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ABSTRACT 
Indicators of affect dynamics (IADs) capture temporal dependencies and instability in affect
ive trajectories over time. However, the relevance of IADs for the prediction of time- 
invariant outcomes (e.g., depressive symptoms) was recently challenged due to results sug
gesting low predictive utility beyond intraindividual means and variances. We argue that 
these results may in part be explained by mathematical redundancies between IADs and 
static variability as well as the chosen modeling strategy. In three extensive simulation stud
ies we investigate the accuracy and power for detecting non-null relations between IADs 
and an outcome variable in different relevant settings, illustrating the effect of the length of 
a time series, the presence of missing values or measurement error, as well as of errone
ously fixing innovation variances to be equal across persons. We show that, if uncertainty in 
individual IAD estimates is not accounted for, relations between IADs (i.e., autoregressive 
effects) and a time-invariant outcome are underestimated even in large samples and pro
pose the use of a latent multilevel one-step approach. In an empirical application we illus
trate that the different modeling approaches can lead to different substantive conclusions 
regarding the role of negative affect inertia in the prediction of depressive symptoms.
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Emotions are dynamic in nature (e.g., Kuppens, 
Oravecz, et al., 2010) and studying the temporal 
aspects of affect trajectories via means of ambulatory 
assessments (AA) is a promising way to broaden the 
understanding of inter-individual differences in emo
tion dynamics and their role in psychological health 
(Koval et al., 2015; Kuppens, Allen, & Sheeber, 2010; 
van de Leemput et al., 2014). That is, regularities in 
short-term fluctuations of affective experience, such as 
the tendency of emotional states to carry over from 
one moment to the next, referred to as emotional iner
tia (Suls et al., 1998), or inter-individual differences in 
emotional variability and instability potentially carry 
meaningful information on inter-individual differences 
associated with relevant psychological outcomes and 
psychopathological symptomatology (Hamaker et al., 
2018; Wang et al., 2012). In this vein, high levels of 
emotional inertia were hypothesized to reflect a 
decreased ability to adapt to significant events and 
regulate emotions effectively and, consequently, to 

indicate dysfunctional emotional responding 
(Kuppens, Allen, & Sheeber, 2010). Indeed, emotional 
inertia was observed to be linked with a variety of 
indicators of psychological health (Houben et al., 
2015), such as concurrent levels of different clinical 
(e.g., depressive symptoms, Brose et al., 2015; Koval 
et al., 2012, 2013; Nelson et al., 2020; Wenzel & 
Brose, 2023)  and non-clinical (e.g., self-esteem, 
Kuppens, Allen, & Sheeber, 2010) outcomes, and 
shown to function as a prospective predictor of major 
depressive disorder onset (Kuppens et al., 2012; van 
de Leemput et al., 2014; for an opposing view, see 
Houben & Kuppens, 2020). Similarly, van Roekel 
et al. (2018) found variations in a genetic risk factor 
for emotional dysregulation to be meaningfully linked 
with inertia but not mean levels of negative affect.

Emotional inertia is commonly measured as the 
autocorrelation of a time series or the autoregressive 
effect (AR) in an autoregressive model of order 1 (i.e., 
with time lag 1). Besides AR, a variety of indicators of 
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affect dynamics (IADs), aiming to capture unique 
aspects of regularities in affect trajectories, such as 
mean squared successive differences (MSSD), were 
introduced (for an overview, see Dejonckheere et al., 
2019) and linked to clinical (e.g., Heller et al., 2019; 
Santangelo et al., 2017; Trull et al., 2008) and non- 
clinical outcomes (e.g., Houben et al., 2015).

Recent findings question the relevance of IADs as 
predictors of clinical (Bos et al., 2019; Dejonckheere 
et al., 2019; Houben & Kuppens, 2020) and non- 
clinical (Wendt et al., 2020) outcomes beyond static 
mean levels and intraindividual standard deviations 
(ISD). The authors concluded that after accounting 
for overlap between the more parsimonious static and 
the dynamic IADs, the latter are of little predictive 
value and thus, suggest to select ISD above dynamic 
IADs as a predictor of well-being. In this paper, we 
argue and show that results on the predictive power 
of IADs may be largely influenced by the chosen 
modeling strategy. In the following, we focus on IADs 
and ISD as measures of variability, instability, or 
(affective) dynamics, and do only shortly discuss ques
tions regarding the predictive utility above mean levels 
(see, e.g., Dejonckheere et al., 2019).

The findings of little predictive value added by 
dynamic IADs impose strong implications for 
researchers investigating the relation between IADs 
and a (time-invariant) criterion outcome of interest. 
Specifically, the argument implies that randomly reor
dering the measurements in a subject’s time-series is 
not concomitant with a loss of information (with 
respect to the predictive power for explaining a time- 
invariant outcome)—as random reordering only 
affects the dynamic but not the static IADs (Ebner- 
Priemer et al., 2009)—thereby assuming that instabil
ity (as opposed to variability) and inertia are of minor 
importance. Consequently, researcher and participant 
burden could be reduced to a substantial degree, as 
less measurement occasions are necessary to reliably 
estimate person-specific means and intraindividual 
variances as compared to dynamic indicators (Du & 
Wang, 2018). Given the effort invested in conducting 
AA studies, this conclusion calls for further explor
ation of factors influencing the predictive power of 
IADs beyond static indicators, to inform the planning 
and analysis stages of AA studies. As discussed by 
Dejonckheere et al. (2019), reasons for the reported 
lack of predictive power of affect dynamics for psy
chological well-being might be located in current 
research practices and the authors list several poten
tially relevant methodological and measurement- 
related aspects. In the following, we will focus on the 

aspect of the chosen modeling strategy, that is, data- 
analytical considerations.

Factors limiting (unique) predictive power of 
dynamic parameters

In the present article, we investigate how common 
modeling strategies impact inferences made on the 
(unique) role of IADs. We argue that the test of 
IADs’ unique contributions beyond their static coun
terparts (i.e., affect variability) in the studies question
ing the relevance of IADs was potentially overly 
conservative. Based on the mathematical relations 
between the different IADs and the static variability of 
univariate time series, we will shed light on different 
factors that determine the reliability and the predictive 
power of these measures. There are several factors 
that are of primary interest in this context, which will 
be discussed in the following. We start with an illus
tration of the relations between IADs and static vari
ability of univariate time series and the resulting 
implications for their combined use as predictors.

Statistical overlap between IADs and static 
variability

IADs aim at capturing distinct aspects of (affective) 
trajectories across time. Instability in affect is com
monly measured by the MSSD (von Neumann et al., 
1941). The MSSDi of a univariate time-series of length 
T of a person i is calculated by taking the mean of 
squared differences between all consecutive measure
ments xit and xiðtþ1Þ;

MSSDi ¼
1

T − 1

XT−1

t¼1
ðxit − xiðtþ1ÞÞ

2
: (1) 

Evidently, if the affective states of a person exhibit 
large moment-to-moment fluctuations (high instabil
ity), the process is also characterized by a large overall 
variability. However, instability and its formalization as 
MSSDi differ from mere (static) variability as they take 
the temporal ordering of measurements into account. 
Hence, given a constant affective variability, the 
(in)stability of the underlying process may vary (see 
Jahng et al., 2008). Consider a stationary time-series fol
lowing a first-order autoregressive (AR(1)) process with

xit ¼ ci þ ui�xiðt−1Þ þ fit (2) 

where the index i denotes the person, t the time point, 
ui the AR effect, and the regression residuals fit;

referred to as innovations, capture fluctuation in xit 
that is not predicted by xiðt−1Þ: A process with high 
serial dependency (high ui) is characterized by a 
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prolonged refractory period before it returns to its 
equilibrium state. Hence, once a higher or lower than 
usual emotional state is entered, longer time is needed 
before returning to the habitual level. The second 
element in (2) that drives the process’s dynamics is 
the innovations, fit; also referred to as perturbations 
or system shocks (Jongerling et al., 2015). In practice, 
all internal and external/contextual influences the 
model does not account for end up as unexplained 
variation in the innovations (Jongerling et al., 2015). 
In this model, differences between ISD2

i and MSSDi 
emerge from the serial dependency inherent in the 
process (Jahng et al, 2008), with

MSSDi ¼ 2�ISD2
i 1 − uið Þ: (3) 

For ui ¼ 0; the MSSDi is perfectly correlated with 
ISD2

i ; i.e., equaling 2 � ISD2
i : Analogously, in the 

AR(1)-model, the intraindividual variance can be 
expressed as (Hamilton, 1994):

ISD2
i ¼

r2
fi

ð1 − u2
i Þ

(4) 

with r2
fi denoting the i-th person’s variance of the 

innovations fit: Equation (4) illustrates that differences 
between ISD2

i and r2
fi emerge if observations are non- 

independent (i.e., ui 6¼ 0), with the static variability of 
a time-series being a function of two dynamic compo
nents, ui and r2

fi: Given an AR-process, individual 
differences in static variability can be driven by both 
aspects, with identical levels of ISD2

i being generated 
by qualitatively different underlying dynamic proc
esses. Entering (4) into (3) illustrates that the MSSDi 
of a time-series following an AR(1) process can also 
be expressed as a function of ui and r2

fi

MSSDi ¼ 2
r2

fi

ð1 − ui
2Þ

 !

1 − uið Þ ¼
2r2

fi

1þ uið Þ
(5) 

Consequently, both person-specific ISD2
i (and 

thereby ISDi) and MSSDi are a function of the first- 
order AR effect and the r2

fi in an AR(1) model, how
ever, differ regarding the impact of increased levels of 
ui: Note that, Equations (3)–(5) apply to the popula
tion parameters in an AR(1) model but not necessarily 
to the sample statistics.

Implications for interindividual differences in IADs 
beyond ISD

As evident from Equations (3)–(5) and given an 
AR(1) model holds, inter-individual differences in 
MSSD and ISD can be expressed as combinations of 
differences in AR and the innovation variance. In 

empirical applications, ui and r2
fi may show different 

associations with an outcome of interest which can be 
obscured if using MSSD or ISD as predictors of the 
outcome. That is, decomposing combined IADs (i.e., 
MSSDi) into their underlying components may reveal 
otherwise masked relations with third-variable out
comes (Wang et al., 2012).

