal any violations of the

3For BAY, the single-indicator one-step approach, we checked that the
main finding (i.e., significant unique contribution of negative affect inertia
beyond the log innovation variance in the prediction of depressive
symptoms) holds, when missing beeps are imputed, as wells as when
overnight-lags are accounted for by removing the last observation of a
day as lagged predictor of the subsequent measurement. The results
were found to be robust, regardless of the implemented corrections for
unequal distances in time intervals between observations (see the
extended report on the OSF-repository).

linearity assumption (see Figure S10 in the online sup-
plement). This was also supported by the results of
additional regression models which we ran to examine
a potential non-linear (i.e., quadratic or cubic) rela-
tionship between IADs and CES-D (see section E in
the online supplement for the full model results). We
further tested the robustness of the linearity assump-
tion by running B-spline regression models with the
breakpoints of the piecewise polynomials set to the
second, third, and fourth quantile of the respective
predictors’ distribution, as well as to the first, third,
fifth, seventh, and nineth decile (i.e., 5 breakpoints).
In subsequent model comparisons, comparing the
simple linear models with the results of the spline
regressions also indicated that the linear term was suf-
ficient (ps > 0.357) to describe the bivariate associa-
tions. Although we did not find any significant
contributions of the higher-order polynomial terms,
we recommend applied researchers to consider the
possibility of non-linear relations with the outcome.

Furthermore, adhering to the notion that the
dynamic IADs should not be used as predictors in iso-
lation but tested for their unique contributions to the
outcome prediction beyond static IADs (e.g., ISD), we
ran multiple regression analyses controlling for linear
overlap between IADs (i.e., AR and MSSD) and ISD.
The full results including point estimates and CIs of
standardized regression weights as well as the
explained variance® in CES-D are summarized in
Table 1.

As expected, given the high correlation between
ISD and MSSD (r=0.87), after controlling for ISD,
the standardized regression weight of MSSD was lower
and non-significant (f = —0.06). Similarly, when con-
trolling for ISD, we observed no significant contribu-
tions of the AR predictor (PS, gep, f=0.07; ML;_gteps

“For BAY, R was calculated by standardizing the outcome and predictors
and deriving R* as the posterior mean of the ratio of variance in
predicted values to observed variance in depression scores.
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f=0.08). These results replicate the results which led
authors to conclude that accounting for the temporal
dimension in affect dynamics may provide little pre-
dictive utility over simple affect variability.

One-step modeling approaches

As a direct comparison, we examined unique contribu-
tions of AR over ISD when adopting a one-step
approach (i.e., BAY). This resulted in a higher but non-
significant standardized regression estimate of AR as
predictor, f=0.14. Based on the expected associations
between AR and ISD on the within-level given in (4),
combining them as joint predictors in regression mod-
els might mask potential relations that exist between an
outcome and AR, as well the outcome and individual
agi. Indeed, when including the log innovation variance
as a second predictor (instead of ISD) and using BAY,
unique contributions of the AR predictor increased,
p=0.21,95% CI [—0.01, 0.42]. A similar trend could be
observed using AR and the log-transformed aéi derived
from PS,_ep (=0.17, 95% CI [-0.01, 0.34]). Thus far,
all of the above analyses relied on a composite score of
negative affect, thereby disregarding potential measure-
ment error in the time-series. When BAY was extended
to a multiple-indicator model (BAYy,,), the AR predic-
tion parameter further increased to f=0.31, 95% CI
[0.10, 0.51].

To highlight the relevance of this finding we sum-
marize that, given the same set of data, applying a
common two-step approach (PS,_ gep or ML, gp) and
controlling for ISD not only lead to the rejection of
the predictive role of negative affect inertia but also to
less explained variance in depressive symptoms (R> =
0.29). Using BAY while controlling for In(d%)
explained an additional 5% of variance in depressive
symptoms. When additionally accounting for meas-
urement error (BAY;,) R? further increased to 0.40.
These results illustrate that conclusions on the unique
contribution of negative affect inertia as a predictor of
depressive symptoms can vary strongly based on the
applied analysis approach. In the three following
simulation studies we aim to shed more light on the
factors that play a role in the emergence of this result
pattern.

Simulation studies

In three simulation studies, we aim to illustrate the
effect of (1) the choice of an IAD as predictor, (2) the
chosen modeling strategy, (c) different design factors in
AA studies, and (d) the pattern of intercorrelations
between the individual parameters and the outcome on

the estimation accuracy and power for predicting an
external outcome. Each simulation study focuses on
one or several of the different issues discussed above
and illustrated in the real data application. The results
of the simulations serve to illustrate that a widely
adopted approach to test the relation between IADs and
outcome variables is far from ideal as it (a) fails to
account for interindividual differences in innovation
variances when using multilevel models, potentially
leading to biased AR estimates, (b) models the dynam-
ics for manifest composite scores, disregarding meas-
urement error, (c) treats estimates as observations and
thereby ignores uncertainty in these estimates, although
these are usually not estimated reliably, with (d) their
reliability depending on different design factors. We
systematically investigate the effect of these design fac-
tors, that is, the presence of measurement error and
missing data, the length of the time series, modeling
fixed vs. random innovation variances, and using a
one-step vs. a two-step approach.

Note that the discussed shortcomings and design
factors remain relevant even if the assumed IAD-
outcome relationship was non-linear. Our simulation
studies do not (and cannot) address the question of
an adequate functional form of the relationship in the
outcome model, which should always be thoroughly
considered by the researcher for a given question and
variables at hand.

