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ABSTRACT

Cross-lagged panel models (CLPMs) are commonly used to estimate causal influences
between two variables with repeated assessments. The lagged effects in a CLPM depend on
the time interval between assessments, eventually becoming undetectable at longer inter-
vals. To address this limitation, we incorporate instrumental variables (IVs) into the CLPM
with two study waves and two variables. Doing so enables estimation of both the lagged
(i.e, “distal”) effects and the bidirectional cross-sectional (i.e., “proximal”) effects at each
wave. The distal effects reflect Granger-causal influences across time, which decay with
increasing time intervals. The proximal effects capture causal influences that accrue over
time and can help infer causality when the distal effects become undetectable at longer
intervals. Significant proximal effects, with a negligible distal effect, would imply that the
time interval is too long to estimate a lagged effect at that time interval using the standard
CLPM. Through simulations and an empirical application, we demonstrate the impact of
time intervals on causal inference in the CLPM and present modeling strategies to detect
causal influences regardless of the time interval in a study. Furthermore, to motivate empir-
ical applications of the proposed model, we highlight the utility and limitations of using
genetic variables as IVs in large-scale panel studies.

Introduction

focus on the impact of measurement intervals on the

causal estimates in the traditional CLPM and the IV-

-1 1 Is (CLPM idel
Cross agged p an'e m(?de s (C ) ar'e widely used to CLPM, using both simulated and empirical data.
infer causal relationships between variables by analyz-

ing observational data with repeated assessments. The
magnitude and statistical significance of the lagged
causal effects in the CLPM depend on the time interval
between repeated assessments (Kuiper & Ryan, 2018).
The lagged effect typically decays with an increasing
time interval, which limits the reliable detection of
causation in the CLPM. To address this limitation, we
incorporate instrumental variables (IVs) into the
CLPM (henceforth, IV-CLPM) to estimate both cross-
sectional and lagged causal effects. In this paper, we

The CLPM is used to estimate causal influences over
time based on Granger causality (Granger, 1969),
wherein the cause temporally precedes the outcome and
predicts the future values of the outcome. In the simplest
CLPM (Figure 1(A)), two variables, say X and Y, are
assessed on two occasions (T, and T,). The model is
considered “crossed” as it allows for the estimation of
bidirectional causal influences between X and Y, and it
is considered “lagged” as the effects are estimated across
time (i.e., from T; to T5). In addition, the CLPM con-
trols for (i) the cross-sectional correlation between the
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Figure 1. (A) CLPM: The cross-lagged panel model (CLPM) is used to estimate bidirectional lagged effects between X and Y (byax
and by,y1). This model was used as the reference model for integrating instrumental variables. (B) IV Regression: The instrumental var-
iables regression (IVR) model fitted in a Structural Equation Modeling framework. The model uses the instrumental variable for X, /Vx,
to estimate the causal effect of X on Y (byy). (C) IV-CLPM: The proposed IV-CLPM model combines the CLPM with bidirectional IVR
applied cross-sectionally at each wave. In addition to the lagged (i.e., “distal”) effects by,x; and by,y1, the model utilizes IVR to esti-
mate cross-sectional (i.e., “proximal”) effects at each wave: by x; and bxyy; at wave 1, and by,x, and by,y, at wave 2. In all three path
diagrams, squares/rectangles represent the observed variables, and circles represent latent variables. To improve readability, the mod-
eling of means is not shown in this figure. For complete path diagrams with means, please see Figure A1 in the Appendix A.

residuals of X and Y on each occasion (subsuming the
covariance due to omitted confounding variables), and
(if) autoregressive effects across time, indicating the
degree of stability of each construct (X and Y) over time.
The predictive causal inference in CLPM may help to
identify potential targets for interventions when experi-
mental designs are either infeasible or unethical. As a
result, the CLPM has long been a particularly appealing
approach in social and behavioral research (e.g., Becker
et al, 2012; Hawkley et al, 2010; Lac & Donaldson,
2021; Patalay et al., 2015; van Ouytsel et al., 2019).

The lagged effects estimated in the CLPM depend
on the time interval between repeated observations

taken at times T and T, i.e., AT =T, — T; (Kuiper
& Ryan, 2018). In practice, the time scale of measure-
ments depends on multiple factors, including the pro-
cess being studied, the research design, and the
feasibility of the time frame. It may range from milli-
seconds to months for neuroimaging, behavioral, and
psychological traits and to years for maturational proc-
esses. Given an appropriate time scale, as the time inter-
val between the predictor and the outcome increases,
the lagged effect decays asymptotically (e.g., as seen with
the influence of loneliness on blood pressure; Hawkley
et al., 2010), ultimately becoming practically undetectable
at longer time intervals. Consequently, the failure to
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reject the null hypothesis of no causation may be due to
either the absence of a causal effect or an inappropriate
time interval. For example, in a study of problem behav-
iors in early adolescence, Becker et al. (2012) found that
delinquent behaviors predicted marijuana use, but not
alcohol use, assessed nine months later. Here, the inter-
pretation of the non-significant lagged effect of delin-
quent behaviors on alcohol use is ambiguous. One
cannot distinguish whether delinquent behaviors do not
have a causal effect on alcohol use, or whether the time
interval is too long for this effect to be detected.
Therefore, a lack of evidence for lagged effects at a given
time interval cannot be generalized to the overall causal
relationship between two traits.

Among alternative methods of causal inference with
observational data, Instrumental Variables Regression
(IVR) is increasingly popular in fields, such as econom-
ics (e.g., Cambini & Rondi, 2010; Hassan et al., 2020;
Rakowski & Yamani, 2021) and epidemiology (e.g.,
George et al, 2022; Hamer et al, 2021; McDowell
et al., 2015). This approach uses one or more exogen-
ous predictors (i.e., the instrumental variables, IVs) of
the hypothesized causal variable X to estimate its effect
on the outcome Y. If the assumptions of IVR are met,
the regression coefficient in the regression of ¥ on X
represents the causal effect of X on Y (Bollen, 2012).
Maydeu-Olivares et al. (2019) and Minica et al. (2018)
have demonstrated that the IVR model can be imple-
mented within the SEM framework using Maximum
Likelihood estimation.

Although the IVR model allows for the estimation
of causal effects in cross-sectional data, it does not
necessarily imply that there is no temporal ordering
of the cause and the outcome in the underlying causal
process. This is because temporal precedence of the
cause over the outcome has usually been accepted as a
prerequisite for causality since David Hume’s seminal
work in the philosophy of causation (Hume, [1739]
2009). For example, in a population-level study of the
relationship between unemployment and mental
health in Finland, Amin et al. (2023) demonstrated
using IVR analyses that unemployment rates had a
detrimental causal effect on self-reported mental
health. Here, the IVR analyses allowed the authors to
differentiate the causal effect of unemployment on
mental health from other sources of covariance (e.g.,
omitted confounding variables or reverse causality),
even though the two variables were assessed simultan-
eously. However, in the underlying causal process,
unemployment (the cause) would still be expected to
happen before a consequent decline in mental health
(the outcome).

In this paper, we combine IVR with the CLPM by
incorporating two IVs (one for each construct) in the
traditional CLPM (henceforth, IV-CLPM). In addition
to the lagged (i.e., “distal”) effects traditionally esti-
mated in the CLPM, the IV-CLPM approach enables
us to estimate cross-sectional (i.e., “proximal”) causal
influences at each wave, without needing temporal
ordering of the two variables. Using simulated data,
we compared the proposed IV-CLPM and the trad-
itional CLPM approaches and investigated how the
time interval between repeated assessments impacts
the causal inference in both models. We demonstrate
that, while the distal effects become undetectable at
longer time intervals, the causal relationship between
X and Y remains detectable in the IV-CLPM in the
two proximal effects (one at each wave). With the
three causal effects estimated in the IV-CLPM, it is
possible to test these parameter estimates separately or
jointly using likelihood-ratio tests, which helps to
evaluate different temporal aspects of causal influen-
ces. Furthermore, comparing these likelihood-ratio
test statistics provides a novel way to examine whether
the time interval in a study is appropriate for studying
Granger-causal influences between variables.

To provide an empirical example, we examined the
causal influences between cigarette smoking and alcohol
consumption using genetic variants as IVs. Tobacco and
alcohol are among the most commonly used legal sub-
stances of abuse (Hurley et al., 2012) and are leading
contributors to the global disease burden (Gakidou
et al,, 2017). Epidemiological studies demonstrate a high
degree of comorbidity between tobacco smoking and
alcohol use (Mckee & Weinberger, 2013). However, sim-
ple regression models in observational data cannot dif-
ferentiate the extent to which this comorbidity can be
attributed to (i) the causal effects of smoking on alco-
hol use, (ii) the causal effects of alcohol use on smok-
ing, and (iii) the effects of omitted variables influencing
both smoking and alcohol use. The third category
could include biological (e.g., genetic factors, brain
reward pathways), psychological (e.g., externalizing and
internalizing behaviors), and social (e.g., contextual
cues) factors (Hurley et al., 2012). Moreover, evidence
from experimental psychopharmacological studies sug-
gests that the potential causal effects between smoking
and alcohol use could plausibly be acute (i.e., prox-
imal), chronic (i.e., distal), or both (Hurley et al., 2012;
Mckee & Weinberger, 2013).

In our empirical analyses, we analyzed two waves
of repeated assessments from the Netherlands Twin
Register (Ligthart et al., 2019) to compare the CLPM
and the IV-CLPM models, examining bidirectional



causal influences between cigarette smoking status and
alcohol use (drinks per week). Through this example,
we demonstrate the etiological insights obtained by
incorporating IVs into the CLPM, as well as the utility
of using genetic variants (identified in genome-wide
association studies) as IVs in large-scale panel studies
with genetic data.

Methods
Instrumental variables regression

The SEM specification of the Instrumental Variables
Regression (IVR) model (Maydeu-Olivares et al., 2019)
is shown in Figure 1(B). In this model, the effect of X
on Y can be estimated using the instrumental variable
for X (IVx), even if X and Y are assessed simultaneously.
Per this model, X completely mediates the effect of IVx
on Y, such that IVx has no direct effect on Y. The IVR
model also allows us to estimate the covariance between
the residuals of Y and X (Covgy), in addition to the
coefficient of the regression path from X to Y (byx). If
the correlation between the residuals of Y and X is
small, standard regression approaches may be appropri-
ate for estimating the approximate causal effect of X on
Y. By adding the instrumental variable IVx to the model,
this assumption can be investigated empirically.