Assumption of constant innovation variance

Given the AR(1) model, if ui is constant across subjects, 
person-specific ISD2

i and MSSDi are both linear transfor
mations of r2

fi and thereby perfectly correlated. 
Similarly, when r2

fi is constant across subjects, the only 
source of inter-individual differences in ISD2

i (and ISDi) 
lies in subjects’ differences in ui (see Equation (4)). Note 
that this contradicts the practice to estimate individual 
ui parameters and test their incremental contribution 
beyond ISD for the prediction of a time-invariant out
come under the assumption of a constant r2

fi: In essence, 
whenever ui or r2

fi are truly constant across individuals, 
high redundancies between IADs and ISD ought to be 
expected, limiting the possibility of incremental contri
butions made by IADs beyond ISD.

We argue that the assumptions of a constant r2
fi is 

potentially too restrictive in applied settings and should 
(when indicated) be discarded (Jongerling et al., 2015). 
Besides capturing potentially relevant information 
regarding inter-individual differences in dynamics, 
falsely ignoring inter-individual differences in innov
ation variances negatively affects the recovery of individ
ual ui estimates (Asparouhov et al., 2018; Jongerling 
et al., 2015), thereby limiting their predictive utility. 
Nevertheless, the possibility of inter-individual differen
ces in r2

fi was disregarded in studies questioning the pre
dictive utility of IADs (Dejonckheere et al., 2019; 
Houben & Kuppens 2020; Wendt et al., 2020) as well as 
in simulation studies comparing the performance of 
person-specific and multilevel estimation approaches 
(Liu, 2017, 2018; Liu et al., 2021). Though closely linked 
to ISD in stationary time series, innovation variances 
can be regarded as conceptually different from ISD 
(Jongerling et al., 2015), as they capture the variation in 
emotional states that cannot be predicted by the previ
ous states and thereby provide a measure of a time ser
ies’ instability.

Two-step modeling strategies

A common modeling approach is to recover and save 
individual IAD estimates in a first step and subse
quently use the saved values for the prediction of an 
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outcome in a second step, therefore referred to as 
two-step approach. This procedure comes with the 
shortcoming of treating estimates as observed varia
bles and ignoring estimation uncertainty. The two- 
step approach was found to produce negatively biased 
regression parameter estimates and low coverage rates 
when using empirical bayes estimates of random 
effects from a multilevel model as predictor variables 
(Liu et al., 2021). The amount of bias was related to 
the reliability of individual parameter estimates and 
disappeared using a one-step approach. In a one-step 
approach, individual parameter estimation and out
come prediction are combined within the same model. 
Choosing a two-step or a one-step approach can lead 
to differing conclusion regarding the unique predictive 
utility of IADs, such as emotional inertia in the pre
diction of depressive symptoms (Wenzel & Brose, 
2023). Nevertheless, the two-step approach was still 
widely adopted in recent studies of affect dynamics 
(e.g, Burchert et al., 2021; Nowak & Lincoln, 2023; 
Panaite et al., 2020; Wang et al., 2012). Given that dif
ferences between the two-step and one-step 
approaches arise from differences in handling uncer
tainty in IAD estimates, factors influencing recovery 
of individual IADs will be discussed in the following.

Individual parameter reliability

Several factors are of primary interest in this context. 
Du and Wang (2018) showed that the static compo
nents (i.e., intraindividual means and variances) of 
univariate time-series are generally better recovered 
than dynamic parameters (i.e., ui and MSSDi). 
Regarding their predictive utility, this suggests that 
the latter are potentially more strongly affected by 
regression attenuation, namely the phenomenon that 
regression weights of low-reliability predictors are 
underestimated in simple regression and potentially 
distorted in multiple regression models.

Number of time points and persons
The reliability of individual ui estimates was found to 
decrease with decreasing numbers of time points (T) 
available per person (Du & Wang, 2018), with a sub
stantially smaller impact of T on the estimates of indi
vidual means and ISDi: In the N¼ 1 setting, a general 
recommendation for the estimation of ui in univariate 
time-series is a minimum of T¼ 50, however, in two- 
level AR(1) models less T may be sufficient as the per
son sample size (N) increases (Liu, 2017, 2018; 
Schultzberg & Muth�en, 2018). Furthermore, prior 
results are based on the restrictive assumption of a 

constant innovation variance across subjects (see Liu, 
2017, 2018). Investigating multilevel AR models with 
random innovation variances, Schultzberg & Muth�en 
(2018) find compensating effects of N and T as well 
as higher T requirements when person-specific ui and 
lnðr2

fiÞ serve as predictors as compared to serving as 
outcomes of external variables.

Missing values
Closely related to the number of available time points 
is a problem frequently observed in AA studies, 
namely missing data. When the number of T per indi
vidual is unbalanced, reliabilities of individual ui esti
mates will differ across individuals. In this case, 
multilevel models, which borrow information from 
the other cluster-level units (here, individuals), may 
be advantageous. Low compliance rates are especially 
relevant for the estimation of dynamic IADs (i.e., ui 
and MSSDi), as a missing value at time t is also lack
ing as lagged predictor at t þ 1:

Measurement error
Lastly, the presence of measurement error in the 
observed time series may play an important role with 
respect to the IADs’ reliability and the power to detect 
predictive effects of IADs. Measurement error is com
mon in psychological data and the presence of meas
urement error in an observed times series may lead to 
the underestimation of individual ui (Schuurman 
et al., 2015). Similarly, reliabilities of individual IADs 
(especially ui) were found to be more sensitive to the 
presence of measurement error as compared to static 
intraindividual means and variances (Du & Wang, 
2018). Consequently, accounting for measurement 
error in the observed variables when estimating IADs 
is tantamount. To this end, approaches combining 
latent variable modeling with multilevel time-series 
modeling can be used. Here, we propose to use one- 
step, multilevel models that specify ui effects on the 
level of within-person latent factors (see, e.g., 
Asparouhov et al., 2018; Schuurman & Hamaker, 
2019). These models additionally provide the advan
tage that, to account for inter-individual differences in 
trait levels, variables are centered on the latent 
cluster-means (Asparouhov et al., 2018; Asparouhov 
& Muth�en, 2019; Hamaker & Grasman, 2014) instead 
of relying on a lagged variable centered at the 
observed sample mean. The latter approach is known 
to produce a bias in the ui estimates that depends on 
the level of AR as well as T, termed Nickell’s bias 
(Nickell, 1981). For “reasonably large values of T” 
(Nickell, 1981, p.1422), Nickells’ bias is approximated 
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by −ð1þuÞ

T−1 ; which suggests a higher negative bias in 
positive autoregressive effects that decreases with 
higher T.

Current study

Taken together, studies questioning the predictive util
ity of measures of temporal dependency potentially 
underestimated the true relations with outcome varia
bles (Dejonckheere et al., 2019; Houben & Kuppens, 
2020; Wendt et al., 2020) due to low reliability in 
individual parameter estimates, the restrictive assump
tion of constant innovation variances, and ignoring 
measurement error in the time-series. Using data on 
negative affect and depressive symptoms, we illustrate 
the impact of the modeling choices discussed above 
on the substantive conclusions regarding the predict
ive power of IADs in an empirical example. In three 
simulation studies, we examine the factors outlined 
above for their (combined) impact on estimation 
accuracy and power to detect true, non-null relations 
between dynamic IADs and a time-invariant external 
criterion (EC) under different modeling strategies and 
AA study design factors (e.g., number of subjects and 
time points). Based on the presented relations between 
IADs and ISD, the interplay of individual ui and r2

fi 
is expected to affect the predictive utility of IADs 
when testing for unique contributions above ISD.

Modeling strategies

We compared two commonly applied two-step 
approaches for regressing time-invariant outcomes on 
(multiple) IAD estimates with two alternative simul
taneous or one-step approaches.

Two-step approaches

Person-specific two-step (PS2-step)
In this approach, individual parameters (such as 
autoregressive effects ui and innovation variances 
(transformed to ln½r2

fi�) are estimated using separate 
linear regression models for each individual in a first 
step. Analogously, ISD and MSSD are also estimated 
from N¼ 1 models. In a second step, the obtained 
individual point estimates are used as predictors in 
(multiple) regression models to predict a time- 
invariant outcome.

Multilevel two-step (ML2-step)
This approach is similar to PS2-step in that it is a two- 
step approach in which individual estimates are 

obtained in a first step, with the difference that indi
vidual ui effects are estimated as random effects in a 
two-level AR(1) model, e.g., using restricted maximum 
likelihood estimation as implemented in the lme4- 
package (Bates et al., 2015). This approach was shown 
to better compensate for low number of time points by 
leveraging on the information from other subjects in 
the multilevel model (e.g., for a comparison of PS2-step 

and ML2-step, see Liu, 2017, 2018). However, the model 
assumes a constant innovation variance across individ
uals, which may be overly restrictive in applied settings 
(Jongerling et al., 2015). Falsely disregarding interindi
vidual differences in innovation variances was shown to 
negatively affect the recovery of ui estimates 
(Asparouhov et al., 2018; Jongerling et al., 2015). 
Individual ui estimates will further be affected by 
Nickels’ bias caused by centering the lagged predictor 
on the observed mean. Note that for ML2-step, outcome 
prediction models involving innovation variances as 
predictor are generally (and in the following) not con
sidered, as they are assumed to be constant.

One-step approaches

Bayesian one-step (BAY)
To overcome limitations of PS2-step and ML2-step, we 
suggest using a one-step approach implemented using 
Bayesian Markov-Chain Monte-Carlo (MCMC) esti
mation. In this approach (1) all model parameters 
(including innovation variances) are estimated as 
person-specific in a multilevel AR(1) model, (2) varia
bles are latent-mean centered, and (3) the respective 
random effects are included as predictors for the 
time-invariant outcome within the same model (see, 
e.g., Asparouhov et al., 2018). We estimated these 
models via MCMC sampling using the free software 
Stan (Carpenter et al., 2017) from R, via the interface 
provided in the rstan-package (Stan Development 
Team, 2023). An advantage of using Stan is that it 
allows researchers to flexibly set up user-defined mod
els, for instance, two-level AR(1) models with random 
innovations which simultaneously estimate intraindi
vidual variances.