In all three simulation studies, we generated data
from a two-level AR(1) model with random innovation
variances, with non-null relations between individual
AR effects and/or innovation variances with an external
criterion (EC). We considered this specific scenario, as
it appears to be the most common parameterization of
the multilevel AR(1) model with the benefit of ¢; and
ln(agi) being the primary model parameters (next to
individual trait levels). For simplicity, we assume linear
relations between the time-invariant criterion and the
individual AR(1) parameters. In simulation study I, we
test the data-analytic strategies commonly used in
applied studies, that is, the two-step approaches as
described above, under varying population parameter
constellations. Here our motivation was two-fold. One,
to examine the accuracy of regression estimates when
using dynamic IADs as predictors, and further, to illus-
trate the effect that complex, non-linear relations
between dynamic IADs and static variability in station-
ary time-series may have on their simultaneous use as
predictors. Note that we purposely varied the relations
between the outcome and the dynamic IADs (ie., @;
and In[0%]) to inspect how controlling for the static ISD



Table 2. Simulation setup in simulation studies I, Il, and III.
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Varied factors

Data generation

Analytic strategy

Study Factors held constant
Parameter # Conditions Prediction model Estimation approach
| N=100 Pecp = —03,03 2 Solo ¢, PS-stepr MLo-step
T=70 Pec, /n(az) =-03,03 2 Solo In(a%;) PS-step
pf () = —03,0,03 3 Solo ISD PS)-step
T/n(«%) =0.1,03,1 3 Solo MSSD PSz.step
Vin(e?) = —0.5,0, 1 3 @; controlled for In( ) PSy-step
’ ¢; controlled for ISD PSy-stepr MLo-step
=108 MSSD controlled for ISD PSs-step
I Pec,p = 03 N =70, 100, 200 3 @; controlled for In(av) BAY/BAY 1, PSy-step
Pec,in(e?) = 03 T=50, 70, 100, 200 4 ¢; controlled for ISD BAY/BAY at, PSa-step
0 ,,,(,,z} =0 Miss = 0%, 20%(1), 20%(r) 3
St
Thip) = 03 Rel = 1,08 2
Vino?) = 0 =72
I Pec,p = 0.3 N=70, 100, 200 3 Solo ¢; BAY, PSy_stepr MLy-step
Pec, ,n<62) =03 T=150, 70, 100, 200 4 ¢; controlled for y; BAY, PS;.stepr MLy-step
Poiniet) = O Pec = —03,0,03 3
Tin(o? ) = Py =—03,003 3
'yln( 2) = =0 = 108

N: person sample size; T: number of time points per subject; Pec, ¢’ bivariate

association between external criterion (EC) and autoregressive effects;

PeCin(a2)’ bivariate association between EC and log innovation variances; p,, ,n(o?)" random effect correlation between individual autoregressive effects
and log innovation variances; T/n ., between-level variance of individual Iog innovation variances; Vin(e?)* fixed effect of log innovation variance; Miss:
missing data conditions of 0% (no missing values) and 20% of total N*T set as missing by either cutting of the last values of a subjects time-series

(20%l[l]) or distributing missing values randomly within a subjects time-series (20%]r]), Rel =

Within-level reliability of composite score across two indica-

tor variables. Estimation approaches: PS,.., = person-specific two-step approach, ML, e, = individual ¢@; estimates derived from two-level AR(1)
model using restricted maximum likelihood estimation with observed mean centering, BAY = Bayesian latent variable one-step approach, BAY ,; =

Bayesian multiple-indicator model with correction for measurement error.

would affect inferences made on the unique predictive
role of the dynamic IADs.

In simulation study II, we follow-up on the results
of simulation study I (i.e., negative bias in prediction
parameters of ¢;) and illustrate how limitations of the
employed two-step approaches can be overcome by
implementation of a one-step approach, considering
several relevant design factors of AA studies.

In a third simulation study, we illustrate that bias
in prediction parameters of ¢; can vary depending on
the relations between mean levels (u;), ¢;, and a
time-invariant criterion when using ML, p.

Details on the conditions investigated in each of the
three simulation studies are described in the respective
sections below and an overview on the investigated fac-
tors in the simulation studies is given in Table 2.

Data generation

For all simulation conditions in the simulation stud-
ies, 500 datasets were generated based on a two-level
AR(1) model with random innovation variances
(Jongerling et al., 2015), corresponding to the decom-
position in Equation (6) with the autoregressive pro-
cess according to

(11)

where Y}?, the time—speciﬁc deviation of the observed

= (Pz + glt

value Y;; of a person i at time ¢ from the individual
trait level u;, is regressed on its’ preceding value

He-1)" The residual term (; is generated with a
person-specific innovation variance as {; ~ N(O0, O'gi
Person-specific parameters, that is, individual trait lev-
els (y;), autoregressive effects (¢;), log innovation var-
iances (In[s7]), and a time-invariant external criterion
(EC;), were drawn from a multivariate normal
distribution:’

2
" W Tou 0.02
0, 7, =0.3 :
N MVN v > o 2,
In(o%,) In(?) @,In(a?) In(a?)
EC; Vec = 2 0 Torc len(af) g TiC
(12)

The average AR effect (y,) was set to 0.3 with r(zp =
0.02 to keep individual ¢; effects mainly positive. To
ensure stationarity, sampling was repeated if any |¢;]
> 1 were generated. Consistent with Jongerling et al.

>Note that correlations between y; and the other random effects as well
as the outcome variable were set to zero to reduce model complexity
and minimize confounding effects in the present simulation study. In
practical applications the association between trait levels and the external
outcome variable is oftentimes of substantive interest. However, the aim
of the present study is to investigate associations and overlap between
IADs and the intraindividual variance, such that trait levels are not of
primary interest. To nevertheless keep the estimated multilevel time
series model as realistic as possible we did include inter-individual
differences in trait levels in the data generating model and the estimated
multilevel model.
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(2015), the level of between-subject variance (‘Ei) was
chosen to match the average within-subject variance,
ri = E(ISD?), resulting in an expected intraclass cor-
relation of p;oc = 0.5. Additionally, 72 was chosen to
equal ri in each condition. The average within-subject
variance, E(ISDZ), was derived from simulated data
sets of 10° subjects per condition. The expected stand-
ardized prediction parameter values for prediction
models including AR and (log) innovation variances
as predictor of the EC were calculated based on their
bivariate associations. Expected prediction parameter
values for ISD and MSSD were derived from simu-
lated data sets of 10° subjects where we calculated
individual ISD and MSSD according to (4) and (5),
and then calculated the expected linear overlap based
on the observed bivariate associations.

Investigating the effect of measurement error, the
data generating model is a two-level dynamic factor
analysis (two-level DAFS) model according to
Equations (6)-(9). Specifically, we created two mani-
fest indicator variables (k=1, 2) by adding measure-
ment error terms ¢, to each observation. For
simulation purposes, we assumed a common between-
level (trait) factor y; across indicators and loading
parameters on both levels were set to one (see
Equations (7)-(8)). Based on the expected within-
person variance of the latent process, E(ISD?), the
error variance o2, was set to 0.63, yielding a within-
level composite reliability (omega [w], Geldhof et al.,
2014) of 0.8.

Convergence diagnostics and performance
evaluation

Estimation of one-step models in Stan was restricted
to the first 200 generated data sets in each simulation
condition to compromise between estimation time
and reliability of performance indices (compare Li
et al,, 2022)°. MCMC estimation was run using two
chains with the number of iterations (with 50% of
iterations used as warm-up) set to 5.000 for BAY, and
7.500 for BAY .