Formally, the instrumental variable, IVx, is required to
satisfy three main assumptions (Labrecque & Swanson,
2018): (i) it is associated with X (“relevance”), (ii) it is
not correlated with the residual variance of Y, given X
(“exclusion restriction”), and (iii) it is independent of the
(omitted) confounding variables (“exchangeability”). As
shown by Maydeu-Olivares et al. (2020), under these
assumptions, IVR can provide consistent estimates of the
causal effect of X on Y, and it is robust to alternative
sources of covariance between X and Y, including omit-
ted confounding variables, reciprocal causation, reverse
causation, and no causation. As is the case in any statis-
tical model, inference of the causal estimates in IVR
depends on the IV assumptions being satisfied. However,
it may not be possible to assess some of these assump-
tions empirically (such as restriction”),
behooving researchers to rely on theoretical reasoning for
the selection of appropriate IVs. In addition, sensitivity
analyses may help to examine the robustness of the
causal estimates to assumption violations.

<« .
exclusion

IV-CLPM

The proposed IV-CLPM model is shown in Figure 1(C).
The model incorporates two IVs, IVx and IVy, into the
traditional CLPM with two time-points, thus allowing
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for the IVR model to be applied cross-sectionally at
each study wave. Adding IVs to the CLPM allows us to
estimate three types of causal effects between X and Y.
First, the IVR-estimated cross-sectional (i.e., proximal)
effects at wave 1 (by;x; and byxiy;) reflect the causal
process that unfolded up fo the first assessment. Second,
the lagged (i.e., distal) effects of X; on Y, (byax1) and of
Y, on X; (bxay1) represent the Granger-causal influen-
ces between X and Y, given the time interval between
waves 1 and 2. Third, the IVR-estimated proximal
effects at wave 2 (byyx, and bxyy,) reflect the causal
influences that unfolded between waves 1 and 2 but
were not captured by the distal effects. Thus, the wave-2
proximal effects represent conditional IVR estimates,
controlling for the IVR estimates at wave 1 and the dis-
tal Granger effects. The terms “proximal” and “distal”
underscore the temporal relationship between the pre-
dictor and the outcome for that estimate, indicating
whether the outcome (e.g., Y,) was assessed simultan-
eously (byax,) or on a subsequent occasion (byzx1).

Data generation

We simulated time-series data with reciprocal causal
effects between two variables, X and Y (Figure 2), to
compare our proposed IV-CLPM with the traditional
CLPM. We included two IVs in the simulated data:
IVx with a direct effect on X, and IVy with a direct
effect on Y, on every occasion. In the data-generating
model, we only include lagged paths to represent the
causal effects between X and Y. This specification is
consistent with the expectation that, in the true causal
process, the cause temporally precedes the outcome.

To generate the data, we calculated the expected
covariance matrix with a selected set of parameter val-
ues, given T = 150 time points, using the Reticular
Action Model (RAM; McArdle & McDonald, 1984)
formula for the covariance structure:

E=(I-A)7"s (1-A)"",

where X is the expected covariance matrix. As men-
tioned in the introduction, the time scale of these 150
repeated measurements would depend on the variables
studied, potentially varying from milliseconds to years.
Given two variables (X and Y) on each of the T time
points, plus two IVs (IVx and IVy), X is m x m,
where m =2(1+ T). The matrix A (m x m) con-
tains the bidirectional proximal and distal regression
coefficients, the coefficient of the regression of X on
IVx, and the coefficient of the regression of Y on IVy.
The matrix S (m x m) contains the variances and
covariance of IVx and IVy, the residual variances of X
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Figure 2. Data-generating model: The data-generating model with bidirectional first-order causal effects between X and Y (byy
and byy) simulated over 150 time points. The instrumental variable for X, /Vx, has an unchanging direct effect on X (by) at every
time point. Likewise, the instrumental variable for Y, IVy, directly affects Y (by) at all time points. Squares/rectangles represent the
observed variables, and circles represent latent variables (i.e., the variances in this model). To improve readability, the modeling of
means is not shown in this figure. For a complete path diagram with means, please see Figure A2 in the Appendix A.

and Y, and the cross-sectional covariances of these
residuals.

Given the m x m covariance matrix X, we simulated
data with an arbitrary N = 1000, using the mvrnorm()
function in the MASS package (Venables & Ripley,
2002), with the option empirical =TRUE (ie., exact
data simulation; van der Sluis et al., 2008). This method
ensures that the covariance matrix of the simulated data
exactly equals X and that the true parameter values are
recovered exactly upon fitting the true model to the data.
In other words, the exact-data simulation approach is
analogous to fitting a model to the exact population
covariance matrix and means vector. Furthermore, this
approach ensures that the likelihood-ratio test statistic
obtained when a parameter is fixed to zero equals the
non-centrality parameter of the non-central chi-square
distribution, with no stochastic variation.

We simulated multiple datasets using different per-
mutations of parameter levels for data generation,
allowing us to examine the impact of population
parameters on the changes in causal estimates across
time intervals. These parameters included the first-
order causal path from X to Y, byx € (0.1, 0.2), the
first-order causal path from Y to X, bxy € (0.1, 0.2),
the first-order autoregressive path (AR1) of X, bx,x1 €
(0.5, 0.7), ARl of Y, byyy; € (0.5 0.7), and the
cross-sectional correlation between the residuals of X
and Y, 1oy = CExEyi/\/m € (0.1, 0.3), set
to be constant across all occasions. Both IVs were
standardized to have a mean of 0 and a variance of 1,
and had a correlation, r;y = r(IVx,IVy) = 0.25. The
direct effect of IVx on X on every occasion was set at
bx = 0.08, while the direct effect of IVy on Y
was by = 0.08.

To examine the impact of time intervals on the
causal estimates, we considered a stationary model. In
a stationary time-series, the time index (i) has essen-
tially no impact on the cross-sectional covariances (X;)
among the variables (Gagniuc, 2017; Ryabko, 2019).
When parameters are estimated in such a system, they
depend on the time interval, AT =T; — T; (i > j),
but not on the particular time points T; and T;. To
operationalize stationarity in this report, we consider it
achieved when the elements of X; differ from those of
¥, 1 by <0.0001.

The data-generating model used in this study is a
Markovian process, i.e., the information at time point
T; subsumes all past information and is sufficient to
predict the information at the subsequent time point
Tit+1. The system is also time-homogeneous, i.e., the
values of the causal paths do not change with the
time index. When such a time-series is simulated with
admissible parameter values over an extended number
of time points, it usually meets the stationarity criteria
beyond a certain time point. We established that the
data-generating model achieved stationarity by T = 70,
giVCl’l bYX = 0.2, bXY =0.2, bXZXl = 0.7, bYZYl = 0.7,
Texy = 0.1. When the AR1 (bysx1 and byyyi) parame-
ters were smaller, the model reached stationarity at an
earlier time point. We discarded data before T = 100,
thus ensuring stationarity. (See Appendix Table Al for
the correlations between variables over a range of time
points beyond T = 100.)

At stationarity, the effect size of an IV on its
respective variable depended on the values of the
other data-generating parameters. Thus, the R* for the
regression of X on IVx in the stationary model ranged
from 2.09% (given bYX = 0.1, bXY = 0.1, bXZXl = 0.5,



bysy1 = 0.5, 7oy, = 0.3) to 8.03% (given byx = 0.2,
bXY = 0.2, bXZXl = 0.7, by2y1 = 0.7, rexy = 01) The
regression of Y on IVy had an equivalent R?, as simi-
lar parameter values were used for X and Y. These
parameter levels were chosen to be consistent with
modest-sized regressions of behavioral and psychiatric
traits on exogenous IVs (e.g., polygenic scores), and
with commonly observed AR1 parameter estimates.
We also considered a unidirectional version of the
IV-CLPM, which uses the instrumental variable IVx
to estimate the proximal and distal effects of X on Y
(Appendix Figure A3). To test this model and compare
it to the bidirectional version, we simulated a time-series
with unidirectional causal effects of X on Y (ie., with
the effect of Y on X set to zero), given N = 1000 and
the following parameter settings: byx = 0.4, bxy =0,
bXZXl = 0.8, byzyz = 0.8, rexy =0.3, bX =0.1, bY =
0.1, and 7y = 0. The time-series reached stationarity
by around T = 50. To ensure stationarity for model-fit-
ting, we discarded the data before T = 100. At statio-
narity, the R? for the regression of X on IVx was 8.26%.

Model fitting

To each simulated dataset, we fitted a series of IV-
CLPMs with varying time intervals. To do so, we set
wave 1 at time point T = 100 and wave 2 at T + AT,
and we changed the AT sequentially from 1 to 50, thus
increasing the time interval (Appendix Figure A4).
Because the data-generating model is stationary, the 50
models fitted to a particular dataset differed only in the
time interval between the two waves. This design allowed
us to examine how the time interval between study
waves influences the distal and proximal effects estimated
in the IV-CLPM (Figure 1(B)). To compare the IV-
CLPM with the traditional CLPM, we also fitted models
without the IVs and the proximal effects to obtain distal
effects in the standard CLPM (Figure 1(A)), using the
same datasets. Further, the datasets simulated using dif-
ferent parameter values allowed us to examine the impact
of population parameters on the causal estimates, given
varying time intervals in a stationary model.

We tested the causal parameter estimates in both
models using likelihood-ratio tests (LRTs; Wilks,
1938). The LRT statistic equals the difference between
the —2x log-likelihood (—2InL) of the freely estimated
model and that of a nested, restricted model with one
or more of the causal parameters fixed to zero. When
using exact data simulation, the LRT statistic from fix-
ing a parameter equals the non-centrality parameter
(NCP) of non-central chi-square distribution, which
can be used to calculate the statistical power to reject
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the null hypothesis (van der Sluis et al., 2008). Thus,
larger NCP values indicate higher power to estimate
the tested parameter.

In the traditional CLPM, bidirectional causation
can be tested using a two-degrees-of-freedom (2df)
LRT of the reciprocal distal effects between X and Y.
If the 2df LRT is significant, follow-up 1df tests can
be used to discern the distal effect in each direction of
causality. By contrast, in the IV-CLPM, the causal
influences can be first tested through a 6df LRT of all
three types of bidirectional causal effects (across time,
at wave 1, and at wave 2), providing an omnibus test
of causal influences between X and Y, given the data
from two study waves. A significant omnibus test can
be followed up with a 3df joint LRT of the three
causal effects in each direction, followed by separate
1df LRTs of each causal parameter.