Latent bayesian one-step (BAYLat)
All of the above modeling strategies disregard poten
tial measurement error in the time-series, with the 
dynamics being modeled for observed variables or 
using a composite score across multiple manifest 
items. As an extension of the BAY approach, we 
employed BAYLat, which is a two-level dynamic factor 
analysis (two-level DAFS) model (Asparouhov et al., 
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2018; also see Molenaar, 1985; Zhang & Nesselroade, 
2007). Assume that we have a k − dimensional vector 
Yit containing k observed indicator variables for per
son i at time t. The observed variables are each 
decomposed into their latent person-specific mean 
(li) across time and a latent-person-mean-centered, 
time-specific deviation, YW

it :

Yit ¼ li þ Yw
it (6) 

with li and YW
it being the respective k − dimensional 

vectors. At both the time invariant between-person as 
well as the time-specific within-person level, a com
mon latent factor is measured by the k indicators, 
with

YW
it ¼ KWgW

it þ eW
it (7) 

li ¼ aþ KBg
B
i þ eB

i (8) 

with a being a k − dimensional vector of intercept 
parameters, KW ; and KB being k − dimensional vec
tors of factor loading parameters on the within- and 
the between-level, respectively, and eW

it ; and eB
i being k 

− dimensional vectors of (measurement) error varia
bles, with eW

kit � Nð0, r2
eWkÞ being serially uncorrelated, 

and eB
ki � Nð0, r2

eBkÞ: Note that for simplicity we here 
assume one common latent factor on the within-level 
(gW

it ) and the between-level (gB
i ), respectively. For 

more general formulations including several factors 
see, for instance, Asparouhov et al. (2018). For identi
fication purposes, 1) the first loading parameter in 
KW and KB is set to one (or the variance of the 
respective factor is set to equal one) and 2) one inter
cept parameter ak is set to zero (or the mean of the 
latent li is set to zero). Note that the between-level 
factor structure in Equation (8) can be adapted to 
yield different factor structures. For instance, to model 
indicator-specific stable trait variables, we could 
refrain from specifying a between-level measurement 
equation and estimate a variance-covariance matrix 
for the separate li: The autoregressive process is mod
eled for the within-level latent variables gW

it , that is

gW
it ¼ uig

W
i t−1ð Þ þ fit (9) 

with ui being the person-specific autoregressive effect 
and fit denoting the dynamic residual or innovation, 
with person-specific innovation varian
ces, fit � Nð0, r2

fiÞ:

At the between-person level, the latent variables 
and person-specific parameters gB

i (or li), ui; and the 
logarithm of r2

fi (i.e., ln½r2
fi]) are assumed to follow a 

multivariate normal distribution. Additionally, the 
estimation of first-order correlations between all 
person-specific parameters and the time-invariant 

outcome is directly incorporated into the model, 
which can be used to obtain the model-implied 
(standardized) prediction parameter estimates. To 
support empirical researchers in applying a latent- 
variable one-step approach using Bayesian MCMC 
techniques in Stan, we provide a comprehensive set 
of ready-to-use materials. These include code tem
plates for immediate implementation, user-friendly R 
functions tailored to handle common challenges such 
as missing data and overnight lags, and an explan
ation of the underlying Stan code. Our goal is to 
make it as easy as possible for researchers to adopt 
and apply these models in their own work. In add
ition, full analysis scripts for reproducing the simula
tion studies and the empirical example are available 
via the Open Science Framework at: https://osf.io/ 
bj7fq/.

Empirical example

To illustrate that findings on the predictive utility of 
dynamic IADs can vary strongly with the choice of a 
data-analytic approach and the affect variability meas
ure used as covariate, we reanalyzed an empirical 
dataset first published in Koval et al. (2013) and later 
made publicly available by Dejonckheere et al. (2019) 
as part of their meta-analysis. In this AA study, inter
individual differences in IADs of negative affect and 
their relationship with depressive symptoms measured 
using the CES-D (Radloff, 1977) were investigated for 
N¼ 94 subjects (after data exclusion)1 observed on 10 
measurement occasions per day across seven days. For 
the reanalysis, we quantified negative affect either as 
the mean score or the latent factor measured by par
ticipants’ responses to three negative affect items (sad, 
anxious, and angry)2. The number of available obser
vations varied across subjects from 43 to 73 
(Mdn¼ 61). In both previous studies, data were ana
lyzed by adopting a two-step estimation procedure for 
regressing depressive symptoms on individual IADs 
(e.g., ISD, AR, MSSD) of negative affect. In Koval 
et al. (2013) individual AR estimates were derived 
from person-specific N¼ 1 models (PS2-step) and in 
Dejonckheere et al. (2019) as random effects from a 

1We excluded the data of one subject that showed no variation in at 
least one of the three included negative emotion items.
2An additional item (depressed) was excluded from the analyses as we 
encountered model convergence issues when using all four items as 
indicators of a common latent factor. Results using observed mean scores 
across all four indicators can be found in the supplementary material in 
Table S14. General trends reported for the three-indicator solution remain 
intact, with an increased amount of variance explained in the outcome 
when depressed was included, probably due to the substantial overlap 
with the criterion (e.g., depressive symptoms).
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two-level model (ML2-step). Note that in the re- 
analysis, we did not account for unequal measurement 
intervals due to missed beeps or overnight-lags to 
mimic the analysis approach administered in Koval 
et al. (2013)3.

Results

Two-step individual (N¼ 1) AR(1) modeling and 
multilevel modeling approaches with fixed innov
ation variance
First, we calculated individual IADs per person (PS2-step), 
namely ISD, MSSD, and AR, the latter additionally 
using the multilevel ML2-step approach. Subsequently, 
we examined the distribution of person-specific 
innovation variances (r2

fi) derived from the 
N¼ 1 AR(1) models, which ranged between 0.04 to 
5.70 (M¼ 1.06, SD¼ 0.89). Note that these non- 
negligible interindividual differences suggest a mis
specification of the two-level AR(1) with constant r2

f:

Furthermore, graphical inspection suggests that the 
innovation variances follow a log-normal distribution 
(see the extended report on the respective OSF- 
repository).

Using these individual IADs, bivariate associations 
between depressive symptoms (CES-D) and IADs 
were all positive and significant (ISD: r¼ 0.53, 95% CI 
¼ [0.36, 0.66]; MSSD: r¼ 0.45, 95% CI ¼ [0.26, 0.59]; 
AR using PS2-step: r¼ 0.25, 95% CI ¼ [0.04, 0.42], AR 
using ML2-step: r¼ 0.34, 95% CI ¼ [0.14, 0.51]). Visual 
inspection of the bivariate associations between CES- 
D and IADs did not reveal any violations of the 

linearity assumption (see Figure S10 in the online sup
plement). This was also supported by the results of 
additional regression models which we ran to examine 
a potential non-linear (i.e., quadratic or cubic) rela
tionship between IADs and CES-D (see section E in 
the online supplement for the full model results). We 
further tested the robustness of the linearity assump
tion by running B-spline regression models with the 
breakpoints of the piecewise polynomials set to the 
second, third, and fourth quantile of the respective 
predictors’ distribution, as well as to the first, third, 
fifth, seventh, and nineth decile (i.e., 5 breakpoints). 
In subsequent model comparisons, comparing the 
simple linear models with the results of the spline 
regressions also indicated that the linear term was suf
ficient (ps � 0.357) to describe the bivariate associa
tions. Although we did not find any significant 
contributions of the higher-order polynomial terms, 
we recommend applied researchers to consider the 
possibility of non-linear relations with the outcome.

Furthermore, adhering to the notion that the 
dynamic IADs should not be used as predictors in iso
lation but tested for their unique contributions to the 
outcome prediction beyond static IADs (e.g., ISD), we 
ran multiple regression analyses controlling for linear 
overlap between IADs (i.e., AR and MSSD) and ISD. 
The full results including point estimates and CIs of 
standardized regression weights as well as the 
explained variance4 in CES-D are summarized in 
Table 1.

As expected, given the high correlation between 
ISD and MSSD (r¼ 0.87), after controlling for ISD, 
the standardized regression weight of MSSD was lower 
and non-significant (b ¼ −0.06). Similarly, when con
trolling for ISD, we observed no significant contribu
tions of the AR predictor (PS2-step, b¼ 0.07; ML2-step, 

Table 1. Results of separate multiple regression models regressing depressive symptoms (CES-D) on indicators of affect dynamics 
(IADs) of negative affect as a function of estimation approach and affect variability measures (N¼ 94).

Controlling for ISD Controlling for lnðr2
fÞ

IAD Estimation bIAD 95% CI bISD 95% CI R2 bIAD 95% CI blnðr2
f
Þ 95% CI R2

MSSD PS2-step −0.06 [−0.42, 0.29] 0.59 [0.23, 0.94] 0.282 —
AR ML2-step 0.08 [−0.12, 0.29] 0.49 [0.28, 0.69] 0.287 —

PS2-step 0.07 [−0.12, 0.25] 0.51 [0.32, 0.70] 0.285 0.17 [−0.01, 0.34] 0.50 [0.32, 0.68] 0.305
BAY 0.14 [−0.10, 0.38] 0.47 [0.27, 0.67] 0.318 0.21 [−0.01, 0.42] 0.47 [0.30, 0.63] 0.336
BAYLat — 0.31 [0.10, 0.51] 0.56 [0.38, 0.72] 0.401

Note. b: standardized regression weight; MSSD: mean squared successive differences; AR: first-order autoregressive effect; ISD: intra-individual variance; 
lnðr2

fÞ: log-transformed innovation variance; PS2-step ¼ person-specific two-step approach; ML2-step: multilevel two-step approach deriving individual AR 
estimates as random effects from a two-level AR(1) model, BAY: Bayesian one-step approach using mean of observed indicators; BAYLat: Bayesian one- 
step approach with inclusion of a measurement model to account for measurement error in indicators of negative affect. For BAY models, R2 was calcu
lated as the proportion of the variance in predicted values and the total variance in depressive symptoms. Bold cells highlight significant prediction par
ameter estimates.

3For BAY, the single-indicator one-step approach, we checked that the 
main finding (i.e., significant unique contribution of negative affect inertia 
beyond the log innovation variance in the prediction of depressive 
symptoms) holds, when missing beeps are imputed, as wells as when 
overnight-lags are accounted for by removing the last observation of a 
day as lagged predictor of the subsequent measurement. The results 
were found to be robust, regardless of the implemented corrections for 
unequal distances in time intervals between observations (see the 
extended report on the OSF-repository).