Model convergence was monitored based on the
cutoff criteria of R < 1.01, and bulk-ESS and tail-ESS
> 200 (Vehtari et al., 2021). Replications not meeting
the criteria were rerun with twice the number of itera-
tions and ultimately removed if criteria were still not

%In Li et al. (2022) for a more complex VAR(1) model, model performance
was evaluated based on 100 replications per condition, and they reported
that no substantial differences in model results could be observed when
running additional 400 replications in one of their conditions. Therefore,
we assume that a reasonable stability in model results was achieved
when running 200 replications in each condition.

met. Conditions with convergence ratios below 0.50
were removed from further analyses. See Section A of
the supplementary material for an overview on chosen
parameter priors used in the MCMC estimation.

Model performance was assessed based on the follow-
ing criteria. In each replication, the reliability of person-
specific parameters was quantified as the squared
correlation between true scores and their estimated val-
ues (r*). For each condition, we then calculated the
median reliability across replications. Empirical power
to detect non-null relations was defined as the relative
frequency of replications in which a parameter’s 95%
confidence or credibility interval (CI) did not cover
zero. 95% coverage rates were calculated as the percent-
age of replications in which a parameter’s 95%-CIs cov-
ered the true data-generating value. The average relative
bias was calculated as the ratio of the difference between
a parameter’s average estimate across replications and
its true value relative to the true value. For models esti-
mated by MCMC, the posterior mean was used as point
estimate and coverage as well as power calculations
were based on the 2.5% and 97.5% quantiles of the pos-
terior distribution.

Simulation study | - limitations of two-step
strategies

As illustrated in the empirical example, controlling for
linear overlap between dynamic IADs and static vari-
ability can affect conclusions regarding the role of the
dynamic IADs in the prediction of time-invariant out-
comes. We aim to shed light on this phenomenon by
considering multiple population parameter constella-
tions which, based on the presented mathematical
relations, define the statistical overlap between IADs.
In addition, we illustrate the (poor) performance of
the common two-step modeling approaches under
varying population parameter conditions. To this end,
in simulation study I, we investigate the linear overlap
between IADs and their relations with an EC which
was generated to be linearly associated with ¢; and
ln(aé). Based on (3) and (5) parts of the main effects
of ¢; and In(c}) in predicting the EC should be
reflected in a linear overlap between MSSD, ISD, and
the EC. Specifically, based on (3) we expect ISD to
show large overlap with the EC in scenarios com-
monly observed in studies of affect dynamics, that is,
bivariate associations between (dynamic) affect indica-
tors and psychological health constructs of the same
direction (Houben et al., 2015), such as depressive
symptoms being positively correlated with more vari-
able, instable, and inert negative affect (e.g., Bos et al,,



2019; Koval et al., 2013). When the associations
between the EC and ¢; as well as the EC and In(d?;)
are unidirectional (both of the same sign), we assume
that controlling for static variability will reduce incre-
mental contributions of ¢, for predicting the EC, and
lower power for detecting these effects. Nevertheless,
to capture a range of different dynamic process and
outcome variable constellations, we also consider the
possibility of opposed main effects’ directions.
Critically, we intend to examine potential shortcom-
ings of the two-step procedures, namely negative bias
in and low coverage of regression weights of IADs
under common AA conditions. To this end, in a fully
crossed design, we generated data for N=100 and
T=70 (median across 15 studies in Dejonckheere
et al., 2019) and varied the following factors:

a. Direction of associations between external criter-

ion and inertia (pgc, = —0.30, 0.30) and log
innovation variance (ppc, nfe?) = —0.30, 0.30),

b. Random effect correlation, I —0.30,
0, 0.30),

c. Between-person differences in agi, reflected in the
random effect variance of log innovation varian-
ces (len[a%]v) in margins of 0.1, 0.3, and 1. Higher
levels of len(a%)v were expected to result in lower
reliability of "¢, estimates when using ML;_gteps
due to misspecification. In contrast, increased
r%n(ﬂ%> yields less linear overlap between ¢; and
ISDg(pq,, 1sp)> consequently affecting power of f,
when controlling for ISD.

d. Average log innovation variance (yln[a?]) in levels
of —0.5, 0, and 1. ‘

Each generated data set was then analyzed using
dynamic IADs and/or static variability as single and/
or joint predictors of the external outcome using the
person-specific two-step estimation approach (PS,.
step)- In total, seven prediction models were employed
which comprised four simple regressions (¢;, ln(a%i),
ISD, and MSSD as single predictors) as well as three
multiple regression models. The latter involved enter-
ing ¢; alongside In(c?;) or ISD, and MSSD next to
ISD as joint predictors to examine unique contribu-
tions of the dynamic parameters. Prediction models
that involved ¢; were additionally estimated using the
multilevel two-step approach (ML, _gp).

Results

As we observed no effect of varying the average (log)
innovation variance, yj,2), on individual parameter
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reliabilities or performance indices of prediction
parameters, we only present results for Vin(et) = 0.
Further, regarding the prediction of the EC, the
observed trends were mirrored for positive (ppc, =
0.30) and negative (pgc , = —0.30) relations between
the EC and ¢;, and thus, only results of the former
will be presented (for the results of ppc, = —0.30,
see Tables S1-S4 and Figures S1-S5). In the following,
we refer to the standardized prediction parameters as
p using subscripts for the respective IAD.

Reliability of individual IADs

Median reliabilities of ISD;, In(c?), and MSSD; were
generally high and of similar magnitude across condi-
tions and increased in conditions with higher inter-
individual differences in the
len((r%), (Figure 1A).

Regardless of the selected two-step approach, for
@;, the highest median reliability was > = 0.59, cor-
roborating findings on comparatively low reliability of
individual ¢; parameters (Du & Wang, 2018). With
increasing len(a%)’ the magnitude of misspecification
for ML, gep increased, which was reflected in
decreased recovery of ¢, estimates.

innovation variances

Accuracy and power of IADs as predictors

In Figures 1B and 2A, absolute values of average esti-
mates are plotted against the true effects (grey points)
between the EC and IADs (i.e., expected standardized
regression weights in linear and multiple regression
models) in each condition. Empirical power of the
IADs in simple and multiple regressions is depicted in
Figures 1C and 2C, respectively. The main findings
are presented separately for each IAD predictor.