To assess whether the IV-CLPM provides a better
modeling approach than the CLPM at a particular time
interval, we conducted a joint 2df LRT of (unidirec-
tional) distal and wave-2 proximal effects in the former,
and compared it with the CLPM’s 1df LRT of distal
effect. Both these LRTs test the null hypotheses for the
causal influences occurring between waves 1 and 2. So,
the larger the difference between the NCPs of the two
tests, the more substantial the benefit of fitting the IV-
CLPM and estimating the wave-2 proximal effect.

We also fitted both the unidirectional and the
bidirectional IV-CLPM to the dataset simulated with
unidirectional causation. As before, we set wave 1 at
T =100 and wave 2 at T + AT, with AT increasing
sequentially from 1 to 50. We compared the NCPs in
the two models to investigate whether fitting the uni-
directional model increases the power to detect caus-
ation (vs. the bidirectional model) in data with
unidirectional effects.

Empirical application

We used both the CLPM and the IV-CLPM models to
examine bidirectional causal influences between cigar-
ette smoking status and alcohol use (drinks per week),
using relevant genetic variants as IVs. For these analy-
ses, we used data from the Netherlands Twin Register
(NTR; Ligthart et al., 2019), which is a community-
based longitudinal study of twins and their families,
established at the Vrije Universiteit (VU) Amsterdam.
The NTR study has been approved by the Central Ethics
Committee on Research Involving Human Subjects of
the VU Medical Center, Amsterdam (IRB codes 2008/
244 and 2010/359). Informed consent was obtained
from all study participants before data collection.
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The NTR collects data on health, behaviors, per-
sonality, and lifestyle factors, along with biological
samples, including DNA from whole blood and buccal
tissue. The DNA samples have been genotyped on sin-
gle-nucleotide polymorphism (SNP) microarrays. The
human genome has ~3.2 billion nucleotide base pairs
(the smallest unit of DNA). A SNP is a genetic locus
that is one base-pair long, where more than one type
of nucleotide exists in the population; hence the term
SNP (often pronounced “snip”). Tens of millions of
SNPs have so far been identified in the global human
population (Auton et al., 2015). SNP microarrays pro-
vide a scalable laboratory tool for measuring (ie.,
“genotyping”) a subset of the common SNPs (typically
around a million) that an individual carries (Wang
et al., 1998). These genotyped SNPs can then be ana-
lyzed as markers to identify genetic loci associated
with a trait of interest. Such a study design is known
as a genome-wide association study or GWAS
(Uffelmann et al., 2021). As explained below, the
SNPs associated with a trait (or a weighted sum of
such SNPs) can serve as potential IVs (provided other
IV assumptions are satisfied).

Participants

In the current analyses, we included genotyped
European-ancestry adult individuals with two waves
of survey data collected three years apart: the Adult
NTR (ANTR) Survey 8 (in 2009) and the ANTR
Survey 10 (in 2012). (Henceforth, we refer to these
two surveys as waves 1 and 2, respectively.) To avoid
the clustering of study participants within families, we
selected one individual per family for the current
analyses. In these analyses, we included data from
4895 individuals, with 3983 and 3803 participants hav-
ing non-missing observations at waves 1 and 2,
respectively. This sample comprised 1745 males and
3150 females (self-reported gender, matched with bio-
logical sex inferred from the genotype). The age at
wave 1 ranged from 15 to 94years (Mean = 43.95,
S.D. = 15.87 years), while wave 2 had an age range of
18 to 90years (Mean =46.96, S.D.=16.71 years).
Sex and age were used as covariates with fixed effects
at each wave in both the CLPM and the IV-CLPM.

Measures

Current cigarette smoking status and alcohol use were
measured through self-reports. Smoking status assess-
ment consisted of three response options: “Never
smoked regularly,” “Used to smoke but quit” (i.e., for-
mer smoking), and “Currently Smoking.” We treated
this measure as an ordinal variable with a normally

distributed latent liability, under the Liability
Threshold Model (Verhulst & Neale, 2021). We fixed
the two thresholds (corresponding to the three levels)
at —0.5 and 0.5, allowing us to freely estimate the
mean and variance of the underlying liability scale at
each wave (Mehta et al., 2004). Alcohol Use was oper-
ationalized as the number of alcoholic drinks con-
sumed per week. The participants reported their
current consumption of a variety of alcoholic drinks
in a typical week, which was aggregated into a seven-
point scale (<1, 1-2, 3-5, 6-10, 11-20, 21-40, and
>40 drinks per week). We treated this variable as a
continuous variable. Figure 3 shows the distribution
of both traits at each wave (four variables in total).
The numbers of non-missing observations on each
variable and the pairwise subject overlap between vari-
ables are shown in Table 1.

Genetic instrumental variables

We used a weighted sum of SNPs (i.e., a polygenic
score, or PGS) associated with smoking status and
drinks per week as their respective IV. A typical SNP
involves two variant forms (called “alleles”) at a base-
pair position in the population, say A; and A, As
humans have two sets of chromosomes (one from
each biological parent), there are three possible allele
combinations for a given SNP (except the SNPs on
sex chromosomes) in an individual: A;A;, A;A, or
ALA,. The SNP can be coded according to the number
of trait-increasing alleles (say, A,) as 0, 1, and 2,
respectively. A PGS is then computed as a weighted
linear combination of these values across all SNPs asso-
ciated with a trait. The weights are based on the SNP-
trait association effect sizes estimated through GWAS
in an independent, ancestry-matched sample (Wray
et al., 2021). An individual’s PGS for a trait reflects
their genetic propensity for that trait, relative to the
general population. The utility of PGSs as IVs has pre-
viously been demonstrated in other SEM-based exten-
sions of IVR (Castro-de-Araujo et al, 2023; Minica
et al, 2018) and applied empirically (e.g., de Vries
et al., 2021; Lim et al.,, 2022; Oginni et al.,, 2023).

In general, the use of genetic variants as IVs is
referred to as Mendelian Randomization (MR) ana-
lysis (Davey Smith & Ebrahim, 2003; Lawlor et al.,
2008). Here, the term “Mendelian Randomization”
refers to the random segregation and independent
assortment of genetic loci during gamete formation in
the parents. Consequently, the alternative alleles of a
SNP can be assumed to be randomly distributed at
the population level and, thus, be independent of
potential environmental confounding (ie., the
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Figure 3. The univariate distributions of alcohol use and smoking status variables at wave 1 (Adult NTR survey 8) and wave 2
(Adult NTR survey 10) in the Netherlands Twin Register data used in our empirical example. Alcohol use was operationalized as
the number of alcoholic drinks per week, with the seven levels corresponding to <1, 1-2, 3-5, 6-10, 11-20, 21-40, and >40
drinks per week, respectively. The cigarette smoking status variable was a categorical variable with three response options:
1 = “Never smoked regularly,” 2 = “Used to smoke but quit” (i.e., former smoking), and 3 = “Currently Smoking.”

Table 1. The number of observations of each variable and
pairwise overlap between variables.

Alcohol Alcohol Smoking Smoking
atT1 at T2 at T1 at T2
Alcohol at T1 3394
Alcohol at T2 2074 3064
Smoking at T1 2582 1929 3181
Smoking at T2 2123 2464 2336 3203

Note. The study sample comprised 4895 individuals, of whom 3983 and 3803
individuals provided data at waves 1 and 2, respectively. The number
of observations per variable are listed along the diagonal (highlighted).
The off-diagonal values indicate the number of observations of pairwise
overlap between variables.

“exchangeability” assumption). Thus, genetic IVs are
interpretable as Bollen (2012)’s “randomization IVs.”
Another advantage of genetic IVs is that one can
safely assume that there is no reverse causation from
a trait, such as smoking, to the associated SNPs.

In this study, we used the results from large-scale
European-ancestry GWAS meta-analyses of “smoking
initiation” and “drinks per week” (Saunders et al,

2022), excluding the NTR from the GWAS meta-ana-
lysis, to derive PGSs associated with the smoking and
alcohol use measures in the NTR (i.e., the “relevance”
assumption). The PGSs were calculated using LDpred
v0.9 (Vilhjalmsson et al.,, 2015). Both PGSs were resi-
dualized for the SNP microarray platform and the first
10 genetic principal components, and then standar-
dized to have a mean of zero and S.D. of one. As a
PGS summarizes the effects of many SNPs, it has a
much larger effect size than the individual SNPs,
reducing the risk of weak-instrument bias in the IV-
CLPM. In the NTR, the residualized PGS of smoking
explained 2.2 and 2.4% of the variance in the smoking
status at waves 1 and 2, respectively (controlling for
age and sex). Likewise, the PGS of drinks per week
had an incremental R? of 1.2 and 1.0% at waves 1 and
2, respectively. Supplemental Methods describe in
greater detail the methods and procedures used for
genotyping and quality control of the genetic data,
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genetic principal and PRS
calculation.

The two (residualized) PGSs, used as IVs in this
example, showed a Pearson correlation of r = 0.196
(95% confidence interval = 0.168, 0.222). This correl-
ation between the PGSs arises due to covariance
between the SNP-smoking and SNP-alcohol associa-
tions (in the respective GWAS), suggesting a genetic
overlap between the two traits (called “pleiotropy”).
This overlap of genetic signals can arise through mul-
tiple mechanisms. On the one hand, this could imply
a direct causal effect of one trait on the other. For
instance, if alcohol use has a causal effect on smoking,
the SNPs that influence alcohol use will indirectly also
influence smoking. Consequently, these SNPs will be
shared between the two PGSs, albeit with different
weights. This type of genetic overlap (called mediated
or “vertical” pleiotropy) forms the essence of MR
analyses (Richmond & Davey Smith, 2022). On the
other hand, the genetic overlap between traits (and, in
turn, a correlation between their PGSs) can arise if
the SNPs influencing trait X also influence trait Y via
a pathway that excludes trait X (called unmediated or
“horizontal” pleiotropy) (Richmond & Davey Smith,
2022). These SNPs will also be shared between the
two PGSs. For instance, in the current analyses of
smoking and alcohol use, SNPs in the BDNF (brain-
derived neurotrophic factor) gene, which influences
drug reward mechanisms, could show horizontal plei-
otropy and influence the two traits separately (Liu
et al., 2019, p. 240).