4For BAY, R2 was calculated by standardizing the outcome and predictors 
and deriving R2 as the posterior mean of the ratio of variance in 
predicted values to observed variance in depression scores.
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b¼ 0.08). These results replicate the results which led 
authors to conclude that accounting for the temporal 
dimension in affect dynamics may provide little pre
dictive utility over simple affect variability.

One-step modeling approaches
As a direct comparison, we examined unique contribu
tions of AR over ISD when adopting a one-step 
approach (i.e., BAY). This resulted in a higher but non- 
significant standardized regression estimate of AR as 
predictor, b¼ 0.14. Based on the expected associations 
between AR and ISD on the within-level given in (4), 
combining them as joint predictors in regression mod
els might mask potential relations that exist between an 
outcome and AR, as well the outcome and individual 
r2

fi: Indeed, when including the log innovation variance 
as a second predictor (instead of ISD) and using BAY, 
unique contributions of the AR predictor increased, 
b¼ 0.21, 95% CI [−0.01, 0.42]. A similar trend could be 
observed using AR and the log-transformed r2

fi derived 
from PS2-step (b¼ 0.17, 95% CI [−0.01, 0.34]). Thus far, 
all of the above analyses relied on a composite score of 
negative affect, thereby disregarding potential measure
ment error in the time-series. When BAY was extended 
to a multiple-indicator model (BAYLat), the AR predic
tion parameter further increased to b¼ 0.31, 95% CI 
[0.10, 0.51].

To highlight the relevance of this finding we sum
marize that, given the same set of data, applying a 
common two-step approach (PS2-step or ML2-step) and 
controlling for ISD not only lead to the rejection of 
the predictive role of negative affect inertia but also to 
less explained variance in depressive symptoms (R2 ¼

0.29). Using BAY while controlling for lnðr2
fiÞ

explained an additional 5% of variance in depressive 
symptoms. When additionally accounting for meas
urement error (BAYLat) R2 further increased to 0.40. 
These results illustrate that conclusions on the unique 
contribution of negative affect inertia as a predictor of 
depressive symptoms can vary strongly based on the 
applied analysis approach. In the three following 
simulation studies we aim to shed more light on the 
factors that play a role in the emergence of this result 
pattern.

Simulation studies

In three simulation studies, we aim to illustrate the 
effect of (1) the choice of an IAD as predictor, (2) the 
chosen modeling strategy, (c) different design factors in 
AA studies, and (d) the pattern of intercorrelations 
between the individual parameters and the outcome on 

the estimation accuracy and power for predicting an 
external outcome. Each simulation study focuses on 
one or several of the different issues discussed above 
and illustrated in the real data application. The results 
of the simulations serve to illustrate that a widely 
adopted approach to test the relation between IADs and 
outcome variables is far from ideal as it (a) fails to 
account for interindividual differences in innovation 
variances when using multilevel models, potentially 
leading to biased AR estimates, (b) models the dynam
ics for manifest composite scores, disregarding meas
urement error, (c) treats estimates as observations and 
thereby ignores uncertainty in these estimates, although 
these are usually not estimated reliably, with (d) their 
reliability depending on different design factors. We 
systematically investigate the effect of these design fac
tors, that is, the presence of measurement error and 
missing data, the length of the time series, modeling 
fixed vs. random innovation variances, and using a 
one-step vs. a two-step approach.

Note that the discussed shortcomings and design 
factors remain relevant even if the assumed IAD- 
outcome relationship was non-linear. Our simulation 
studies do not (and cannot) address the question of 
an adequate functional form of the relationship in the 
outcome model, which should always be thoroughly 
considered by the researcher for a given question and 
variables at hand.

In all three simulation studies, we generated data 
from a two-level AR(1) model with random innovation 
variances, with non-null relations between individual 
AR effects and/or innovation variances with an external 
criterion (EC). We considered this specific scenario, as 
it appears to be the most common parameterization of 
the multilevel AR(1) model with the benefit of ui and 
lnðr2

fiÞ being the primary model parameters (next to 
individual trait levels). For simplicity, we assume linear 
relations between the time-invariant criterion and the 
individual AR(1) parameters. In simulation study I, we 
test the data-analytic strategies commonly used in 
applied studies, that is, the two-step approaches as 
described above, under varying population parameter 
constellations. Here our motivation was two-fold. One, 
to examine the accuracy of regression estimates when 
using dynamic IADs as predictors, and further, to illus
trate the effect that complex, non-linear relations 
between dynamic IADs and static variability in station
ary time-series may have on their simultaneous use as 
predictors. Note that we purposely varied the relations 
between the outcome and the dynamic IADs (i.e., ui 
and ln½r2

fi�) to inspect how controlling for the static ISD 
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would affect inferences made on the unique predictive 
role of the dynamic IADs.

In simulation study II, we follow-up on the results 
of simulation study I (i.e., negative bias in prediction 
parameters of ui) and illustrate how limitations of the 
employed two-step approaches can be overcome by 
implementation of a one-step approach, considering 
several relevant design factors of AA studies.

In a third simulation study, we illustrate that bias 
in prediction parameters of ui can vary depending on 
the relations between mean levels (li), ui, and a 
time-invariant criterion when using ML2-step.

Details on the conditions investigated in each of the 
three simulation studies are described in the respective 
sections below and an overview on the investigated fac
tors in the simulation studies is given in Table 2.

Data generation

For all simulation conditions in the simulation stud
ies, 500 datasets were generated based on a two-level 
AR(1) model with random innovation variances 
(Jongerling et al., 2015), corresponding to the decom
position in Equation (6) with the autoregressive pro
cess according to

Yw
it ¼ uiYw

i t−1ð Þ þ fit (11) 

where Yw
it ; the time-specific deviation of the observed 

value Yit of a person i at time t from the individual 
trait level li; is regressed on its’ preceding value 
Yw

iðt−1Þ: The residual term fit is generated with a 
person-specific innovation variance as fit � N 0, r2

fi

� �
:

Person-specific parameters, that is, individual trait lev
els (li), autoregressive effects (ui), log innovation var
iances (ln½r2

fi�Þ; and a time-invariant external criterion 
(ECi), were drawn from a multivariate normal 
distribution:5

li

ui

lnðr2
fiÞ

ECi

2

6
6
6
6
4

3

7
7
7
7
5
� MVN

cl ¼ 2
cu ¼ 0:3

clnðr2
f
Þ

cEC ¼ 2

2

6
6
6
6
4

3

7
7
7
7
5

,

s2
l

0 0:02
0 s2

u, lnðr2
f
Þ

s2
lnðr2

f
Þ

0 s2
u, EC s2

lnðr2
f
Þ, EC s2

EC

2

6
6
6
6
6
4

3

7
7
7
7
7
5

0

B
B
B
B
B
@

1

C
C
C
C
C
A

:

(12) 

The average AR effect (cu) was set to 0.3 with s2
u ¼

0.02 to keep individual ui effects mainly positive. To 
ensure stationarity, sampling was repeated if any juij

> 1 were generated. Consistent with Jongerling et al. 

Table 2. Simulation setup in simulation studies I, II, and III.

Study Factors held constant

Varied factors

Data generation Analytic strategy

Parameter # Conditions Prediction model Estimation approach

I N¼ 100 qEC, u ¼ −0.3, 0.3 2 Solo ui PS2-step, ML2-step

T¼ 70 qEC, lnðr2
f
Þ ¼ −0.3, 0.3 2 Solo lnðr2

fiÞ PS2-step

qu, lnðr2
f
Þ ¼ −0.3, 0, 0.3 3 Solo ISD PS2-step

s2
lnðr2

f
Þ
¼ 0.1, 0.3, 1 3 Solo MSSD PS2-step

clnðr2
f
Þ ¼ −0.5, 0, 1 3 ui controlled for lnðr2

fiÞ PS2-step

ui controlled for ISD PS2-step, ML2-step

¼ 108 MSSD controlled for ISD PS2-step

II qEC, u ¼ 0.3 N¼ 70, 100, 200 3 ui controlled for lnðr2
fiÞ BAY/BAYLat, PS2-step

qEC, lnðr2
f
Þ ¼ 0.3 T¼ 50, 70, 100, 200 4 ui controlled for ISD BAY/BAYLat, PS2-step

qu, lnðr2
f
Þ ¼ 0 Miss ¼ 0%, 20%(l), 20%(r) 3

s2
lnðr2

f
Þ
¼ 0.3 Rel ¼ 1, 0.8 2

clnðr2
f
Þ ¼ 0 ¼ 72

III qEC, u ¼ 0.3 N¼ 70, 100, 200 3 Solo ui BAY, PS2-step, ML2-step

qEC, lnðr2
f
Þ ¼ 0.3 T¼ 50, 70, 100, 200 4 ui controlled for li BAY, PS2-step, ML2-step

qu, lnðr2
f
Þ ¼ 0 qEC, l ¼ −0.3, 0, 0.3 3

s2
lnðr2

f
Þ
¼ 0.3 ql, u ¼ −0.3, 0, 0.3 3

clnðr2
f
Þ ¼ 0 ¼ 108

N: person sample size; T: number of time points per subject; qEC, u : bivariate association between external criterion (EC) and autoregressive effects; 
qEC, lnðr2

f
Þ: bivariate association between EC and log innovation variances; qu, lnðr2

f
Þ: random effect correlation between individual autoregressive effects 

and log innovation variances; s2
lnðr2

f
Þ
: between-level variance of individual log innovation variances; clnðr2

f
Þ : fixed effect of log innovation variance; Miss: 

missing data conditions of 0% (no missing values) and 20% of total N�T set as missing by either cutting of the last values of a subjects time-series 
(20%[l]) or distributing missing values randomly within a subjects time-series (20%[r]), Rel¼Within-level reliability of composite score across two indica
tor variables. Estimation approaches: PS2-step ¼ person-specific two-step approach, ML2-step ¼ individual ui estimates derived from two-level AR(1) 
model using restricted maximum likelihood estimation with observed mean centering, BAY¼ Bayesian latent variable one-step approach, BAYLat ¼

Bayesian multiple-indicator model with correction for measurement error.