ISD Predictor (fisp). Recall that higher ¢; and
higher ln(agi) result in higher ISD; (see Equation (4))
and thus, ISD was able to capitalize on the main
effects of ¢; and In(c};) on the EC in the unidirec-
tional case (pgc , = pPpc, ln[g§]). This became apparent
in the higher true effects of the ISD predictor in sim-
ple regression models (Figure 1B) which exceeded the
chosen population values for the bivariate associations
between the EC and ¢; and ln(agi). Consequently, in
the unidirectional case, empirical power of ISD was
generally high and above .84. The observed pattern in
terms of expected linear overlap between ISD and the
EC as well as power is reversed when pg., and
PEC,in(o2) have opposing signs. Note, that the combin-
ation of unidirectional effects is the one observed in
the empirical example and commonly reported for
relations of inertia and variability of affect with
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Figure 1. Simulation Study I: Individual Parameter Reliability, Mean Estimate, and Power of IAD Prediction Parameters in Simple

Regression Models with pgc , = 0.30 and 7y,

= 0. ¢: autoregressive effect; ln(ol) log innovation variance; ISD: intra-individual

standard deviation; MSSD: mean squared successwe difference. Median individual parameter reliability (Panel A), average absolute
prediction parameter estimates (Panel B), and empirical power (Panel C) of IAD predictors in simple regression models (horizontal
Panels). True values of absolute standardized regression weights are shown in Panel B as points with the area of 10% relative bias
below and above highlighted in grey. Estimation approach (PS,.qep = person-specific two-step [solid line], ML,.step = two-step
with individual ¢; estimates derived from two-level AR[1] model [dotted line]) indicated by line type and color (see online version
of the figure). Lines by estimation approach were added to the plots to highlight trends across simulated conditions.

depressive symptoms or psychological well-being
(Houben et al., 2015).

AR Predictor (f8,). Across conditions using PS;_gep,
B, was underestimated with a substantial negative
relative bias in simple (relative bias of —0.21 to —0.26)
and multiple regression models (relative bias of —0.15
to —0.36), regardless of the selected second predictor.
In line with the observed recovery of individual ¢;,
for ML, _gep, increasing len 2 (ie., the level of misspe-
cification) resulted in higher relative bias of up to
38% in simple and up to 50% in multiple regression
models (see Table S2). Given the expected linear over-
lap between ISD and the EC in conditions with pgc ,
= PEC.infe?)> selecting ISD over In(a?7;) as a second pre-
dictor resulted in generally lower power of f,.
Po,in(e>) had a moderating effect on f§, regardless of
the chosen covariate (i.e., ISD or In[g7]). The true
scores (and therefore power) of B, over ISD also
decreased with lower 1, (@) due to p, 5p > Py, In(e?)
(see Figure 2). Note that the latter finding is to be
expected given Equation (4), which suggests that
lower len(a%) results in higher overlap between ¢; and
ISD. For the same reason, this pattern is reversed
when the main effects of ¢; and In(¢?) on the EC are
of opposing signs. In accordance with reliabilities of

individual parameter estimates, estimation accuracy
and power were always higher for f, ) compared to
B, although true absolute effects were of equal
magnitude.

MSSD predictor (fyssp)- Similar to ISD, expected
associations between MSSD and the EC displayed a
complex pattern as they were affected by the direc-
tionality of ppc , and ppc I (e2): and further depended
upon p, y(s2), as well as T 2 As expected, given the
relation between ¢; and MSSD (see Equation (5)),
MSSD showed the highest overlap with the EC when
the main effects of ¢; and In(c7,) on the EC were of
opposing signs. In the respective conditions, the
power of fi,csp entered as single predictor was gener-
ally high (> 0.70) but tended to be underestimated as

2 decreased (Figure 1B). As for ISD, these pat-
terns were reversed when the sign of ppc, or
PEC.In(2) W3S changed. Furthermore, when controlling
for ISD, true effects of f,sp displayed a complex,
non-linear pattern. In case of opposing main effects,
the expected linear overlap between MSSD and the
EC and consequently the power of f,,5sp Was strongly
influenced by ’L'ln(a (see Figure 2C). Regardless of the
main effects of ¢; and ln(acl) on the EC, ﬁMSSD was
affected by increased negative bias when rln((y?) was
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Figure 2. Simulation study I: Individual parameter reliability, mean estimate, and power of ¢; and MSSD as predictors in multiple
regression models with pgc , = 0.30 and 7, (2) = 0. @: autoregressive effect; In(a?): log innovation variance; ISD: intra-individual
standard deviation; MSSD: mean squared successive difference. Absolute average predlctlon parameter estimates for ¢; and MSSD
(Panel A), expected correlations between predictors (Panel B), and power (Panel C) across simulation conditions. True values of
absolute standardized regression weights of 8, and fssp are shown in Panel A as points with the area of 10% relative bias below

and above in grey. Estimation approach (PS,.q., = person-specific two-step [solid line], ML,.gtep =

mates derived from two-level AR[1] model [dotted line]) indicated

two-step with individual ¢; esti-
by line type and color (see online version of the figure). Lines

were added to the plots to highlight trends across simulated conditions.

low. Further, in the unidirectional case, the power of
Pisp was always higher than that of s, when used
as joint predictors (see Table S1). Nevertheless, sub-
stantial correlations between MSSD and ISD on the
population level across conditions’, p > 0.77, indi-
cated that results of multiple regression models with
MSSD and ISD as predictors potentially suffered from
multicollinearity (Figure 2B).

Conclusion

In view of the complexity and plethora of results, we
briefly summarize the key findings of simulation study
I that contribute to findings of low (added) predictive
utility of dynamic IADs (i.e., AR and MSSD) after lin-
early accounting for ISD. Taken together, the estima-
tion accuracy for the effects of dynamic IADs on a
time-invariant outcome depends on how well the indi-
vidual parameters are recovered. Critically, for inertia

"Note that high correlations between /SD and MSSD are to be expected
when data are generated according to a stationary AR(1) model but can
be lower in applied settings, e.g., in case of trends in person-specific
mean levels over time (see, Jahng et al., 2008).

as predictor, we found the common two-step
approaches to produce negatively biased estimates (at
N=100 and T=70). Furthermore, under a stationary
AR(1) model, complex non-linear relations between
dynamic IADs and static ISD emerge, which affect the
unique predictive power of IADs when used as joint
predictors with ISD. In practice, which IAD will be
best suited as predictor of an EC may vary strongly
with the studied context and a general recommenda-
tion is beyond what a simulation study can provide.
However, if researchers encounter a typical scenario
of unidirectional effects between IADs and the EC, it
may be overly conservative to disregard the predictive
value of emotional inertia (or the significance of
accounting for the temporal dimension altogether)
solely based on lower, non-significant regression esti-
mates after controlling for the static variability.