Horizontal pleiotropy, if not modeled, is a threat
to the validity of genetic IVs (and standard MR analy-
ses), as it violates the “exclusion restriction” assump-
tion. However, the use of PGSs in the proposed
IV-CLPM is arguably more robust to horizontal plei-
otropy than standard MR approaches, as it allows for
paths (or chains of paths) to connect the PGS of one
trait with the opposite trait, independent of a direct
causal effect between the two traits. Specifically, the
model accounts for the covariance between the two
PGSs, Ciyiy = cov(IV,,1V,) (Figure 1(C)). For instance,
the PGS of smoking (IV,) is thus allowed to covary
with alcohol use at wave 1 (Y;) through the PGS of
alcohol use (IV,), ie., Cii X by, independent of
smoking (Xj). In other words, the direct regression
paths between the traits accommodate vertical plei-
otropy (given true causal effects between the traits),
while the covariance between PGSs potentially accom-
modates genetic confounding or horizontal pleiotropy.
This use of PGSs as correlated IVs in a bidirectional
IVR model, averting (to some extent) potential

component analysis,

violations of the “exclusion restriction” assumption, is
consistent with the model proposed in Castro-de-
Araujo et al. (2023).

Model fitting

We fitted both the CLPM and the IV-CLPM models,
controlling for sex and age at each wave. In both anal-
yses, we began with the full model estimating bidirec-
tional causal effects and then tested more restricted
models to arrive at the most parsimonious model. As
outlined above (in the case of simulated data), we
constrained the relevant causal paths to zero and then
compared the nested models using the LRT. In add-
ition, we looked at the Akaike information criterion
(AIC; Akaike, 1974). The AIC adjusts a model’s likeli-
hood by including a penalty for the number of param-
eters estimated in the model, thus balancing model fit
and model complexity (Vrieze, 2012). When compar-
ing multiple models, we selected the model with the
lowest AIC as the best-fitting, most parsimonious
model.

All statistical analyses were performed using the
OpenMx package (version 2.20.6; Neale et al., 2016) in
the R statistical programming environment (version
4.1.2; R Core Team, 2021). We verified that all models
were locally identified (Hunter et al., 2021). In the
empirical example, we conducted statistical tests
(LRTs) with an alpha of 0.05.

Results

Impact of time interval on causal inference in
CLPM and IV-CLPM

Causal estimates
The distal effects in the traditional CLPM (Figure 4(A))
increase briefly as the time interval between study
waves (AT) initially increases, and then gradually
decreases to reach an asymptote close to zero at
extended intervals. Consequently, in the example
shown in Figure 4(A), the lagged effect would vary
from around 0.3 at AT =5 to <0.05 at AT > 30. The
peak estimates during the initial rise and the estimates
at longer time intervals are higher with a larger first-
order causal effect size and stronger autocorrelations of
the two variables (Figures 5(B,D,F)). Moreover, with
stronger autocorrelation of either variable, the distal
effects take longer to decay. The cross-sectional correl-
ation between the residuals of the two variables does
not affect the estimated distal effects in the CLPM
(Figure 6).

The three causal effect types in the IV-CLPM show
distinct patterns based on the time interval between
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Figure 4. Impact of the time interval on (A) the distal effect in CLPM and (B) the distal and the two proximal effects in the IV-
CLPM, with both models fitted to the data generated using the model in Figure 2. In the CLPM (A), the distal effect estimated
increases briefly and then decreases asymptotically with increasing time intervals, varying from around 0.3 at an interval of 4 units
to <0.05 at intervals longer than 30 units. In the IV-CLPM (B), the distal effect follows a pattern like that in the CLPM, but while
the distal effect decays at longer intervals, the proximal effects can help estimate the causal effects. The plots illustrate the esti-
mates for the effect of X on Y, given the first-order causal effect of X on Y=0.2, the effect of Y on X=0.2, first-order autoregres-
sion (AR1) of X=0.7, AR1 of Y=0.7, and the correlation between the residuals of X and Y=0.3.

study waves. The proximal effects at wave 1 do not
vary with the time interval (Figure 4(B)). These esti-
mates capture the causal influences that occurred
before the first measurement occasion (i.e., wave 1 in
the model), and so remain unchanged as the time
point of wave 1 is unchanged. Distal effects in the IV-
CLPM follow trends similar to those observed in the
traditional CLPM: there is a brief initial increase in
the distal effect size, followed by a steady decline
across increasing time intervals. However, compared
to the CLPM, the peak of the distal effect in the IV-
CLPM at short intervals is attenuated. Also, in the IV-
CLPM, the distal effect at longer time intervals
approaches zero regardless of the first-order causal
effect size and the autocorrelations of the two varia-
bles. Lastly, the proximal effects at wave 2 increase
gradually as the time interval increases, reaching an
asymptote that approaches the proximal effect at wave
1 (given stationarity). As expected, a larger first-order
causal effect size and stronger autocorrelation of the
outcome (Figures 5(A,E)) lead to higher estimates for
all three effects (except for the distal effect at longer
intervals, which invariably approaches zero). Unlike
the CLPM, the autocorrelation of the predictor vari-
able has little impact on the causal estimates in the
IV-CLPM (Figure 5(C)).

Likelihood-ratio tests

With increasing time intervals in the traditional
CLPM, the 2df LRT of bidirectional distal effects and
the 1df LRTs of the distal effect in each direction

follow the patterns seen in the causal estimates
(Figure 7(A)). The NCP obtained from these LRTSs
trends toward zero at longer time intervals. Therefore,
at extended intervals, the small distal effects in the
CLPM are unlikely to be detected.

In the IV-CLPM, the NCP obtained from an omni-
bus 6df LRT of bidirectional causation shows a similar
overall pattern across increasing time intervals, first
briefly increasing and then gradually decreasing
toward an asymptote (Figure 7(B)). However, com-
pared to the traditional CLPM’s 2df NCP (of the two
distal effects), the asymptote reached by the IV-
CLPM’s 6df NCP is substantially higher. Similarly, in
each direction of causation, the 3-df NCP of the three
causal estimates in the IV-CLPM is considerably
larger than the CLPM’s 1df NCP of the distal effect.
As the IV-CLPM has opportunities to resolve the
causal process into three effect types, the power to
detect these effects separately (ie., through the 1df
tests in each direction of causation) is necessarily
lower than their joint 3df LRT.

Choosing between CLPM and IV-CLPM

At shorter time intervals, the power to estimate the
distal effect in the CLPM is higher than that for esti-
mating the three causal effects separately in the IV-
CLPM. Here, “short” is a relative term indicating that,
for a particular causal process, the time interval
between two repeated assessments is short enough for
a lagged Granger effect to adequately capture most of
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Figure 5. The estimated causal effect of X on Y in the IV-CLPM (Figure 1(C)) and the CLPM (Figure 1(A)) at varying time intervals
between study waves, given different levels of the first-order (i.e.,, at AT = 1) causal effect of X on Y (AB), first-order autoregres-
sion (ART) of predictor X (C,D), and AR1 of outcome Y (EF) in the data-generating model (Figure 2). For ease of display, the time
intervals are shown up to 40 units, by which point all parameter estimates are close to their asymptotes. (A,B) The first-order
causal effect does not impact the rate at which the distal effect decays with increasing time intervals in either model. However, a
larger first-order causal effect size does lead to larger causal estimates in both models (as expected). Note, though, that the distal
effect in the IV-CLPM approaches zero at longer intervals, regardless of the first-order causal effect size. (C,D) A larger ART param-
eter (i.e.,, greater stability over time) of the predictor variable leads to a larger distal effect in the CLPM across time intervals, as
well as slower decay of the distal effect with increasing intervals. On the contrary, the degree of AR1 in the predictor has
minimal impact on the causal estimates in the IV-CLPM. Note that in panel C, the two curves for the Proximal Effect at Wave 1
have fully overlapped, so only one of the two curves is visible. (E,F) The AR1 parameter of the outcome variable impacts the causal
estimates in both models: a higher level of outcome AR1 leads to larger causal estimates and slower decay of the distal effect in
both models.

the causal influences. In such a case, the traditional = IV-CLPM’s joint test of distal and wave-2 proximal

CLPM is likely well-suited for estimating lagged
effects, although one cannot know so beforehand.
Therefore, it would be desirable to gauge whether the
time interval in a study is appropriate for fitting the
traditional CLPM (estimating only the distal effects)
vs. the IV-CLPM (estimating both proximal and distal
effects). To do so, we first compare the IV-CLPM’s
2df LRT of (unidirectional) distal and wave-2 prox-
imal effects to the CLPM’s 1df LRT of the distal effect
(Figure 8). When the time interval between study
waves is reasonably short, the 1df NCP from the
CLPM is closely approximated by the 2df NCP in the

effects. As the time interval increases, the difference
between the two NCPs widens, suggesting an increas-
ing benefit of fitting the IV-CLPM and resolving the
causal influences into distal and proximal effects.

To evaluate whether the IV-CLPM would be a bet-
ter modeling approach than the CLPM at a particular
time interval, we can compare the 1df NCP of wave-2
proximal effect to the 2df NCP of distal and wave-2
proximal effects (in each direction of causation).
If the former is much smaller than the latter, it would
suggest that the time interval between study waves is
reasonable for fitting the CLPM with this pair of
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Figure 6. Variation in the causal estimates (effect of X on Y) and the cross-sectional correlation between the residuals of X and Y
in (A) the CLPM and (B) the IV-CLPM, at varying levels of correlation between the residuals in the data (r_exy). The residual correl-
ation in the data has a negligible impact on the causal estimates in either model, but affects the correlation of the residuals in
the model, r_exyl and r_exy2. Given stationarity, the correlation of the residuals also varies with changes in the causal estimates,
which, in turn, depend on the time interval between study waves. For ease of display, the time intervals are shown up to 40 units,
by which point all parameter estimates are close to their asymptotes.

variables. Also, the IV-CLPM will likely have relatively
low power to estimate the distal and proximal effects
separately. In this case, it would be prudent to test
whether the wave-2 proximal effect can be constrained
to be zero, such that the interpretation of the IV-
CLPM’s distal effect is equivalent to the CLPM’s
distal effect. The new distal effect in the IV-CLPM
will then capture the causal influences that unfolded
between waves 1 and 2. This proposed workflow
would allow one to assess empirically whether the
time interval is indeed appropriate for fitting the trad-
itional CLPM and, if so, modify the IV-CLPM to esti-
mate the distal effect one would obtain from the
CLPM.

On the other hand, if the 1df NCP of wave-2 prox-
imal effect (e.g., from X to Y) approximates the joint
2df NCP of distal and wave-2 proximal effects, this
would indicate that (1) the study waves are too far

apart to meaningfully detect Granger causal effects,
even though X likely has a causal effect on Y; and (2)
the proximal effects at wave 2 approximate the causal
influences occurring between waves 1 and 2. At such
extended time intervals, the benefit of using the IV-
CLPM over traditional CLPM is evident, as the former
retains the power to detect causation through prox-
imal effects and joint tests, while the power to detect
causality in the CLPM evaporates.