5Note that correlations between li and the other random effects as well 
as the outcome variable were set to zero to reduce model complexity 
and minimize confounding effects in the present simulation study. In 
practical applications the association between trait levels and the external 
outcome variable is oftentimes of substantive interest. However, the aim 
of the present study is to investigate associations and overlap between 
IADs and the intraindividual variance, such that trait levels are not of 
primary interest. To nevertheless keep the estimated multilevel time 
series model as realistic as possible we did include inter-individual 
differences in trait levels in the data generating model and the estimated 
multilevel model.
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(2015), the level of between-subject variance (s2
l) was 

chosen to match the average within-subject variance, 
s2
l ¼ E ISD2ð Þ; resulting in an expected intraclass cor

relation of qICC ¼ 0:5: Additionally, s2
EC was chosen to 

equal s2
l in each condition. The average within-subject 

variance, E ISD2ð Þ; was derived from simulated data 
sets of 106 subjects per condition. The expected stand
ardized prediction parameter values for prediction 
models including AR and (log) innovation variances 
as predictor of the EC were calculated based on their 
bivariate associations. Expected prediction parameter 
values for ISD and MSSD were derived from simu
lated data sets of 106 subjects where we calculated 
individual ISD and MSSD according to (4) and (5), 
and then calculated the expected linear overlap based 
on the observed bivariate associations.

Investigating the effect of measurement error, the 
data generating model is a two-level dynamic factor 
analysis (two-level DAFS) model according to 
Equations (6)–(9). Specifically, we created two mani
fest indicator variables (k¼ 1, 2) by adding measure
ment error terms eW

kit to each observation. For 
simulation purposes, we assumed a common between- 
level (trait) factor li across indicators and loading 
parameters on both levels were set to one (see 
Equations (7)–(8)). Based on the expected within- 
person variance of the latent process, E ISD2ð Þ; the 
error variance r2

eWk was set to 0.63, yielding a within- 
level composite reliability (omega [x], Geldhof et al., 
2014) of 0.8.

Convergence diagnostics and performance 
evaluation

Estimation of one-step models in Stan was restricted 
to the first 200 generated data sets in each simulation 
condition to compromise between estimation time 
and reliability of performance indices (compare Li 
et al., 2022)6. MCMC estimation was run using two 
chains with the number of iterations (with 50% of 
iterations used as warm-up) set to 5.000 for BAY, and 
7.500 for BAYLat.

Model convergence was monitored based on the 
cutoff criteria of R̂ < 1.01, and bulk-ESS and tail-ESS 
> 200 (Vehtari et al., 2021). Replications not meeting 
the criteria were rerun with twice the number of itera
tions and ultimately removed if criteria were still not 

met. Conditions with convergence ratios below 0.50 
were removed from further analyses. See Section A of 
the supplementary material for an overview on chosen 
parameter priors used in the MCMC estimation.

Model performance was assessed based on the follow
ing criteria. In each replication, the reliability of person- 
specific parameters was quantified as the squared 
correlation between true scores and their estimated val
ues (r2). For each condition, we then calculated the 
median reliability across replications. Empirical power 
to detect non-null relations was defined as the relative 
frequency of replications in which a parameter’s 95% 
confidence or credibility interval (CI) did not cover 
zero. 95% coverage rates were calculated as the percent
age of replications in which a parameter’s 95%-CIs cov
ered the true data-generating value. The average relative 
bias was calculated as the ratio of the difference between 
a parameter’s average estimate across replications and 
its true value relative to the true value. For models esti
mated by MCMC, the posterior mean was used as point 
estimate and coverage as well as power calculations 
were based on the 2.5% and 97.5% quantiles of the pos
terior distribution.

Simulation study I – limitations of two-step 
strategies

As illustrated in the empirical example, controlling for 
linear overlap between dynamic IADs and static vari
ability can affect conclusions regarding the role of the 
dynamic IADs in the prediction of time-invariant out
comes. We aim to shed light on this phenomenon by 
considering multiple population parameter constella
tions which, based on the presented mathematical 
relations, define the statistical overlap between IADs. 
In addition, we illustrate the (poor) performance of 
the common two-step modeling approaches under 
varying population parameter conditions. To this end, 
in simulation study I, we investigate the linear overlap 
between IADs and their relations with an EC which 
was generated to be linearly associated with ui and 
lnðr2

fiÞ: Based on (3) and (5) parts of the main effects 
of ui and lnðr2

fiÞ in predicting the EC should be 
reflected in a linear overlap between MSSD, ISD, and 
the EC. Specifically, based on (3) we expect ISD to 
show large overlap with the EC in scenarios com
monly observed in studies of affect dynamics, that is, 
bivariate associations between (dynamic) affect indica
tors and psychological health constructs of the same 
direction (Houben et al., 2015), such as depressive 
symptoms being positively correlated with more vari
able, instable, and inert negative affect (e.g., Bos et al., 

6In Li et al. (2022) for a more complex VAR(1) model, model performance 
was evaluated based on 100 replications per condition, and they reported 
that no substantial differences in model results could be observed when 
running additional 400 replications in one of their conditions. Therefore, 
we assume that a reasonable stability in model results was achieved 
when running 200 replications in each condition.
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2019; Koval et al., 2013). When the associations 
between the EC and ui as well as the EC and lnðr2

fiÞ

are unidirectional (both of the same sign), we assume 
that controlling for static variability will reduce incre
mental contributions of ui for predicting the EC, and 
lower power for detecting these effects. Nevertheless, 
to capture a range of different dynamic process and 
outcome variable constellations, we also consider the 
possibility of opposed main effects’ directions. 
Critically, we intend to examine potential shortcom
ings of the two-step procedures, namely negative bias 
in and low coverage of regression weights of IADs 
under common AA conditions. To this end, in a fully 
crossed design, we generated data for N¼ 100 and 
T¼ 70 (median across 15 studies in Dejonckheere 
et al., 2019) and varied the following factors:

a. Direction of associations between external criter
ion and inertia (qEC, u ¼ −0.30, 0.30) and log 
innovation variance (qEC, ln½r2

f
� ¼ −0.30, 0.30),

b. Random effect correlation, qu, ln½r2
f
� ¼ −0.30, 

0, 0.30),
c. Between-person differences in r2

fi; reflected in the 
random effect variance of log innovation varian
ces (s2

ln½r2
f
�
;) in margins of 0.1, 0.3, and 1. Higher 

levels of s2
lnðr2

f
Þ
; were expected to result in lower 

reliability of ui estimates when using ML2-step, 
due to misspecification. In contrast, increased 
s2

lnðr2
f
Þ

yields less linear overlap between ui and 
ISD (qu, ISD), consequently affecting power of bu 

when controlling for ISD.
d. Average log innovation variance (cln½r2

f
�) in levels 

of −0.5, 0, and 1.

Each generated data set was then analyzed using 
dynamic IADs and/or static variability as single and/ 
or joint predictors of the external outcome using the 
person-specific two-step estimation approach (PS2- 

step). In total, seven prediction models were employed 
which comprised four simple regressions (ui; lnðr2

fiÞ;

ISD, and MSSD as single predictors) as well as three 
multiple regression models. The latter involved enter
ing ui alongside lnðr2

fiÞ or ISD, and MSSD next to 
ISD as joint predictors to examine unique contribu
tions of the dynamic parameters. Prediction models 
that involved ui were additionally estimated using the 
multilevel two-step approach (ML2-step).

Results

As we observed no effect of varying the average (log) 
innovation variance, clnðr2

f
Þ; on individual parameter 

reliabilities or performance indices of prediction 
parameters, we only present results for clnðr2

f
Þ ¼ 0. 

Further, regarding the prediction of the EC, the 
observed trends were mirrored for positive (qEC, u ¼

0.30) and negative (qEC, u ¼ −0.30) relations between 
the EC and ui; and thus, only results of the former 
will be presented (for the results of qEC, u ¼ −0.30, 
see Tables S1–S4 and Figures S1–S5). In the following, 
we refer to the standardized prediction parameters as 
b using subscripts for the respective IAD.

Reliability of individual IADs
Median reliabilities of ISDi; lnðr2

i Þ; and MSSDi were 
generally high and of similar magnitude across condi
tions and increased in conditions with higher inter- 
individual differences in the innovation variances 
s2

lnðr2
f
Þ
; (Figure 1A).

Regardless of the selected two-step approach, for 
ui; the highest median reliability was r2 ¼ 0.59, cor
roborating findings on comparatively low reliability of 
individual ui parameters (Du & Wang, 2018). With 
increasing s2

lnðr2
f
Þ
; the magnitude of misspecification 

for ML2-step increased, which was reflected in 
decreased recovery of ui estimates.

Accuracy and power of IADs as predictors
In Figures 1B and 2A, absolute values of average esti
mates are plotted against the true effects (grey points) 
between the EC and IADs (i.e., expected standardized 
regression weights in linear and multiple regression 
models) in each condition. Empirical power of the 
IADs in simple and multiple regressions is depicted in 
Figures 1C and 2C, respectively. The main findings 
are presented separately for each IAD predictor.

ISD Predictor (bISD). Recall that higher ui and 
higher lnðr2

fiÞ result in higher ISDi (see Equation (4)) 
and thus, ISD was able to capitalize on the main 
effects of ui and lnðr2

fiÞ on the EC in the unidirec
tional case (qEC, u ¼ qEC, ln½r2

f
�). This became apparent 

in the higher true effects of the ISD predictor in sim
ple regression models (Figure 1B) which exceeded the 
chosen population values for the bivariate associations 
between the EC and ui and lnðr2

fiÞ: Consequently, in 
the unidirectional case, empirical power of ISD was 
generally high and above .84. The observed pattern in 
terms of expected linear overlap between ISD and the 
EC as well as power is reversed when qEC, u and 
qEC, lnðr2

f
Þ have opposing signs. Note, that the combin

ation of unidirectional effects is the one observed in 
the empirical example and commonly reported for 
relations of inertia and variability of affect with 
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depressive symptoms or psychological well-being 
(Houben et al., 2015).