Simulation study Il - one-step to rule
them all?

Using two-step approaches with N=100 and T=70,
results of simulation study I revealed a considerable
bias toward zero for f§, across conditions, suggesting
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that regardless of the IAD-outcome-constellation, true
relations between emotional inertia and an EC will be
underestimated in simple and multiple regression
models. In simulation study II, we did not further
consider different outcome—goi—ln(agi) associations
and proceeded with pgc , =0.3, pgc j(e2) = 0.3, and
Po,in(e>) =0. In a fully crossed design, we examined
factors related to AA research, such as person sample
size (N=70, 100, 200), number of measurements per
person (T=50, 70, 100, 200), and the choice of a
data-analytic strategy. We consider two prediction
models, (1) Model 1, the correct data generating
model which involved regressing EC on ¢; and
In(c%), and (2) Model 2, regressing EC on ¢, and
ISD. Notably, the true expected contributions of ¢,
beyond ISD (Model 2) were lower by design (i.e., the
chosen population parameter values). Nevertheless, we
were interested to assess how choosing ISD over
ln(o*fi) as a second predictor would affect the power
to detect substantial relations between ¢; and an EC
while controlling for ISD. The two-step approaches
considered in simulation study I were compared with
the performance of a one-step approach (BAY) using
Bayesian MCMC estimation (Liu et al., 2021) and its
extension to latent variable models that account for
measurement error (BAYr,,), as proposed above.
Further, to mimic typical scenarios encountered by
applied researchers, we additionally considered differ-
ent missing data and measurement error conditions.
Next to a condition without missing values (0%), two
conditions with a total of 20% missing data were
chosen that resemble those typically observed in AA
studies (e.g., Dejonckheere et al., 2019). The amount
of missing values was generated to be distributed
unequally across subjects.® First, to mimic premature
participant dropout, we introduced missing values by
cutting off the last values of subjects’ time-series (con-
dition 20%][l]). In the second missing data condition,
a more realistic scenario with missing values distrib-
uted randomly within the subjects’ time-series (condi-
tion 20%[r]) was generated. Note that for 20%(r)
using two-step approaches, no missing values were
removed prior to data analyses, to keep equal distan-
ces between observations, which meant that the actual
number of data points available for estimation of ¢;
decreased compared to the condition 20%(1). In con-
trast, for BAY and BAYy,, at 20%(r), we implemented

8n the 20%-missing-conditions, the percentages of missing values for
N =200 subjects (and varied proportionally for lower N) were 50%
(n=16), 40% (n=24), 30% (n=36), 20% (n =44), 10% (n=28), and 0%
(n=52), and in the 40%-missing-condition: 70% (n=16), 60% (n=24),
50% (n=44), 40% (n=52), 30% (n=32), 20% (n=28), 10% (n=4), and
0% (n=20).

an approach analogous to a Bayesian full-information
likelihood approach, suitable for handling missing
data (at random) as illustrated in Li et al. (2022).
Aside from assuming perfect scale reliability, we con-
sidered a second condition where for two manifest
indicators, measurement error was introduced to the
within-part of the dynamic process (see Equations
(6)-(9)) to achieve a within-level reliability of .80.
Disregarding measurement error in the observed time
series is expected to lower the accuracy of individual
IAD estimates, thereby limiting their use as predictors
of the EC. This negative effect should be resolved
when measurement error is accounted for in latent
variable models (BAYy ).

The accuracy of individual estimates is expected to
be most sensitive to differing levels of T, with lower
reliabilities of ¢; compared to those of variability esti-
mates. Concerning the performance of the two-step
approaches (PS,.gep Vs. ML, gep), e€xpectations were
two-fold. Enhanced individual parameter recovery was
shown for the ML, g, -approach when T is low (Liu,
2017)—as a compensating shrinkage effect of the
multilevel —approach. However, ignoring inter-
individual differences in aéi can lead to biased estima-
tion of individual ¢; parameters in two-level AR(1)
models (Asparouhov et al, 2018; Jongerling et al,
2015) which might result in better performance of
PS;_step compared to the mis-specified ML, _, model.
A multilevel approach (ML, g,) might also be better
suited in the presence of missing data as compared to
PS; step» compensating for the differing numbers of
observations across participants.

Results

For reasons of conciseness, we present a selection of the
findings. The complete results including individual param-
eter reliabilities, power, coverage, relative bias, and MSE
of f n(a?) and fgp are summarized in Tables S9-S13.

Overall performance of the one-step approach

Model convergence ratios (CR) were generally accept-
able but decreased with low N, lower T, and an
increased number of missing values (see Table S5).
For BAY, CR did not fall below 0.50 and exceeded
0.76 in all conditions with at least N=70 and T=70
or N=100 and T=50. A higher number of data
points (N=70 at T=100, N=100 at T=70, or
N=200 at T=50) was necessary to achieve similar
CR above 0.70 for BAYp,. Additionally, five condi-
tions (N=70 at T=50, and N=100 at T=50 with
missing values) were removed due to CR < .50.



MULTIVARIATE BEHAVIORAL RESEARCH 1213

N 200 100 70
T 200 | [ 100 | [ 70 ][ s0 20 | [ 100 |[ 70 || s0 200 | [ 100 | [ 70 | [ s0
REL [ 1] [os] [+ ] [o8] [+ ] [os] [+ ] [o8] [1] [o8] [1] [os [os] [ ] [os] [+] [os] [[4] [o8] [+ ] [os] [1] [os]
10988 4 N
A 094 S TRy A 2
a. 6o,
054 L - oo 2 imati
2 X° a Y 2 Estimation
s | a o
0.74 A o
g . a A 4a s’ Ay 0 o 6a o BAY
3 064 & a a % 2 2
o a L LN a
L a 2 N R 5 " S N o BAY 4
o A A o
0.4 4 a a AA 2 A’A N = PSZ-step
03 A N
& a
B wu'goo' 0% o oo . = 8ggas o-0=0 ="} i aagg? Z°o' .ooo. o o
A a o 2 R243 X o
29 BN . RS Ap - -a AAAAAAA a,
A a a-a a A aA-a
08 A a a a a
% LY A 4 N AA A
o A
q>)07 % % a-Aa
S 06 e A 4
(&)
05 a ) Y
04
A
c 0.1 o = o
o o
. o o
wooooo oo s G °° g o000 o 00 o"u .« o (] °°
8 o1 a ° a
o A, A AA
Q o2 A A Aa Ay
= A A a el SR a 5 A a
%03 a A4 a 2 a = a AA A X
a A
K'M a A N & s A M A N AAA
= BN W B N a a
-05 a