A note on the correlation between the residuals

In the traditional CLPM, the cross-sectional correl-
ation between the residuals of X and Y at wave 2,

Texy2 = Cixgya/+/VEx2 X VEya, captures all sources of
covariance besides the Granger causal effects. That is,

the correlation subsumes the covariance arising due
to the causal effects between X and Y that were
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Figure 7. Likelihood-ratio tests (LRTs) of the causal estimates in the traditional CLPM and the IV-CLPM at varying time intervals
between study waves. (A) CLPM: The non-centrality parameter (NCP) obtained from a 2-degrees-of-freedom (2df) test of bidirec-
tional distal effects, and that obtained from a 1df LRT of a unidirectional distal effect (shown here is X to Y). (B) IV-CLPM: The NCP
from a 6df omnibus test of bidirectional causal estimates of three types: the proximal effect at wave 1 (Proximal_W1), the distal
effect, and the proximal effect at wave 2 (Proximal_W2). A significant omnibus test is followed up with a 3df LRT of the three
causal effects in each direction, and, finally, the 1df LRTs of the three causal effects separately (in each direction of causation). The
NCPs were obtained by fixing to zero the parameters of interest in models fitted to data with N = 1000, byxy = 0.2, byy = 0.2,

b)(z)(] =0.7, by2y1 =0.7, and Fexy = 0.3.
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Figure 8. Comparison of the IV-CLPM'’s joint test of (unidirec-
tional) distal and wave-2 proximal effects with its 1df LRT of
wave-2 proximal effect, as well as with the CLPM’s 1df LRT of
distal effect. For reference, the IV-CLPM’s 1df LRT of distal
effect is also shown. Comparing the 2df LRT statistic (dark red)
with the 1df LRT of wave-2 proximal effect (dark blue) in the IV-
CLPM can help gauge whether a particular time interval would
be appropriate for fitting the traditional CLPM. The non-centrality
parameters were obtained by fixing to zero the parameters of
interest in models fitted to data with N = 1000, byy = 0.2,
bxy =0.2, bxz)ﬂ =0.7, by2y1 =0.7, and Fexy = 0.3.

not accounted for by the distal Granger effects.
Therefore, with increasing time intervals in a station-
ary model, the distal effects decrease, and the correl-
ation between the residuals increases (Figure 6(A)).

In the IV-CLPM, the cross-sectional covariance
between X and Y at wave 1 is accounted for by the
wave-1 proximal effects, the covariance path between
X, and Y;, as well as the covariance between the two
IVs. As the proximal effects represent the cumulative
causal influences accrued up to that point, these effects
can be larger than the observed cross-sectional covari-
ance between X; and Y;. Consequently, the correlation
of their residual variances at wave 1 in the IV-CLPM
(esy1 = Cexy1/ \/m ) may be negative, even if
the reciprocal causal effects and the correlation of the
residuals in the population (i.e., the simulated data in
this paper) are all positive (Figure 6(B)). Furthermore,
at wave 2, the distal effects, the wave-2 proximal
effects, and the covariance between the residual varian-
ces of X; and Y, (Cx,ys), provide additional paths con-
tributing to the total covariance between X, and Y,. As
the distal and the wave-2 proximal effects change at
different time intervals, the correlation of wave-2 resid-
vals (rexy2 = Crapyo/ \/WVE},Z) can be positive,
negative, or zero (given stationarity). Therefore, the
correlation between the residuals in the IV-CLPM may
be difficult to interpret substantively.



Bidirectional vs. unidirectional IV-CLPM in data
with unidirectional causation

We obtained the NCPs from the 1df LRTs of the three
causal effects of X on Y in both the unidirectional and
the standard bidirectional IV-CLPM fitted to the data-
set with unidirectional causation (X causing Y). For all
three effect types (wave-1 proximal, distal, and wave-2
proximal effects), the NCPs obtained from both models
followed similar trends with increasing time intervals,
consistent with the pattern seen using data with bidir-
ectional causation (Appendix Figure A5). However, the
NCPs in the unidirectional model were slightly smaller
than the equivalent statistics in the bidirectional model.
Therefore, even though the unidirectional IV-CLPM is
the more parsimonious model, given data with unidir-
ectional causation, it does not provide any power
advantage over the bidirectional model.

Empirical examination of smoking and alcohol use

CLPM

Examining the bidirectional causal influences between
smoking status and alcohol use (drinks per week) with
the CLPM (Figure 9(A)), an omnibus LRT of both
causal paths (Table 2) was statistically significant
(NCP=28.29, df =2, p=0.016). Testing the two
causal paths separately, we found a significant lagged
effect of smoking on alcohol use (NCP = 5.21, df =1,
p = 0.022), while the reverse lagged effect of alcohol
use on smoking was non-significant (NCP = 2.75,
df =1, p=0.097). However, a restricted model with
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the effect of alcohol use on smoking set to zero did
marginally increase the model AIC (AAIC =0.29),
suggesting a slightly less parsimonious model fit. Thus,
the estimates from the CLPM indicated a significant
effect of smoking status on alcohol use (byzx; = 0.062,
S.E. =0.027), but a non-significant reverse effect
(bxay1 = 0.018, S.E. =0.011), given a time interval of
three years. Table 3 shows all the parameter estimates
from the full CLPM model.

IV-CLPM

Table 2 shows that an omnibus LRT of all six causal
paths in the IV-CLPM model (three in either direc-
tion of causation) was statistically significant
(NCP = 14.08, df =6, p =0.029). When testing the
two directions of causation separately, the joint LRT
of the three causal paths was statistically non-signifi-
cant: for smoking — alcohol (NCP = 6.67, df =3,
p = 0.083), and for alcohol — smoking (NCP = 6.94,
df =3, p =0.074). However, in both cases, the effect
sizes are plausible, and fixing the causal paths to zero
worsened the AIC (AAIC = 0.67 and AAIC = 0.95,
respectively).

We did two additional joint LRTs in either direc-
tion of causation. First, we tested both proximal
effects jointly (i.e., the causal paths added in the IV-
CLPM, beyond the causal effect estimated in the
CLPM). Second, we jointly tested the distal effect and
the wave-2 proximal effect (i.e., the causal influences
between waves 1 and 2). Based on the joint LRTs and
the AICs of the restricted models testing the causal

Figure 9. Results of (A) the CLPM and (B) the best-fitting IV-CLPM examining bidirectional causal effects between smoking status
(Smk) and alcoholic drinks per week (Alc), assessed three years apart. The paths have been labeled with the point estimate and its
standard error (in parentheses). The dashed path in the CLPM indicates a non-significant causal estimate. The CLPM suggests a
likely unidirectional causal process, with a significant effect of smoking on alcohol use, but not vice versa. On the contrary, the IV-
CLPM suggests a more complex bidirectional causation, with a significant proximal effect of alcohol use on smoking, which, in
turn, has a reciprocal distal effect on alcohol use. In both path diagrams, squares/rectangles represent the observed variables, and
circles represent latent variables. To improve figure readability, means and covariates are not shown in this figure. For a complete
path diagrams with means and covariates, please see Figure A6 in the Appendix A.
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Table 2. Model fit statistics and likelihood ratio rests in models examining causal influences between smoking status and alco-

hol use.
LRT
# Estimated
Base model Comparison model parameters —2InL df AIC NCP Adf p
I. CLPM
Full CLPM 18 31,699.08 12,828 31,735.08
Full CLPM No bidirectional lagged effects 16 31,707.37 12,830 31,739.37 8.29 2 0.0159
Full CLPM No Smoking — Alcohol lagged effect 17 31,704.29 12,829 31,738.29 5.21 1 0.0225
Full CLPM No Alcohol — Smoking lagged effect 17 31,701.83 12,829 31,735.83 2.75 1 0.0971
II. IV-CLPM
Global tests
Full IV-CLPM 31 59,109.02 22,605 59,171.02
Full IV-CLPM No bidirectional causal effects 25 59,123.10 22,611 59,173.10 14.08 6 0.0288
Full IV-CLPM No Smoking — Alcohol causal effects 28 59,115.69 22,608 59,171.69 6.67 3 0.0833
Full IV-CLPM No Alcohol — Smoking causal effects 28 59,115.97 22,608 59,171.97 6.94 3 0.0738
Smoking — Alcohol
Full IV-CLPM No proximal effects at waves 1 and 2 29 59,110.24 22,607 59,168.24 1.21 2 0.5451
Full IV-CLPM No distal + wave-2 proximal effects 29 59,114.39 22,607 59,172.39 537 2 0.0683
Alcohol — Smoking
Full IV-CLPM No proximal effects at waves 1 and 2 29 59,113.10 22,607 59,171.10 4,07 2 0.1305
Full IV-CLPM No distal + wave-2 proximal effects 29 59,111.70 22,607 59,169.70 2.67 2 0.2626
Best-fitting IV-CLPM (Smoking — Alcohol distal effect, plus Alcohol — Smoking proximal effect at wave 1)
Full IV-CLPM Best-fit IV-CLPM 27 59,112.89 22,609 59,166.89 3.86 4 0.4247
Best-fit IV-CLPM No Smoking — Alcohol distal effect 26 59,118.65 22,610 59,170.65 5.77 1 0.0163
Best-fit IV-CLPM No Alcohol — Smoking proximal effect 26 59,117.28 22,610 59,169.28 439 1 0.0362

—2InL: =2 x log-likelihood of the model; df. degrees of freedom; AIC: Akaike information criterion; LRT: likelihood ratio test; NCP: non-centrality

parameter = A—2InL.

Table 3. Parameter estimates in the full CLPM applied to smoking status and alcohol use.