AR Predictor (bu). Across conditions using PS2-step, 
bu was underestimated with a substantial negative 
relative bias in simple (relative bias of −0.21 to −0.26) 
and multiple regression models (relative bias of −0.15 
to −0.36), regardless of the selected second predictor. 
In line with the observed recovery of individual ui;

for ML2-step, increasing s2
lnðr2

f
Þ

(i.e., the level of misspe
cification) resulted in higher relative bias of up to 
38% in simple and up to 50% in multiple regression 
models (see Table S2). Given the expected linear over
lap between ISD and the EC in conditions with qEC, u 

¼ qEC, ln½r2
f
�; selecting ISD over lnðr2

fiÞ as a second pre
dictor resulted in generally lower power of bu:

qu, lnðr2
f
Þ had a moderating effect on bu regardless of 

the chosen covariate (i.e., ISD or ln½r2
fi�). The true 

scores (and therefore power) of bu over ISD also 
decreased with lower s2

lnðr2
f
Þ

due to qu, ISD > qu, lnðr2
f
Þ

(see Figure 2). Note that the latter finding is to be 
expected given Equation (4), which suggests that 
lower s2

lnðr2
f
Þ

results in higher overlap between ui and 
ISD. For the same reason, this pattern is reversed 
when the main effects of ui and lnðr2

fiÞ on the EC are 
of opposing signs. In accordance with reliabilities of 

individual parameter estimates, estimation accuracy 
and power were always higher for blnðr2

f
Þ compared to 

bu although true absolute effects were of equal 
magnitude.

MSSD predictor (bMSSD). Similar to ISD, expected 
associations between MSSD and the EC displayed a 
complex pattern as they were affected by the direc
tionality of qEC, u and qEC, lnðr2

f
Þ; and further depended 

upon qu, lnðr2
f
Þ; as well as s2

lnðr2
f
Þ
: As expected, given the 

relation between ui and MSSDi (see Equation (5)), 
MSSD showed the highest overlap with the EC when 
the main effects of ui and lnðr2

fiÞ on the EC were of 
opposing signs. In the respective conditions, the 
power of bMSSD entered as single predictor was gener
ally high (> 0.70) but tended to be underestimated as 
s2

lnðr2
f
Þ

decreased (Figure 1B). As for ISD, these pat
terns were reversed when the sign of qEC, u or 
qEC, lnðr2

f
Þ was changed. Furthermore, when controlling 

for ISD, true effects of bMSSD displayed a complex, 
non-linear pattern. In case of opposing main effects, 
the expected linear overlap between MSSD and the 
EC and consequently the power of bMSSD was strongly 
influenced by s2

lnðr2
f
Þ

(see Figure 2C). Regardless of the 
main effects of ui and lnðr2

fiÞ on the EC, bMSSD was 
affected by increased negative bias when s2

lnðr2
f
Þ

was 

Figure 1. Simulation Study I: Individual Parameter Reliability, Mean Estimate, and Power of IAD Prediction Parameters in Simple 
Regression Models with qEC, u ¼ 0:30 and clnðr2

f
Þ ¼ 0: u: autoregressive effect; lnðr2

fÞ: log innovation variance; ISD: intra-individual 
standard deviation; MSSD: mean squared successive difference. Median individual parameter reliability (Panel A), average absolute 
prediction parameter estimates (Panel B), and empirical power (Panel C) of IAD predictors in simple regression models (horizontal 
Panels). True values of absolute standardized regression weights are shown in Panel B as points with the area of 10% relative bias 
below and above highlighted in grey. Estimation approach (PS2-step ¼ person-specific two-step [solid line], ML2-step ¼ two-step 
with individual ui estimates derived from two-level AR[1] model [dotted line]) indicated by line type and color (see online version 
of the figure). Lines by estimation approach were added to the plots to highlight trends across simulated conditions.
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low. Further, in the unidirectional case, the power of 
bISD was always higher than that of bMSSD when used 
as joint predictors (see Table S1). Nevertheless, sub
stantial correlations between MSSD and ISD on the 
population level across conditions7, ρ > 0.77, indi
cated that results of multiple regression models with 
MSSD and ISD as predictors potentially suffered from 
multicollinearity (Figure 2B).

Conclusion

In view of the complexity and plethora of results, we 
briefly summarize the key findings of simulation study 
I that contribute to findings of low (added) predictive 
utility of dynamic IADs (i.e., AR and MSSD) after lin
early accounting for ISD. Taken together, the estima
tion accuracy for the effects of dynamic IADs on a 
time-invariant outcome depends on how well the indi
vidual parameters are recovered. Critically, for inertia 

as predictor, we found the common two-step 
approaches to produce negatively biased estimates (at 
N¼ 100 and T¼ 70). Furthermore, under a stationary 
AR(1) model, complex non-linear relations between 
dynamic IADs and static ISD emerge, which affect the 
unique predictive power of IADs when used as joint 
predictors with ISD. In practice, which IAD will be 
best suited as predictor of an EC may vary strongly 
with the studied context and a general recommenda
tion is beyond what a simulation study can provide. 
However, if researchers encounter a typical scenario 
of unidirectional effects between IADs and the EC, it 
may be overly conservative to disregard the predictive 
value of emotional inertia (or the significance of 
accounting for the temporal dimension altogether) 
solely based on lower, non-significant regression esti
mates after controlling for the static variability.

Simulation study II – one-step to rule 
them all?

Using two-step approaches with N¼ 100 and T¼ 70, 
results of simulation study I revealed a considerable 
bias toward zero for bu across conditions, suggesting 

Figure 2. Simulation study I: Individual parameter reliability, mean estimate, and power of ui and MSSD as predictors in multiple 
regression models with qEC, u ¼ 0:30 and clnðr2

f
Þ ¼ 0: u: autoregressive effect; lnðr2

fÞ: log innovation variance; ISD: intra-individual 
standard deviation; MSSD: mean squared successive difference. Absolute average prediction parameter estimates for ui and MSSD 
(Panel A), expected correlations between predictors (Panel B), and power (Panel C) across simulation conditions. True values of 
absolute standardized regression weights of bu and bMSSD are shown in Panel A as points with the area of 10% relative bias below 
and above in grey. Estimation approach (PS2-step ¼ person-specific two-step [solid line], ML2-step ¼ two-step with individual ui esti
mates derived from two-level AR[1] model [dotted line]) indicated by line type and color (see online version of the figure). Lines 
were added to the plots to highlight trends across simulated conditions.

7Note that high correlations between ISD and MSSD are to be expected 
when data are generated according to a stationary AR(1) model but can 
be lower in applied settings, e.g., in case of trends in person-specific 
mean levels over time (see, Jahng et al., 2008).
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that regardless of the IAD-outcome-constellation, true 
relations between emotional inertia and an EC will be 
underestimated in simple and multiple regression 
models. In simulation study II, we did not further 
consider different outcome–ui–lnðr2

fiÞ associations 
and proceeded with qEC, u ¼0.3, qEC, lnðr2

f
Þ ¼ 0:3; and 

qu, lnðr2
f
Þ ¼0. In a fully crossed design, we examined 

factors related to AA research, such as person sample 
size (N¼ 70, 100, 200), number of measurements per 
person (T¼ 50, 70, 100, 200), and the choice of a 
data-analytic strategy. We consider two prediction 
models, (1) Model 1, the correct data generating 
model which involved regressing EC on ui and 
lnðr2

fiÞ; and (2) Model 2, regressing EC on ui and 
ISD. Notably, the true expected contributions of ui 
beyond ISD (Model 2) were lower by design (i.e., the 
chosen population parameter values). Nevertheless, we 
were interested to assess how choosing ISD over 
lnðr2

fiÞ as a second predictor would affect the power 
to detect substantial relations between ui and an EC 
while controlling for ISD. The two-step approaches 
considered in simulation study I were compared with 
the performance of a one-step approach (BAY) using 
Bayesian MCMC estimation (Liu et al., 2021) and its 
extension to latent variable models that account for 
measurement error (BAYLat), as proposed above.

Further, to mimic typical scenarios encountered by 
applied researchers, we additionally considered differ
ent missing data and measurement error conditions. 
Next to a condition without missing values (0%), two 
conditions with a total of 20% missing data were 
chosen that resemble those typically observed in AA 
studies (e.g., Dejonckheere et al., 2019). The amount 
of missing values was generated to be distributed 
unequally across subjects.8 First, to mimic premature 
participant dropout, we introduced missing values by 
cutting off the last values of subjects’ time-series (con
dition 20%[l]). In the second missing data condition, 
a more realistic scenario with missing values distrib
uted randomly within the subjects’ time-series (condi
tion 20%[r]) was generated. Note that for 20%(r) 
using two-step approaches, no missing values were 
removed prior to data analyses, to keep equal distan
ces between observations, which meant that the actual 
number of data points available for estimation of ui 
decreased compared to the condition 20%(l). In con
trast, for BAY and BAYLat at 20%(r), we implemented 

an approach analogous to a Bayesian full-information 
likelihood approach, suitable for handling missing 
data (at random) as illustrated in Li et al. (2022). 
Aside from assuming perfect scale reliability, we con
sidered a second condition where for two manifest 
indicators, measurement error was introduced to the 
within-part of the dynamic process (see Equations 
(6)–(9)) to achieve a within-level reliability of .80. 
Disregarding measurement error in the observed time 
series is expected to lower the accuracy of individual 
IAD estimates, thereby limiting their use as predictors 
of the EC. This negative effect should be resolved 
when measurement error is accounted for in latent 
variable models (BAYLat).

The accuracy of individual estimates is expected to 
be most sensitive to differing levels of T, with lower 
reliabilities of ui compared to those of variability esti
mates. Concerning the performance of the two-step 
approaches (PS2-step vs. ML2-step), expectations were 
two-fold. Enhanced individual parameter recovery was 
shown for the ML2-step -approach when T is low (Liu, 
2017)—as a compensating shrinkage effect of the 
multilevel approach. However, ignoring inter- 
individual differences in r2

fi can lead to biased estima
tion of individual ui parameters in two-level AR(1) 
models (Asparouhov et al., 2018; Jongerling et al., 
2015) which might result in better performance of 
PS2-step compared to the mis-specified ML2-step model. 
A multilevel approach (ML2-step) might also be better 
suited in the presence of missing data as compared to 
PS2-step, compensating for the differing numbers of 
observations across participants.

Results

For reasons of conciseness, we present a selection of the 
findings. The complete results including individual param
eter reliabilities, power, coverage, relative bias, and MSE 
of blnðr2

f
Þ and bISD are summarized in Tables S9–S13.

Overall performance of the one-step approach
Model convergence ratios (CR) were generally accept
able but decreased with low N, lower T, and an 
increased number of missing values (see Table S5). 
For BAY, CR did not fall below 0.50 and exceeded 
0.76 in all conditions with at least N¼ 70 and T¼ 70 
or N¼ 100 and T¼ 50. A higher number of data 
points (N¼ 70 at T¼ 100, N¼ 100 at T¼ 70, or 
N¼ 200 at T¼ 50) was necessary to achieve similar 
CR above 0.70 for BAYLat. Additionally, five condi
tions (N¼ 70 at T¼ 50, and N¼ 100 at T¼ 50 with 
missing values) were removed due to CR < .50. 