TS T st

o Q.
FENEN NN

2.
27

A0SR SR SR S RS Sy
St W N
VvV

PP B D

Missing Data Condition

Figure 3. Simulation Study Il. Power, Coverage, and Relative Bias of f§

,» Controlling for In(af,.). Power (Panel A), coverage (Panel

B), and relative bias (Panel C) in prediction parameter of inertia (¢) controlled for log innovation variances across simulation condi-
tions. Estimation approaches (BAY & BAY = one-step, PS,.q., = person-specific two-step) are indicated by point shapes (and
color, see online version of the figure). Rel = within-level reliability of composite score. Missing data conditions: 0% = no missing
values, 20%(l) = 20% of observations (N*T) set as missing by cutting of the last observations of a subjects’ time series, 20%(r) =
20% of observations (N*T) set as missing with missing values distributed randomly within a subjects’ time series. For BAY and
BAY, ., results of conditions with a convergence rate below .5 were removed. Lines were added to the plots to highlight trends
across simulated conditions. Target ranges of power > .80, coverage rates (of 95% Cls) between .925 and .975, and absolute rela-

tive bias < 0.10 are highlighted in grey.

Estimation accuracy of all population parameters
(e.g., fixed effects and random effect variances) was
generally high, except for random effect variances
which tended to be overestimated in conditions with
N=70 at T<100 and N=100 at T<70 (see Tables
S6-S8). A drop in coverage rates of measurement
model parameters (i.e., Ay, 0;) in conditions with
high N and low T was observed but deemed as
unproblematic as estimates were unbiased with MSE
below 0.004 throughout conditions.

Performance under correct prediction model specifi-
cation (BAY vs. PS;_sep)

Power of f, was affected by all varied factors but
mostly depended on N. In practice unless T > 200,
sample sizes larger than N=100 may be necessary for
detection of medium sized effects between ¢ and the
EC to achieve power > .80. BAY and PS, g, per-
formed similar but with minor gains in power for
BAY/BAYy, in case of lower T as well as in the pres-
ence of missing values or measurement error, as illus-
trated in Figure 3.

In contrast, the power of BM@ across all condi-
tions (with CR > 0.50) and estimation approaches
was higher (PS, g, and BAY/BAY,, average power
= 0.79) than that of f, (PS,ep average power =
0.65; BAY/BAY1,, average power = 0.68). Examining
individual parameter reliabilities, depicted in Figure
4A, revealed that reliability of ¢; tended to be low as
T decreased, and in the presence of measurement
error and missing values. The impact of the latter on
In(a%;) was lower, with reliability always higher than
0.64, explaining differences in power of the two pre-
dictors. BAY generally outperformed PS,_ ., in terms
of estimation accuracy for 8, (Figure 3C) and in the
presence of measurement error also for ﬁln(ag) (see
Tables S11-S12). For PS;_g.p, unique contributions of
B, were again underestimated in all conditions with a
minimum relative bias of —0.10 (T'=200, N=200,
with perfect reliability, and without missing data)
ranging up to —0.51 (T=50, Miss = 20%(r), and
within-level reliability of 0.80) and substantial drops
in coverage rates (see Figure 3B). Bias for PS, ep
reduced solely by increasing the number of T (and
reducing the number of missing values and
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Figure 4. Simulation study II. Individual ¢; reliability, power, and relative bias of f8, controlling for ISD. Median reliability of indi-
vidual inertia (¢;) estimates (Panel A), empirical power (Panel B), and relative bias (Panel C) of prediction parameter 8, controlling

for ISD across simulation conditions. Estimation approaches (BAY &

BAY .= one-step, PS,.ep, = person-specific two-step, MLy ep

= multilevel two-step) are indicated by point shapes (and color, see online version of the figure). Rel = within-level reliability of

composite score. Missing data conditions (Miss): 0% = no missing

values, 20%(l) = 20% of observations (N*T) set as missing by

cutting of the last observations of a subjects’ time series, 20%(r) = 20% of observations (N*T) set as missing with missing values
distributed randomly within a subjects’ time series. For BAY and BAY ., results of conditions with a convergence rate below 0.5
were removed. Lines were added to the plots to highlight trends across simulated conditions. Target ranges of power > 0.80,

coverage rates (of 95% Cls) between 0.925 and 0.975, and absolute

measurement error). In contrast, BAY;,, with latent
variable modeling yielded unbiased parameter esti-
mates and good coverage values in all conditions and
tended to outperform PS, ., in terms of MSE as N
increases above 100 (see Table S13).

Controlling for ISD
Results for Model 2, controlling for ISD instead of
In(a%,), are summarized in Figure 4.

The general trends reported for f, in Model 1
remain intact, that is a considerable negative bias in
B, across conditions when using a two-step strategy.
Regardless of the estimation approach, the power of
B, was lower (compared to Model 1) due to higher
overlap between ¢; and ISD (p,, ;sp = 0.18) compared
t0 Py, in(2) = 0. Considering the results of simulation
study I, these differences in power of the prediction
parameters were largely driven by the choice of popu-
lation parameters during data generation. Again, as
for Model 1, the average power of the second pre-
dictor (here ISD) was substantially larger (0.78-0.81)
compared to ﬂ(p (0.43-0.47) regardless of the estima-
tion approach. For Model 2 using BAY/BAYp,,

relative bias < 0.10 are highlighted in grey.

relative bias in f, slightly increased and dropped
below —0.10 in some conditions with T<70 (Figure
4C) with a similar trend for PS, g,. Coverage for f,
associated with PS, ., was below acceptable levels in
most conditions, while BAY/BAYy,, performed well
(see Table S13). The results suggest that the two-step
approach is generally not well suited to test relations
between individual ¢; estimates and a time-invariant
outcome even when T=200 and N =200, and perfect
scale reliability, regardless of the chosen variability
measure. In contrast, BAY/BAY;,, generally showed
superior performance, with non-negligible negative
bias in 8, only in some conditions with low T.