Parameter Description Estimate SE Wald's T p-Value
Regression paths
bx2x1 Smoking (Smk) at T1 — Smk at T2 0.805 0.022 36.262 0.0000
by2x1 Smk at T1 — Alcohol (Alc) at T2 0.062 0.027 2.284 0.0223
bx2y1 Alc at T1 — Smk at T2 0.018 0.011 1.661 0.0967
by2y1 Alc at T1 — Alc at T2 0.668 0.015 44.592 0.0000
(Co)variances
Vx1 Residual variance of Smk at T1 0.766 0.035 22,111 0.0000
Cx1y1 Covariance of residuals of Smk and Alc at T1 0.212 0.025 8.636 0.0000
Vy1 Residual variance of Alc at T1 1.707 0.041 41.985 0.0000
Vx2 Residual variance of Smk at T2 0.179 0.010 18.774 0.0000
Cx2y2 Covariance of residuals of Smk and Alc at T2 0.044 0.013 3.367 0.0008
Vy2 Residual variance of Alc at T2 0.820 0.025 33.453 0.0000
Covariates
b_smk_age Age — Smk 0.007 0.001 7.969 0.0000
b_alc_age Age — Alc 0.009 0.001 8.024 0.0000
b_smk_female Female sex — Smk —0.086 0.030 —2.897 0.0038
b_age_female Female sex — Alc —0.807 0.039 -20.716 0.0000
Intercepts
b0_smk1 Intercept of Smk at T1 —-0.341 0.050 —6.819 0.0000
b0_alc1 Intercept of Alc at T1 3.814 0.062 61.430 0.0000
b0_smk2 Intercept of Smk at T2 —0.440 0.053 —8.350 0.0000
b0_alc2 Intercept of Alc at T1 3.576 0.066 54.242 0.0000

Note. Rows shown in bold indicate estimates of the causal paths between smoking status (latent liability scale of an ordinal variable
with levels: never-former—current smoking) and alcohol use (drinks per week).

paths from smoking status to alcohol use (Table 2), the
best-fitting model (with the lowest AIC) was the one
with both proximal effects constrained to zero (ie.,
with only a distal effect of smoking on alcohol use).
On the other hand, among the models testing the
paths from alcohol use to smoking status, the best-fit-
ting model (with the lowest AIC) had both the distal
effect and the wave-2 proximal effect constrained to
zero (i.e., with only a proximal effect of alcohol use
on smoking status at wave 1).

Based on these LRTs, we retained a restricted IV-
CLPM model (Figure 9(B)) with a distal effect of
smoking status on alcohol wuse (byx; = 0.065,
S.E. = 0.027), and a reverse proximal effect of alcohol
use on smoking status at wave 1 (bxjy; = 0.196,
S.E. =0.094). In this model, the LRTs testing these
two causal paths separately were both statistically sig-
nificant: distal smoking — alcohol (NCP =5.77,
df =1, p=0.016), and proximal alcohol — smoking
(NCP =4.39, df =1, p =0.036). Parameter estimates
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Table 4. Parameter estimates in the best-fitting IV-CLPM model applied to smoking status and alcohol use.

Parameter Description Estimate SE Wald's T p-Value
Regression paths
bx1 PGS of Smoking (Smk) — Smk at T1 0.146 0.016 8.901 0.0000
bx2 PGS of Smk — Smk at T2 0.014 0.013 1.085 0.2777
by1 PGS of Alcohol (Alc) — Alc at T1 0.169 0.021 8.054 0.0000
by2 PGS of Alc — Alc at T2 0.037 0.018 2.036 0.0418
bx2x1 Smk at T1 — Smk at T2 0.808 0.022 36.461 0.0000
by2x1 Smk at T1 — Alc at T2 (Distal) 0.065 0.027 2.404 0.0162
bx1y1 Alc at T1 — Smk at T1 (Proximal) 0.196 0.094 2.095 0.0362
by2y1 Alc at T1 — Alc at T2 0.662 0.015 44.032 0.0000
(Co)variances
Vpx Variance of the PGS of Smk 1.000 0.020 49.472 0.0000
Cixiy Covariance of the PGSs 0.196 0.015 13.441 0.0000
Vpy Variance of the PGS of Alc 1.000 0.020 49.472 0.0000
Vx1 Residual variance of Smk at T1 0.726 0.040 18.248 0.0000
Cx1y1 Covariance of residuals of Smk and Alc at T1 -0.119 0.158 —0.751 0.4526
Vy1 Residual variance of Alc at T1 1.679 0.040 41.973 0.0000
Vx2 Residual variance of Smk at T2 0.179 0.010 18.803 0.0000
Cx2y2 Covariance of residuals of Smk and Alc at T2 0.047 0.013 3.611 0.0003
Vy2 Residual variance of Alc at T2 0.819 0.025 33.486 0.0000
Covariates
b_smk_age Age — Smk 0.007 0.001 8.026 0.0000
b_alc_age Age — Alc 0.009 0.001 8.014 0.0000
b_smk_female Female sex — Smk —0.088 0.030 —2.974 0.0029
b_alc_female Female sex — Alc —0.812 0.039 —21.041 0.0000
Intercepts
b0_resSmkPRS Intercept (mean) of the PGS of Smk 0.000 0.014 0.000 1.0000
b0_resAlcPRS Intercept (mean) of the PGS of Alc 0.000 0.014 0.000 1.0000
b0_smk1 Intercept of Smk at T1 —0.347 0.049 —7.007 0.0000
b0_alc1 Intercept of Alc at T1 3.818 0.062 61.984 0.0000
b0_smk2 Intercept of Smk at T2 —0.442 0.052 —8.466 0.0000
b0_alc2 Intercept of Alc at T1 3.580 0.065 54.752 0.0000

Note. Rows shown in bold indicate estimates of the causal paths between smoking status (latent liability scale of an ordinal variable
with levels: never-former—current smoking) and alcohol use (drinks per week).

from the best-fitting, restricted IV-CLPM model are
shown in Table 4. For completeness, the parameter
estimates from the full IV-CLPM model are shown in
Appendix Table A2.

Discussion

In this report, we confirmed the prior observation
that the lagged Granger effects in the CLPM decay
with increasing time intervals between study waves.
We proposed the novel IV-CLPM approach to investi-
gate causal effects when the CLPM’s lagged effects
become undetectable at extended intervals. In the
traditional CLPM, it is only possible to detect lagged
effects within a narrow range of time intervals, and
this window is primarily dependent on the autocorre-
lations of the two variables. On the other hand, in the
IV-CLPM, the lagged Granger effects (i.e., the distal
effects) are complemented by the IVR-based estima-
tion of cumulative causal influences that have accrued
over time (i.e., the proximal effects). Given the IVR-
estimated proximal effects, the IV-CLPM allows us to
infer causality even as the Granger-causal influences
decay. Substantively, while the proximal effects help
infer whether a predictor has a causal impact on the
outcome, the distal effects would allow us to predict

whether the effects of an intervention (on the pre-
dictor variable) would remain appreciable after a
given time interval, with critical policy and practice
implications. We also presented an empirical applica-
tion, in which we examined bidirectional causal influ-
ences between cigarette smoking status and alcohol
use (drinks per week) assessed three years apart. In
this application, while the CLPM failed to reject the
null hypothesis for a distal effect of alcohol use on
smoking status, the IV-CLPM suggested that a prox-
imal effect of alcohol on smoking fits the data better
than the distal one.

Causal inference at varying time intervals

The situation in which the proximal effect is signifi-
cant while the distal effect is not (as was the case in
our empirical analyses) sheds light on the relative
importance of past and concurrent assessments of the
causal variable. The significant proximal effect of alco-
hol use on smoking in our example is consistent with
increased smoking wurge and smoking behavior
reported following alcohol consumption (Epstein
et al., 2007; Mckee & Weinberger, 2013). At the same
time, the non-significant distal effect suggests that this
effect of alcohol use on smoking status fades away
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over time. Given these results, it is important to
emphasize the distinction between the causal effect
estimated based on the observed data (i.e., the “causal
inference”) and the true, unobserved causal phenom-
enon. As discussed above, although the proximal
effect is estimated as a cross-sectional path in the IV-
CLPM, it does not necessarily imply that there is no
temporal ordering between alcohol consumption (the
cause) and smoking status (the outcome) in the true
causal process. Rather, these findings suggest that
alcohol consumption has a more immediate effect on
smoking behavior, which is better approximated by a
cross-sectional path than a lagged path over a time
interval of three years. At smaller time intervals, this
causal effect may indeed be best estimated as a lagged
effect, as previously reported in a study using eco-
logical momentary assessments (Piasecki et al., 2011).
Another possible example of this scenario is the
study by Ma et al. (2019) of the relationship between
anxiety and blood cortisol levels during early adoles-
cence. Here, the authors found that social anxiety
symptoms predicted blood cortisol levels assessed
three years later, while physiological anxiety symp-
toms did not, even though the latter were concur-
rently correlated with cortisol levels. Adding IVs for
physiological anxiety [e.g., genetic variants associated
with anxiety (Levey et al., 2020)] to this model and
estimating the proximal and distal effects in the IV-
CLPM could help assess whether recent physiological
anxiety symptoms have a causal influence on blood
cortisol, even if the effect dissipates over three years.
Even when the time interval between study waves
is too long for there to be a detectable distal effect,
the IV-CLPM can be used to gain insights into how
causal processes change over time. For example, if the
underlying causal process is stationary, as the distal
effect approaches zero at an extended time interval,
the proximal effects at the two waves become approxi-
mately equal (Figure 4(B)). However, if the two prox-
imal effects have different magnitudes (even as the
distal effect is zero), that would indicate that the
underlying causal process is not stationary. Applied in
developmental cohort studies (i.e., where individuals
from a specific age group are recruited and followed
up longitudinally), the IV-CLPM could thus help
assess whether the predictor’s effect (or the magnitude
thereof) depends on the development stage at the two
waves. As such, the IV-CLPM offers an attractive
approach for identifying developmentally sensitive causal
processes in studies, such as the Adolescent Brain
Cognitive Development (ABCD) Study® (Garavan et al,
2018), the National Longitudinal Study of Adolescent

Health (Add Health; Harris, 2013), and the Twins Early
Development Study (TEDS; Rimfeld et al., 2019). These
studies have also collected and genotyped DNA samples
from the study participants, opening opportunities for
using appropriate genetic variants as IVs for causal
modeling.

In the IV-CLPM, the joint test of distal and wave-2
proximal effects, coupled with its comparison to the
LRTs of these paths separately, provides a novel tool
to examine whether the time interval between study
waves is appropriate for testing Granger causality
between two variables. Thus, for assessing causation
between the variables of interest, evidence from the
IV-CLPM can guide the selection of the most appro-
priate dataset (based on the time intervals in different
available datasets). Here, it should be noted that the
optimal time interval may differ for different pairs of
variables, such that a time interval (in a given study
with several variables) that is appropriate for estimat-
ing lagged Granger causality between variables X and
Y may not be so for the causal effects between varia-
bles X and Z.

The unidirectional version of the IV-CLPM uses
one IV (for the predictor variable X) to estimate the
proximal and distal effects of X on Y (Appendix
Figure A3). As the unidirectional model does not offer
any power advantage over the full (bidirectional) IV-
CLPM, the latter provides the more appropriate point
of departure for model-fitting. If there is no evidence
of feedback causal effects in the full model, the good-
ness-of-fit indices of the full model and the more par-
simonious unidirectional model can be compared. The
unidirectional IV-CLPM can also be the starting
model if the a priori theory posits a unidirectional
causal process.