8In the 20%-missing-conditions, the percentages of missing values for 
N¼ 200 subjects (and varied proportionally for lower N) were 50% 
(n¼ 16), 40% (n¼ 24), 30% (n¼ 36), 20% (n¼ 44), 10% (n¼ 28), and 0% 
(n¼ 52), and in the 40%-missing-condition: 70% (n¼ 16), 60% (n¼ 24), 
50% (n¼ 44), 40% (n¼ 52), 30% (n¼ 32), 20% (n¼ 8), 10% (n¼ 4), and 
0% (n¼ 20).
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Estimation accuracy of all population parameters 
(e.g., fixed effects and random effect variances) was 
generally high, except for random effect variances 
which tended to be overestimated in conditions with 
N¼ 70 at T� 100 and N¼ 100 at T� 70 (see Tables 
S6–S8). A drop in coverage rates of measurement 
model parameters (i.e., kW ; re) in conditions with 
high N and low T was observed but deemed as 
unproblematic as estimates were unbiased with MSE 
below 0.004 throughout conditions.

Performance under correct prediction model specifi
cation (BAY vs. PS2-step)
Power of bu was affected by all varied factors but 
mostly depended on N. In practice unless T> 200, 
sample sizes larger than N¼ 100 may be necessary for 
detection of medium sized effects between u and the 
EC to achieve power > .80. BAY and PS2-step per
formed similar but with minor gains in power for 
BAY/BAYLat in case of lower T as well as in the pres
ence of missing values or measurement error, as illus
trated in Figure 3.

In contrast, the power of blnðr2
f
Þ across all condi

tions (with CR > 0.50) and estimation approaches 
was higher (PS2-step and BAY/BAYLat, average power 
¼ 0.79) than that of bu (PS2-step, average power ¼
0.65; BAY/BAYLat, average power ¼ 0.68). Examining 
individual parameter reliabilities, depicted in Figure 
4A, revealed that reliability of ui tended to be low as 
T decreased, and in the presence of measurement 
error and missing values. The impact of the latter on 
lnðr2

fiÞ was lower, with reliability always higher than 
0.64, explaining differences in power of the two pre
dictors. BAY generally outperformed PS2-step in terms 
of estimation accuracy for bu (Figure 3C) and in the 
presence of measurement error also for blnðr2

f
Þ (see 

Tables S11–S12). For PS2-step, unique contributions of 
bu were again underestimated in all conditions with a 
minimum relative bias of −0.10 (T¼ 200, N¼ 200, 
with perfect reliability, and without missing data) 
ranging up to −0.51 (T¼ 50, Miss ¼ 20%(r), and 
within-level reliability of 0.80) and substantial drops 
in coverage rates (see Figure 3B). Bias for PS2-step 

reduced solely by increasing the number of T (and 
reducing the number of missing values and 

Figure 3. Simulation Study II. Power, Coverage, and Relative Bias of bu Controlling for lnðr2
fiÞ: Power (Panel A), coverage (Panel 

B), and relative bias (Panel C) in prediction parameter of inertia (u) controlled for log innovation variances across simulation condi
tions. Estimation approaches (BAY & BAYLat¼ one-step, PS2-step ¼ person-specific two-step) are indicated by point shapes (and 
color, see online version of the figure). Rel¼within-level reliability of composite score. Missing data conditions: 0% ¼ no missing 
values, 20%(l) ¼ 20% of observations (N�T) set as missing by cutting of the last observations of a subjects’ time series, 20%(r) ¼
20% of observations (N�T) set as missing with missing values distributed randomly within a subjects’ time series. For BAY and 
BAYLat, results of conditions with a convergence rate below .5 were removed. Lines were added to the plots to highlight trends 
across simulated conditions. Target ranges of power > .80, coverage rates (of 95% CIs) between .925 and .975, and absolute rela
tive bias < 0.10 are highlighted in grey.
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measurement error). In contrast, BAYLat with latent 
variable modeling yielded unbiased parameter esti
mates and good coverage values in all conditions and 
tended to outperform PS2-step in terms of MSE as N 
increases above 100 (see Table S13).

Controlling for ISD
Results for Model 2, controlling for ISD instead of 
lnðr2

fiÞ; are summarized in Figure 4.
The general trends reported for bu in Model 1 

remain intact, that is a considerable negative bias in 
bu across conditions when using a two-step strategy. 
Regardless of the estimation approach, the power of 
bu was lower (compared to Model 1) due to higher 
overlap between ui and ISD (qu, ISD ¼ 0.18) compared 
to qu, lnðr2

f
Þ ¼ 0. Considering the results of simulation 

study I, these differences in power of the prediction 
parameters were largely driven by the choice of popu
lation parameters during data generation. Again, as 
for Model 1, the average power of the second pre
dictor (here ISD) was substantially larger (0.78–0.81) 
compared to bu (0.43–0.47) regardless of the estima
tion approach. For Model 2 using BAY/BAYLat, 

relative bias in bu slightly increased and dropped 
below −0.10 in some conditions with T� 70 (Figure 
4C) with a similar trend for PS2-step. Coverage for bu 

associated with PS2-step was below acceptable levels in 
most conditions, while BAY/BAYLat performed well 
(see Table S13). The results suggest that the two-step 
approach is generally not well suited to test relations 
between individual ui estimates and a time-invariant 
outcome even when T¼ 200 and N¼ 200, and perfect 
scale reliability, regardless of the chosen variability 
measure. In contrast, BAY/BAYLat generally showed 
superior performance, with non-negligible negative 
bias in bu only in some conditions with low T.

Ignoring random innovation variances (PS2-step vs. 
ML2-step)
In a final step, we compared the estimation behavior 
of the two-step approaches (PS2-step vs. ML2-step) 
regarding bu when using ISD as a joint predictor. As 
shown in simulation study I, performance differences 
in terms of power and estimation accuracy are largely 
driven by the magnitude of misspecification, that is, 
the amount of inter-individual differences in 

Figure 4. Simulation study II. Individual ui reliability, power, and relative bias of bu controlling for ISD. Median reliability of indi
vidual inertia (ui) estimates (Panel A), empirical power (Panel B), and relative bias (Panel C) of prediction parameter bu controlling 
for ISD across simulation conditions. Estimation approaches (BAY & BAYLat¼ one-step, PS2-step ¼ person-specific two-step, ML2-step 

¼ multilevel two-step) are indicated by point shapes (and color, see online version of the figure). Rel¼within-level reliability of 
composite score. Missing data conditions (Miss): 0% ¼ no missing values, 20%(l) ¼ 20% of observations (N�T) set as missing by 
cutting of the last observations of a subjects’ time series, 20%(r) ¼ 20% of observations (N�T) set as missing with missing values 
distributed randomly within a subjects’ time series. For BAY and BAYLat, results of conditions with a convergence rate below 0.5 
were removed. Lines were added to the plots to highlight trends across simulated conditions. Target ranges of power > 0.80, 
coverage rates (of 95% CIs) between 0.925 and 0.975, and absolute relative bias < 0.10 are highlighted in grey.
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innovation variances, s2
lnðr2

f
Þ
: Nevertheless, the multi

level approach for estimation of individual ui esti
mates might be beneficial and potentially outperform 
PS2-step in conditions with low T and increased num
ber of missing values. Indeed, ML2-step showed slightly 
better performance in conditions with T¼ 50 and the 
highest number of missing values (i.e., 20%[r]), such 
as increased recovery of ui; and similar power and 
bias compared to PS2-step (see Figure 4). However, the 
gains were marginal, with an overall worse perform
ance than PS2-step.

Simulation study III – “regression to the 
mean”

In the above simulations, we assumed that individual 
means (li) were uncorrelated with both AR and the 
EC. However, in applied settings, mean levels (e.g., of 
positive and negative affect) are often of interest and 
highly predictive of psychological well-being (e.g., 
Dejonckheere et al., 2019). In consideration of these 
findings, we conducted Simulation Study III to exam
ine how the presence of non-zero relations between 
mean levels and AR (ql, u) as well as mean levels and 
the EC (ql, EC) might impact the estimation accuracy 
of the AR prediction parameter.

As described by Asparouhov et al. (2018), the esti
mation accuracy of random effects in two-level mod
els may benefit from higher random effect 
correlations. For a two-level AR(1) model with high 
correlations between individual ui and lnðr2

i Þ; they 
observed an improved recovery of individual ui esti
mates. Based on this notion—multiple correlated ran
dom effects may inform one another during model 
estimation—we expected 1) an increased reliability of 
individual AR parameter estimates in the presence of 
correlated random effects (i.e., ql, u 6¼ 0), and 2) that 
this translates into more accurate AR predictor par
ameter estimates. However, we expected this 
“information flow” to be primarily unidirectional, 
with random intercepts (i.e., means) exerting a stron
ger influence on the accuracy of the random slopes 
(i.e., AR) than the other way around, due to the more 
reliable estimation of mean as compared to AR 
parameters. Consequently, the effect should be less 
prominent in longer time-series (i.e., with increasing 
ui reliability). This raises the question to what extent 
this flow of information may affect estimates of the 
relationship between AR and an EC.

Consider the (exaggerated) scenario of a perfect 
correlation between individual means and an EC 
(ql, EC ¼ 1) and a positive random effect correlation 
(ql, u > 0Þ and its consequences for estimates of the 

Figure 5. Simulation Study III. Relative Bias of bu in Simple and Multiple Regressions Controlling for li: Estimation approaches 
(BAY¼ one-step, PS2-step ¼ person-specific two-step, ML2-step ¼ multilevel two-step) are indicated by point shapes (and color, see 
online version of the figure). ql, EC ¼ correlation between individual means and the EC, qlu random effects correlation indicated 
by line type. T¼Number of time points. The area of absolute relative bias < 0.10 is highlighted in grey. Note that in all conditions 
the correlation between AR and the EC was kept constant at q ¼ .30.
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AR-EC-relation. For ML2-step, which underestimated 
the latter association in nearly all simulation condi
tions tested above, we may observe a compensating 
effect if the true relation between AR and the EC is 
positive. In contrast, the negative bias might further 
increase if we assume ql, EC ¼ −1:

In a fully crossed design, we varied ql, u and ql, EC 
in margins of −0.3, 0, and 0.3, and sample sizes (i.e., 
N and T) were selected similarly to simulation study 
II (see Table 2 for details). We focus on the accuracy 
of bu in simple linear and in multiple regression mod
els controlling for the mean.