Ignoring random innovation variances (PS;._sep Vs.
MLZ-step)

In a final step, we compared the estimation behavior
of the two-step approaches (PS;gep VS. MLy gep)
regarding 8, when using ISD as a joint predictor. As
shown in simulation study I, performance differences
in terms of power and estimation accuracy are largely
driven by the magnitude of misspecification, that is,

the amount of inter-individual differences in
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innovation variances, len 2
level approach for estimation of individual ¢, esti-
mates might be beneficial and potentially outperform
PS, step in conditions with low T and increased num-
ber of missing values. Indeed, ML,_¢., showed slightly
better performance in conditions with T=50 and the
highest number of missing values (i.e., 20%[r]), such
as increased recovery of ¢;, and similar power and
bias compared to PS, ., (see Figure 4). However, the
gains were marginal, with an overall worse perform-
ance than PS,_ .

(0))° Nevertheless, the multi-

Simulation study Il - “regression to the
mean”

In the above simulations, we assumed that individual
means (y;) were uncorrelated with both AR and the
EC. However, in applied settings, mean levels (e.g., of
positive and negative affect) are often of interest and
highly predictive of psychological well-being (e.g.,
Dejonckheere et al., 2019). In consideration of these
findings, we conducted Simulation Study III to exam-
ine how the presence of non-zero relations between
mean levels and AR (p#’q,) as well as mean levels and
the EC (p, pc) might impact the estimation accuracy
of the AR prediction parameter.

As described by Asparouhov et al. (2018), the esti-
mation accuracy of random effects in two-level mod-
els may benefit from higher random effect
correlations. For a two-level AR(1) model with high
correlations between individual ¢; and In(s?), they
observed an improved recovery of individual ¢; esti-
mates. Based on this notion—multiple correlated ran-
dom effects may inform one another during model
estimation—we expected 1) an increased reliability of
individual AR parameter estimates in the presence of
correlated random effects (ie., p, , # 0), and 2) that
this translates into more accurate AR predictor par-
ameter estimates. However, we expected this
“information flow” to be primarily unidirectional,
with random intercepts (i.e., means) exerting a stron-
ger influence on the accuracy of the random slopes
(i.e., AR) than the other way around, due to the more
reliable estimation of mean as compared to AR
parameters. Consequently, the effect should be less
prominent in longer time-series (i.e., with increasing
@; reliability). This raises the question to what extent
this flow of information may affect estimates of the
relationship between AR and an EC.

Consider the (exaggerated) scenario of a perfect
correlation between individual means and an EC
(py,ec = 1) and a positive random effect correlation
(p,,p >0) and its consequences for estimates of the
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AR-EC-relation. For ML, gep, which underestimated
the latter association in nearly all simulation condi-
tions tested above, we may observe a compensating
effect if the true relation between AR and the EC is
positive. In contrast, the negative bias might further
increase if we assume p, pc = —1.

In a fully crossed design, we varied p, , and p, pc
in margins of —0.3, 0, and 0.3, and sample sizes (i.e.,
N and T) were selected similarly to simulation study
II (see Table 2 for details). We focus on the accuracy
of B, in simple linear and in multiple regression mod-
els controlling for the mean.

Results

Complete simulation results are provided in Tables
S14-S17 and Figures S6-S9. Here, we focus on the
relative bias in f, in conditions with N=100. As
observed in simulation study II, the relative bias of
the prediction parameters remained consistent across
different levels of N.

Figure 5 shows the relative bias in f3, for varying
levels of T, p, ,, p,pc as a function of the chosen
estimation approach. Notably, for ML, ., the bias in
B, in simple regression models was moderated by the
signs of p, , and p, pc with the largest differences at
low T. Recall that throughout, the EC was generated
to be positively correlated with AR (p = 0.3). In con-
ditions where the signs of both p, , and p, zc were
also positive, applying ML, ., yielded less biased esti-
mates (less underestimation) even at low values of T,
suggesting that the estimation of f3,, capitalizes on the
unidirectional associations p, , and p, pc. However, if
either p, , or p, pc were of a negative sign, the pat-
tern flipped, resulting in an even more pronounced
negative bias in f§,. Furthermore, if either p, , = 0 or
puec = 0, the bias in f, only depended on T. This
interaction observed for ML, g, did not occur for
BAY or PS, g, estimation, which both yielded result
patterns consistent with simulation study II, with BAY
showing the best performance.

Interestingly, when individual means were included
as a second predictor alongside AR, the interaction
pattern for ML, _g.p, also vanishes. This conclusion was
further supported by the generally consistent reliabil-
ity of ¢; estimates across different levels of p, , and
P, ec (see Figure S6).

Simulation study III highlights a non-intuitive fac-
tor that can affect the accuracy of AR prediction
parameters when using ML, g, This observation
aligns with findings from the empirical example,
where individual means of negative affect were

positively correlated with the outcome (r=0.56) and
AR (r=0.42). Consequently, for ML, ., a higher
first-order correlation between AR and depressive
symptoms (r=0.34) compared to PS, g, (r=0.25)
could be observed.

Overall, we conclude that the results further
strengthen the recommendation to choose a one-step
over two-step modeling approaches.

Discussion

The present study examines dynamic indicators for
their use as single and joint predictors of a time-
invariant outcome. We observed that associations
between inertia and time-invariant outcomes are likely
underestimated in common AA scenarios (i.e., T < 200)
when applying a two-step estimation approach that fails
to account for the low reliability of individual ¢; esti-
mates. Based on the simulation results, we strongly
advise against using two-step approaches, given the
considerable negative bias observed in the respective
regression weights for ¢;. This result is in line with pre-
vious studies promoting a one-step approach (Liu et al.,
2021; Wenzel & Brose, 2023). Notably, the negative bias
in 8, when applying a two-step approach was reduced
only by increasing the length of the time series (7),
however, relative bias was still beyond acceptable levels
even with as many as 200 time points. This result ques-
tions their use when considering participant burden. As
an alternative to two-step approaches, we suggest the
use of multilevel latent time-series models in a one-step
approach. Note that recently, for similar reasons,
Wenzel and Brose (2023) suggested a related one-step
approach, which differs from the model proposed here
with respect to the modeling strategy used to increase
the reliability of individual ¢; estimates. While Wenzel
and Brose (2023) estimate ¢, effects on the level of sin-
gle items (e.g., “sad” and “angry”) and subsequently
load them on a common factor, the model proposed
here defines time-specific latent factors for the items at
the within-person level and estimates the ¢, effects for
these measurement-error free latent factors. Both
approaches come with advantages and disadvantages.
While the former approach allows items to have differ-
ent levels of inertia, it still assumes that these show the
same correlational pattern with the external criterion
variable of interest. Additionally, ¢, effects are poten-
tially underestimated due to specifying AR effects on
the manifest items afflicted by measurement-error (and
thereby potentially estimated less reliably in case of
individually-varying item reliabilities; Schuurman &
Hamaker, 2019). In contrast, the approach presented



here requires that the items measure a common under-
lying latent variable (e.g., different items measuring
affective valence), with a single, common AR effect of
this latent variable. This approach avoids underestima-
tion of AR effects and additionally considers person-
specific innovation variances defined on the level of
latent variables, which might be used as additional pre-
dictor variables.