Application to smoking status and alcohol use

Our goal with this application was to demonstrate the
empirical feasibility of the proposed model, as well as
the etiological insights that this model might provide
compared to the standard CLPM. Additionally, we
demonstrated the utility of using genetic variants as
IVs. For a detailed discussion of genetic IVs (ie,
Mendelian Randomization analyses), we refer the
reader to previous review papers by Davey Smith and
Ebrahim (2003), Lawlor et al. (2008), and Richmond
and Davey Smith (2022), to name a few.

In our analyses, the CLPM indicated a statistically
significant distal effect of smoking status on alcohol
use (drinks per week), but the evidence for a reverse
effect of alcohol use on smoking status was



inconclusive. On the other hand, the IV-CLPM sug-
gested a more complex bidirectional relationship
involving a significant proximal effect of alcohol con-
sumption on smoking status, in addition to the distal
effect of smoking status on alcohol use found in the
CLPM. Epidemiological studies have shown the con-
comitant use of alcohol and tobacco (Falk et al,
2006). Concurrent alcohol use is also reported to be
associated with the transition from never smoking to
(non-daily) current smoking (Campbell et al., 2012).
Furthermore, high alcohol consumption is associated
with a higher risk of smoking relapse (transition from
former to current smoking), while low alcohol con-
sumption is associated with a higher success of smok-
ing cessation (transition from current to former
smoking) (Weinberger et al., 2013). Our findings indi-
cate that this relationship might be attributed, to some
extent, to a causal effect of the quantity of alcohol con-
sumption on smoking behavior. Experimental studies
point to various potential mechanisms through which
alcohol consumption may increase smoking behaviors,
including increased craving to smoke and decreased
ability to resist smoking (Mckee & Weinberger, 2013).

On the other hand, the distal effect of smoking sta-
tus on alcohol use is consistent with the results of
prior Mendelian Randomization analyses (Reed et al.,
2022), as well as a U.S.-based longitudinal community
study which also had a time interval of three years
(Harrison & Mckee, 2011). Nicotine (from cigarettes)
has been shown to reinforce alcohol reward (Mckee &
Weinberger, 2013). Nicotine exposure may also coun-
teract some of the negative neurocognitive effects of
alcohol (e.g., subjective intoxication, cognitive impair-
ment, and gait disturbance), increasing alcohol toler-
ance (Hurley et al, 2012). Both mechanisms could
lead to increased alcohol consumption over time.

Limitations

The three causal effects in the IV-CLPM provide
unique information about the causal process that
unfolded over different time windows. However, the
power to test the three null hypotheses separately is
relatively low, underscoring the need for large sample
sizes. Although low power is a limitation of IVR gen-
erally, this problem inevitably worsens with increasing
model complexity. In our empirical example, we
observed larger standard errors of the causal estimates
in the full IV-CLPM than in the restricted, best-fitting
model (with the number of causal estimates reduced
from three to one in either direction of causation;
Appendix Table A2 vs. Table 4). Thus, even if the full
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model has limited power to estimate the three causal
estimates precisely, it provides a useful point of
departure when both proximal and distal effects are
plausible (as was the case in our applied example of
smoking and alcohol use).

As with the traditional CLPM, the IV-CLPM can-
not distinguish the within-individual causal process from
stable, between-individual heterogeneity (or the unmeas-
ured time-invariant covariates). Doing so requires at
least three repeated assessments and the introduction of
a random intercept for each trait in the model (RI-
CLPM; Hamaker et al., 2015). Second, like the CLPM,
the IV-CLPM is a discrete-time model. In this model, it
is assumed that all study participants have approximately
uniform intervals between the two measurements, which
may not always be the case. Alternative continuous-time
approaches, such as stochastic differential equations (e.g.,
see Driver & Voelkle, 2018; Oud & Jansen, 2000), can
overcome the need for equal intervals through direct
modeling of the measured time intervals. Because of
these limitations of the CLPM, future studies are
planned to develop a random-intercept IV-CLPM model
for panel data with three or more waves and to explore
the integration of IVs into continuous-time longitudinal
models. We discuss some of these potential extensions
in the section on Future Research below.

Consistent with the IVR model (Bollen, 2012), care-
ful selection of appropriate IVs is vital for robust causal
inference in the IV-CLPM. As is true for all statistical
models, the inference of IVR estimates rests on the val-
idity of the model assumptions. Specifically, it is
assumed that the IV influences the “outcome” variable
only indirectly, exclusively through the path mediated
by the causal variable (“exclusion restriction”). In other
words, for estimating the effect of X on Y using the
instrumental variable IVx, it is assumed that the
residual variance of Y is uncorrelated with I'Vx. If this
assumption is violated, the IVR-estimated proximal
effects will be biased, and the bias increases with a
larger covariance between IVx and the residual of Y
(Maydeu-Olivares et al, 2019). In the proposed IV-
CLPM, the two IVs are allowed to covary freely, which,
in turn, allows the IV of one trait to covary with the
other trait, independent of a direct causal effect
between the two traits. In this case, IVx is a valid IV
for estimating the (cross-sectional) proximal effects of
X on Y in the IV-CLPM if the residual variance of Y
(Ey1 and Ey, in Figure 1(C)) is uncorrelated with IVx
(i.e., over and above the sources of covariance between
IVx and Y already included in the model).

The use of polygenic scores (PGSs) as IVs in our
empirical application accommodates, at least to some
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extent, potential violations of this assumption, as the
correlation between the two PGSs (due to shared
SNPs) allows for the IV (IVx) to covary with the
“outcome” trait (Y), independent of the causal effects
between the two traits. However, to infer the proximal
effect of alcohol use on smoking status in this applica-
tion, we need to assume that there is no (unmodeled)
covariance between the PGS of alcohol use and the
residual variance of smoking status (which is not
empirically verifiable). Moreover, it is assumed that
the IV is not associated with any confounding varia-
bles affecting the predictor and the outcome
(“exchangeability”). In our empirical application, the
random segregation of genetic variants underpins this
assumption. That said, as it is not possible to test all
the assumptions of the selected IV in a particular
empirical application (and thereby be certain that it
fully satisfies these assumptions), consistency of the
causal estimate in sensitivity analyses can help to add
confidence to the causal inference. Therefore, to
strengthen the evidence for the causal effects reported
in our empirical application, it is advisable to perform
additional sensitivity analyses of the validity of the
IVs and other model assumptions.

For an empirical illustration of the proposed
model, we operationalized smoking behaviors as an
ordinal variable of smoking status (current vs. former
vs. never smoking). However, smoking is a complex,
multi-faceted construct with different etiological fac-
tors underlying smoking initiation, maintenance,
heaviness, cessation, and relapse (Audrain-McGovern
et al, 2015, Mahajan et al., 2021; West, 2017).
Therefore, further research is needed for a compre-
hensive examination of the causal relationship
between alcohol consumption and different aspects of
smoking status (e.g., initiation, maintenance, and ces-
sation) and heaviness (e.g., cigarettes per day).

Future research and potential extensions of IV-
CLPM

Models with more than two waves

In this report, we used the simplest case of CLPM for
introducing the IV-CLPM approach, i.e., a model with
two variables and two waves of data. This approach
could be extended to the CLPM with three or more
waves. However, for data with more than two waves,
it is worth exploring if and how IVs could be inte-
grated with alternative models that may address some
of the other limitations of the CLPM (which, in turn,
also apply to the IV-CLPM), as discussed in the previ-
ous section.

Adding IVs to a random-intercept CLPM (RI-CLPM,;
Hamaker et al., 2015) would allow differentiation of the
causal process from stable between-individual differen-
ces, but would require data with at least three repeated
assessments. In the RI-CLPM, the cross-lagged (causal)
and autoregressive paths are modeled at the level of
occasion-specific residuals (i.e., occasion-specific devia-
tions from the individual-level mean). Conceptually,
the random intercept controls for unmeasured, stable
individual-level variance in that construct, while the IV
controls for the measured individual-level variance.
Likewise, the covariance of the two random intercepts
reflects the covariance attributable to the unmeasured
time-invariant confounders, analogous to the measured
(time-invariant) genetic confounding captured by the
covariance of the two PGSs in our empirical example.

Further, if four or more repeated assessments are
available, an alternative random-intercept approach
could be to incorporate IVs into the dynamic panel
model (DPM; Allison et al.,, 2017). Although the ini-
tially proposed DPM included the causal paths in one
direction only (say, X — Y), its recent iterations allow
for bidirectional (i.e., cross-lagged) causal effects
(Andersen, 2022; Murayama & Gfrorer, 2022). The
DPM approach is argued to be less restrictive than the
RI-CLPM and a more appropriate random-intercept
model when the causal process in not stationary
(Andersen, 2022).

Both the RI-CLPM and the DPM can help reduce
the bias in the lagged causal effects, relative to the
standard CLPM (and, by extension, the IV-CLPM pre-
sented here). However, a downside of using these
alternative approaches as the base model for incorpo-
rating IVs into panel data would be that the power
for estimating the causal effects (the primary parame-
ters of interest) decreases with increasing model com-
plexity and the number of estimated parameters from
CLPM to RI-CLPM to DPM (Murayama & Gfrorer,
2022). The utility and feasibility of adding IVs to
these alternative models is an important subject for
future research.

Models with more than two variables

The IV-CLPM can also be extended to models with
more than two variables, building on prior extensions
of the CLPM. If multiple traits are hypothesized to
have potential reciprocal causal influences on each
other, such complex multivariate systems can be rep-
resented by the “mutualism” model, with pairwise
bidirectional causal effects between variables
(Borsboom et al., 2021; van der Maas et al., 2006). For
repeated-measures data, this model has previously



been extended as a CLPM with more than two varia-
bles, called the “dynamic mutualism” model, estimat-
ing pairwise cross-lagged effects between variables
(Mcelroy et al., 2018). The dynamic mutualism model
could also be seen as a less-restricted, bidirectional
version of the unidirectional auto-regressive mediation
model proposed by Maxwell et al. (2011). The latter
involves three variables X, Y, and M, where M acts as
a partial or complete mediator of the effects of X on
Y. That is, X is allowed to have a lagged effect on M,
which, in turn, may have a lagged effect on Y. In a
model with partial mediation, X may also have a dir-
ect lagged effect on Y.