Results

Complete simulation results are provided in Tables 
S14–S17 and Figures S6–S9. Here, we focus on the 
relative bias in bu in conditions with N¼ 100. As 
observed in simulation study II, the relative bias of 
the prediction parameters remained consistent across 
different levels of N.

Figure 5 shows the relative bias in bu for varying 
levels of T, ql, u; ql, EC as a function of the chosen 
estimation approach. Notably, for ML2-step, the bias in 
bu in simple regression models was moderated by the 
signs of ql, u and ql, EC with the largest differences at 
low T. Recall that throughout, the EC was generated 
to be positively correlated with AR (q ¼ 0.3). In con
ditions where the signs of both ql, u and ql, EC were 
also positive, applying ML2-step yielded less biased esti
mates (less underestimation) even at low values of T, 
suggesting that the estimation of bu capitalizes on the 
unidirectional associations ql, u and ql, EC: However, if 
either ql, u or ql, EC were of a negative sign, the pat
tern flipped, resulting in an even more pronounced 
negative bias in bu: Furthermore, if either ql, u ¼ 0 or 
ql, EC ¼ 0, the bias in bu only depended on T. This 
interaction observed for ML2-step did not occur for 
BAY or PS2-step estimation, which both yielded result 
patterns consistent with simulation study II, with BAY 
showing the best performance.

Interestingly, when individual means were included 
as a second predictor alongside AR, the interaction 
pattern for ML2-step also vanishes. This conclusion was 
further supported by the generally consistent reliabil
ity of ui estimates across different levels of ql, u and 
ql, EC (see Figure S6).

Simulation study III highlights a non-intuitive fac
tor that can affect the accuracy of AR prediction 
parameters when using ML2-step. This observation 
aligns with findings from the empirical example, 
where individual means of negative affect were 

positively correlated with the outcome (r¼ 0.56) and 
AR (r¼ 0.42). Consequently, for ML2-step a higher 
first-order correlation between AR and depressive 
symptoms (r¼ 0.34) compared to PS2-step (r¼ 0.25) 
could be observed.

Overall, we conclude that the results further 
strengthen the recommendation to choose a one-step 
over two-step modeling approaches.

Discussion

The present study examines dynamic indicators for 
their use as single and joint predictors of a time- 
invariant outcome. We observed that associations 
between inertia and time-invariant outcomes are likely 
underestimated in common AA scenarios (i.e., T< 200) 
when applying a two-step estimation approach that fails 
to account for the low reliability of individual ui esti
mates. Based on the simulation results, we strongly 
advise against using two-step approaches, given the 
considerable negative bias observed in the respective 
regression weights for ui: This result is in line with pre
vious studies promoting a one-step approach (Liu et al., 
2021; Wenzel & Brose, 2023). Notably, the negative bias 
in bu when applying a two-step approach was reduced 
only by increasing the length of the time series (T), 
however, relative bias was still beyond acceptable levels 
even with as many as 200 time points. This result ques
tions their use when considering participant burden. As 
an alternative to two-step approaches, we suggest the 
use of multilevel latent time-series models in a one-step 
approach. Note that recently, for similar reasons, 
Wenzel and Brose (2023) suggested a related one-step 
approach, which differs from the model proposed here 
with respect to the modeling strategy used to increase 
the reliability of individual ui estimates. While Wenzel 
and Brose (2023) estimate ui effects on the level of sin
gle items (e.g., “sad” and “angry”) and subsequently 
load them on a common factor, the model proposed 
here defines time-specific latent factors for the items at 
the within-person level and estimates the ui effects for 
these measurement-error free latent factors. Both 
approaches come with advantages and disadvantages. 
While the former approach allows items to have differ
ent levels of inertia, it still assumes that these show the 
same correlational pattern with the external criterion 
variable of interest. Additionally, ui effects are poten
tially underestimated due to specifying AR effects on 
the manifest items afflicted by measurement-error (and 
thereby potentially estimated less reliably in case of 
individually-varying item reliabilities; Schuurman & 
Hamaker, 2019). In contrast, the approach presented 
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here requires that the items measure a common under
lying latent variable (e.g., different items measuring 
affective valence), with a single, common AR effect of 
this latent variable. This approach avoids underestima
tion of AR effects and additionally considers person- 
specific innovation variances defined on the level of 
latent variables, which might be used as additional pre
dictor variables.

In contrast to prior studies comparing one-step 
and two-step approaches (Liu et al., 2021; Wenzel & 
Brose, 2023) as well as person-specific and multilevel 
approaches for estimation of individual dynamic 
parameters (Liu, 2017, 2018), we allowed innovation 
variances to differ between subjects. Differences in 
innovation variances are not only relevant from a stat
istical point of view but also provide an alternative 
indicator of affect variability that captures the effects 
of all internal and external influences that cannot be 
predicted by previous states alone (Jongerling et al., 
2015). Interindividual differences in innovation var
iances were argued to reflect subjects’ differences in 
responsiveness to or in the exposure to external fac
tors (Hamaker et al., 2018), and in the perception of 
emotions as predictable or erratic (Simons et al., 
2021). Given the potential bias created in individual 
ui estimates and between-level regression weights if 
falsely assuming constant innovation variances, testing 
for violations of this assumption seems advisable.

This study is not the first to illustrate statistical 
overlap between complex affect indicators, such as 
MSSD and inertia (AR) and static variability indices 
(e.g., Jahng et al., 2008; Wang et al., 2012). In contrast 
to previous studies, we provide extensive information 
on the conditions under which substantive associa
tions of these IADs with an EC may be expected to be 
discovered in applications. In applied settings, for 
instance, examining individual differences in depres
sive symptoms (e.g., Bos et al., 2019; Koval et al., 
2013) authors concluded that after accounting for 
interindividual differences in static variability of nega
tive affect, unique contributions made by emotional 
inertia (AR) and affective instability (MSSD) were 
non-substantial. As previously argued, these findings 
might indicate that complex IADs are irrelevant as 
predictors of psychological health outcomes beyond 
individual means and variances (Dejonckheere et al., 
2019). This question may not be resolved within the 
present paper. However, we believe that the underly
ing assumptions under which these results occur need 
to be made explicit to inform researchers on the selec
tion of their measure of variability and analysis strat
egy. The present results suggest that multiple factors 

afford consideration when testing complex IADs for 
their predictive utility (beyond measures of affect vari
ability). First, the statistical overlap between MSSD 
and static variability measures (i.e., ISD, and ISD2), 
given an AR(1) model holds, might be of substantial 
magnitude, depending on the between-subject joint 
distributions of ui and lnðr2

fiÞ: Note that this overlap 
might vanish in non-stationary time series (Jahng 
et al., 2008). Second, the choice of (static) affect vari
ability indicator affects the unique contribution ui can 
make, as, due to mathematical dependencies, ISDi car
ries parts of the dynamic information captured in ui:

The respective statistical overlap depends on the 
amount of inter-individual differences in innovation 
variances, rendering the practice to estimate ui under 
the assumption of constant lnðr2

fiÞ questionable. Our 
findings suggest that, given the AR model holds, ui 
tends to show more positive relations with ISD com
pared to lnðr2

fiÞ; reducing predictive power of ui in 
case of unidirectional relations between IADs and the 
outcome. Hence, true relations between an outcome 
with ui and ln r2

fi

� �
might be masked (Jongerling 

et al., 2015; Wang et al., 2012). This conclusion was 
corroborated by the reanalysis of an empirical data 
set, testing for the role of temporal dependency in 
negative affect for predicting depressive symptoms 
above and beyond static affect variability.

We would like to stress that, although not investi
gated in detail in the present study, assumption of a 
linear relationship between IADs and an external out
come might not be adequate in many applied sce
narios. We therefore recommend researchers to 
always explore the form of relationship and rely, for 
instance, on spline-based regression approaches in the 
case that relationships are prone to be non-linear. 
Note, however, that the main findings from our simu
lation studies remain the same irrespective of the 
functional form used in the outcome model. That is, 
the effect of ignoring low reliability in the IAD esti
mates or measurement error in the observed time ser
ies will affect the predictive power of IAD estimates 
irrespective of the form of relationship that is 
assumed between IAD estimates and an outcome.

One shortcoming of the presented model and sim
ulations is the assumption of constant item reliabilities 
across persons. That is, if measurement error varian
ces vary across persons, disregarding these differences 
may result in less reliable ui estimates. However, 
models accounting for inter-individual differences in 
item reliabilities (see, e.g., Schuurmann & Hamaker, 
2019) tend to be complex and may require larger T 
for adequate estimation accuracy. Second, we did not 
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consider the issue of potentially varying time intervals 
between observations. As these play an important role 
for the estimation and interpretation of AR effects 
(and innovation variances), considering varying time 
intervals across persons and time in the estimation of 
IADs is tantamount in empirical applications. Note, 
however, that the decision to not simulate differences 
in time intervals does not affect the conclusions of the 
simulation study.

In conclusion, our simulations show that person- 
specific dynamic indicators are more sensitive to the 
number of time points, common AA realities such as 
missing values and measurement error, and the choice 
of an estimation approach, as compared to their static 
counterparts, impacting statistical inferences made on 
their relevance as predictors of third-variable outcomes. 
These limitations can be circumvented by using latent 
variable multilevel time-series models and a one-step 
approach, which provide accurate regression estimates 
and are suitable to inform future meta-analyses on the 
role of measures of temporal dependency as predictors 
of time-invariant outcomes. Further, choosing individ
ual innovation variances over indicators of static affect 
variability in the prediction of measures of psycho
logical well-being may reveal otherwise masked rela
tions between emotional inertia and the outcome of 
interest. Nevertheless, whether the decomposition of 
the overall variability of a time-series into the explained 
(inertia) and unexplained part (innovation variance) for 
their use as joint prediction of time-invariant outcomes 
is a fruitful endeavor remains a substantive question. 
We hope that the presented results can provide a prom
ising way forward to resolving the question whether 
persons’ differences in moment-to-moment fluctua
tions carry meaningful information that may be rele
vant for the prediction of outcomes beyond static 
variability.
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