In contrast to prior studies comparing one-step
and two-step approaches (Liu et al., 2021; Wenzel &
Brose, 2023) as well as person-specific and multilevel
approaches for estimation of individual dynamic
parameters (Liu, 2017, 2018), we allowed innovation
variances to differ between subjects. Differences in
innovation variances are not only relevant from a stat-
istical point of view but also provide an alternative
indicator of affect variability that captures the effects
of all internal and external influences that cannot be
predicted by previous states alone (Jongerling et al.,
2015). Interindividual differences in innovation var-
iances were argued to reflect subjects’ differences in
responsiveness to or in the exposure to external fac-
tors (Hamaker et al., 2018), and in the perception of
emotions as predictable or erratic (Simons et al,
2021). Given the potential bias created in individual
@, estimates and between-level regression weights if
falsely assuming constant innovation variances, testing
for violations of this assumption seems advisable.

This study is not the first to illustrate statistical
overlap between complex affect indicators, such as
MSSD and inertia (AR) and static variability indices
(e.g., Jahng et al., 2008; Wang et al., 2012). In contrast
to previous studies, we provide extensive information
on the conditions under which substantive associa-
tions of these IADs with an EC may be expected to be
discovered in applications. In applied settings, for
instance, examining individual differences in depres-
sive symptoms (e.g., Bos et al., 2019; Koval et al,
2013) authors concluded that after accounting for
interindividual differences in static variability of nega-
tive affect, unique contributions made by emotional
inertia (AR) and affective instability (MSSD) were
non-substantial. As previously argued, these findings
might indicate that complex IADs are irrelevant as
predictors of psychological health outcomes beyond
individual means and variances (Dejonckheere et al.,
2019). This question may not be resolved within the
present paper. However, we believe that the underly-
ing assumptions under which these results occur need
to be made explicit to inform researchers on the selec-
tion of their measure of variability and analysis strat-
egy. The present results suggest that multiple factors
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afford consideration when testing complex IADs for
their predictive utility (beyond measures of affect vari-
ability). First, the statistical overlap between MSSD
and static variability measures (i.e., ISD, and ISD?),
given an AR(1) model holds, might be of substantial
magnitude, depending on the between-subject joint
distributions of ¢; and In(a7;). Note that this overlap
might vanish in non-stationary time series (Jahng
et al., 2008). Second, the choice of (static) affect vari-
ability indicator affects the unique contribution ¢, can
make, as, due to mathematical dependencies, ISD; car-
ries parts of the dynamic information captured in ;.
The respective statistical overlap depends on the
amount of inter-individual differences in innovation
variances, rendering the practice to estimate ¢; under
the assumption of constant ln(agi) questionable. Our
findings suggest that, given the AR model holds, ¢;
tends to show more positive relations with ISD com-
pared to In(c?;), reducing predictive power of ¢; in
case of unidirectional relations between IADs and the
outcome. Hence, true relations between an outcome
with ¢@; and In o*%i might be masked (Jongerling
et al,, 2015; Wang et al,, 2012). This conclusion was
corroborated by the reanalysis of an empirical data
set, testing for the role of temporal dependency in
negative affect for predicting depressive symptoms
above and beyond static affect variability.

We would like to stress that, although not investi-
gated in detail in the present study, assumption of a
linear relationship between IADs and an external out-
come might not be adequate in many applied sce-
narios. We therefore recommend researchers to
always explore the form of relationship and rely, for
instance, on spline-based regression approaches in the
case that relationships are prone to be non-linear.
Note, however, that the main findings from our simu-
lation studies remain the same irrespective of the
functional form used in the outcome model. That is,
the effect of ignoring low reliability in the IAD esti-
mates or measurement error in the observed time ser-
ies will affect the predictive power of IAD estimates
irrespective of the form of relationship that is
assumed between IAD estimates and an outcome.

One shortcoming of the presented model and sim-
ulations is the assumption of constant item reliabilities
across persons. That is, if measurement error varian-
ces vary across persons, disregarding these differences
may result in less reliable ¢; estimates. However,
models accounting for inter-individual differences in
item reliabilities (see, e.g., Schuurmann & Hamaker,
2019) tend to be complex and may require larger T
for adequate estimation accuracy. Second, we did not
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consider the issue of potentially varying time intervals
between observations. As these play an important role
for the estimation and interpretation of AR effects
(and innovation variances), considering varying time
intervals across persons and time in the estimation of
IADs is tantamount in empirical applications. Note,
however, that the decision to not simulate differences
in time intervals does not affect the conclusions of the
simulation study.

In conclusion, our simulations show that person-
specific dynamic indicators are more sensitive to the
number of time points, common AA realities such as
missing values and measurement error, and the choice
of an estimation approach, as compared to their static
counterparts, impacting statistical inferences made on
their relevance as predictors of third-variable outcomes.
These limitations can be circumvented by using latent
variable multilevel time-series models and a one-step
approach, which provide accurate regression estimates
and are suitable to inform future meta-analyses on the
role of measures of temporal dependency as predictors
of time-invariant outcomes. Further, choosing individ-
ual innovation variances over indicators of static affect
variability in the prediction of measures of psycho-
logical well-being may reveal otherwise masked rela-
tions between emotional inertia and the outcome of
interest. Nevertheless, whether the decomposition of
the overall variability of a time-series into the explained
(inertia) and unexplained part (innovation variance) for
their use as joint prediction of time-invariant outcomes
is a fruitful endeavor remains a substantive question.
We hope that the presented results can provide a prom-
ising way forward to resolving the question whether
persons’ differences in moment-to-moment fluctua-
tions carry meaningful information that may be rele-
vant for the prediction of outcomes beyond static
variability.
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