As in the standard CLPM, the lagged effects in
these models will also depend on the time interval
between assessments. Importantly, the time interval
appropriate for estimating the lagged effects may dif-
fer across different pairs of variables in the multivari-
ate system. Future research should examine the
impact of time intervals on the causal inference in
such multivariate models, as well as the pros and cons
of adding IVs to these models to estimate proximal
and distal effects. However, similar to the models with
more than two waves, it will be important to examine
the impact of increasing model complexity on the
power to estimate the causal effects in these models.

Comparison with continuous-time models

Here, we have presented the impact of time intervals
on causal inference in the CLPM and the utility of
adding IVs within a discrete-time modeling frame-
work (which also encompasses the RI-CLPM and the
DPM). On the other hand, continuous-time models,
such as those using stochastic differential equations
(SDE), offer a more generalizable approach to estimate
lagged causal effects in panel data (Voelkle et al.,
2012). These models estimate the cross-lagged (and
auto-regressive) effects per unit of time in the true
continuous causal process (i.e., the derivative of these
lagged effects with respect to time). As such, the esti-
mated causal effects are not specific to the observed
time intervals, thus overcoming the dependence of the
lagged causal effects on the time intervals between
study waves. The appropriate interval between dis-
crete-time (i.e., the sampling rate)
required for capturing the underlying continuous-time
process is defined by the Nyquist-Shannon sampling
theorem (Luke, 1999). If the Nyquist-Shannon criterion
is not met in a study, the time interval may not be

observations

appropriate for fitting a continuous-time model. For
an in-depth exposition of this theorem in the context
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of continuous-time modeling in behavioral sciences,
we refer the reader to Voelkle and Oud (2013).

Future research should examine the utility of integrat-
ing IVs with continuous-time models in the SEM frame-
work, especially when the Nyquist-Shannon criterion is
not met in a study. This approach can offer additional
advantages over discrete-time models, including accom-
modating non-uniform time intervals across study par-
ticipants (Oud & Jansen, 2000), as mentioned above in
the Limitations section. If three or more repeated assess-
ments are available in a study, continuous-time models
can also allow controlling for individual-level heterogen-
eity, akin to the discrete-time RI-CLPM and DPM
approaches (Voelkle et al., 2012).

Conclusion

The IV-CLPM can help address the ambiguity of non-
significant causal estimates in the traditional CLPM.
By estimating both Granger/lagged causal effects and
the IVR-based proximal causal effects, the IV-CLPM
can help detect causation even when the Granger-
causal influences in the CLPM have decayed due to a
long time interval. Thereby, the IV-CLPM can over-
come the dependence of the traditional CLPM’s causal
inference on the time interval between measurement
occasions. Furthermore, the model provides a novel
approach to examining whether the time interval in a
study is appropriate for studying Granger-causal proc-
esses between a pair of variables. Finally, the proposed
model also provides a flexible point of departure for
exploring the integration of IVs with other longitudinal
models, including models with random intercepts. To
motivate empirical applications of the IV-CLPM, we
have also illustrated the utility and limitations of using
polygenic scores as IVs in large-scale panel studies with
genetic data.
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Appendix A

Table A1. Pearson’s correlations between the model variables in one of the simulated datasets, showing some of the time points

used for model-fitting.

IVx IVy X100 X101 X125 X150 Y100 Y101 Y125 Y150
IVx 1
vy 0.2500 1
X100 0.2834 0.2227 1
X101 0.2834 0.2227 0.8490 1
X125 0.2834 0.2227 0.1581 0.1640 1
X150 0.2834 0.2227 0.1087 0.1092 0.1581 1
Y100 0.2227 0.2834 0.6877 0.6904 0.1532 0.1038 1
Y101 0.2227 0.2834 0.6904 0.6877 0.1591 0.1042 0.8490 1
Y125 0.2227 0.2834 0.1532 0.1591 0.6877 0.1532 0.1581 0.1640 1
Y150 0.2227 0.2834 0.1038 0.1042 0.1532 0.6877 0.1087 0.1092 0.1581 1

Note. The simulated time-series was stationary over the time points used for modelitting (i.e., from T = 100 to T = 150), as indicated by the correlations and
between the instrumental variable (/Vx) and X; (r = 0.2834), IVx and Y; (r = 0.2227), and the cross-sectional correlations between X; and Y; (r = 0.6877). The
shown correlations are based on a time-series with the direct effect on /Vx on X, by = 0.08; the direct effect on IVy on Y, by = 0.08; the first-order autore-
gressive coefficient (AR1) for X, bxx; = 0.7; the AR1 for Y, by,y; = 0.7; the first-order causal effect of X on Y, byy = 0.2; the first-order causal effect of Y on

X, byy = 0.2; the cross-sectional correlation between the residuals of X and Y, roy = 0.2; and the correlation of /Vx and IVy, ry = 0.25.

Table A2. Parameter estimates in the full IV-CLPM model applied to smoking status and alcohol use.

Parameter Description Estimate SE Wald’s T p-Value
Regression paths
bx1 PGS of Smoking (Smk) — Smk at T1 0.144 0.017 8.335 0.0000
bx2 PGS of Smk — Smk at T2 0.014 0.013 1.084 0.2783
by1 PGS of Alcohol (Alc) — Alc at T1 0.160 0.023 7.077 0.0000
by2 PGS of Alc — Alc at T2 0.036 0.019 1.910 0.0561
by1x1 Smk at T1 — Alc at T1 (Proximal) 0.158 0.143 1.108 0.2680
bx2x1 Smk at T1 — Smk at T2 0.809 0.032 25.202 0.0000
by2x1 Smk at T1 — Alc at T2 (Distal) 0.303 1.071 0.283 0.7774
bx1y1 Alc at T1 — Smk at T1 (Proximal) 0.200 0.100 1.996 0.0459
bx2y1 Alc at T1 — Smk at T2 (Distal) 0.083 0.233 0.358 0.7208
by2y1 Alc at T1 — Alc at T2 0.669 0.027 24.449 0.0000
by2x2 Smk at T2 — Alc at T2 (Proximal) —0.298 1.326 —0.225 0.8223
bx2y2 Alc at T2 — Smk at T2 (Proximal) —0.100 0.349 —0.285 0.7757
(Co)variances
Vpx Variance of the PGS of Smk 1.000 0.020 49.472 0.0000
Cixiy Covariance of the PGSs 0.196 0.015 13.441 0.0000
Vpy Variance of the PGS of Alc 1.000 0.020 49.472 0.0000
Vx1 Residual variance of Smk at T1 0.729 0.043 17.146 0.0000
Cx1y1 Covariance of residuals of Smk and Alc at T1 —0.244 0.198 —1.234 0.2174
Vy1 Residual variance of Alc at T1 1.633 0.046 35.566 0.0000
Vx2 Residual variance of Smk at T2 0.196 0.089 2.208 0.0272
Cx2y2 Covariance of residuals of Smk and Alc at T2 0.181 0.365 0.495 0.6205
Vy2 Residual variance of Alc at T2 0.861 0.260 3.312 0.0009
Covariates
b_smk_age Age — Smk 0.007 0.001 8.046 0.0000
b_alc_age Age — Alc 0.009 0.001 8.018 0.0000
b_smk_female Female sex — Smk —0.088 0.030 —2.978 0.0029
b_alc_female Female sex — Alc —0.812 0.039 -21.034 0.0000
Intercept
b0_resSmkPRS Intercept (mean) of the PGS of Smk 0.000 0.014 0.000 1.0000
b0_resAIcPRS Intercept (mean) of the PGS of Alc 0.000 0.014 0.000 1.0000
b0_smk1 Intercept of Smk at T1 —0.346 0.049 —7.007 0.0000
b0_alc1 Intercept of Alc at T1 3.819 0.062 61.955 0.0000
b0_smk2 Intercept of Smk at T2 —0.444 0.052 —-8.511 0.0000
b0_alc2 Intercept of Alc at T1 3.579 0.065 54.707 0.0000

Note. Rows shown in bold indicate estimates of the causal paths between smoking status (latent liability scale of an ordinal variable
with levels: never-former—current smoking) and alcohol use (drinks per week).
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Figure A1. (A) CLPM (with means): The cross-lagged panel model (CLPM) is used to estimate bidirectional lagged effects between
X and Y (byax; and bxay1). This model was used as the reference model for integrating instrumental variables. (B) IV Regression
(with means): The instrumental variables regression (IVR) model fitted in a Structural Equation Modeling framework. The model
uses the instrumental variable for X, /Vx, to estimate the causal effect of X on Y (byx). (C) IV-CLPM (with means): The proposed IV-
CLPM model combines the CLPM with bidirectional IVR applied cross-sectionally at each wave. In addition to the lagged (i.e.,
“distal”) effects byox; and by,y1, the model utilizes IVR to estimate cross-sectional (i.e., “proximal”) effects at each wave: byy; and
bxiy1 at wave 1, and byax; and by,y, at wave 2. In all three path diagrams, squares/rectangles represent the observed variables,
and circles represent latent variables. Triangles represent constants used to model the variables’ mean levels.
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Figure A2. Data-generating model (with means): The data-generating model with bidirectional first-order causal effects between X
and Y (byxy and byy) simulated over 150 time points. The instrumental variable for X, /Vx, has an unchanging direct effect on X (by)
at every time point. Likewise, the instrumental variable for Y, IVy, directly affects Y (by) at all time points. Squares/rectangles repre-
sent the observed variables, and circles represent latent variables (i.e., the variances in this model). Triangles represent constants
used to model the variables’ mean levels.

Figure A3. Unidirectional IV-CLPM. The model combines a unidirectional version of the two-wave Cross-Lagged Panel Model
(CLPM) with Instrumental Variables Regression (IVR) applied cross-sectionally at each wave. In addition to the lagged (i.e., “distal”)
effect of X on Y (byax1), the model utilizes IVR to estimate cross-sectional (i.e., “proximal”) effects at each wave: byy; at wave 1,
and by,x, at wave 2. The squares/rectangles represent the observed variables, and circles represent latent variables. Triangles rep-
resent constants used to model the variables’ mean levels.
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Figure A4. Schematic of the study design for examining the impact of time interval on the causal inference in the proposed IV-
CLPM and the traditional CLPM models. A stationary time series was generated with two constructs (X and Y) and their respective
instrumental variable (IVx and IVy) with bidirectional first-order lagged effects between X and Y. To this data, a series of two-wave
IV-CLPM and CLPM models were fitted. Across the models, the first wave (T1) was fixed at an arbitrary time-point in the stationary
time series, while the second wave (T2) was changed by an increment of one unit in every successive model. In so doing, the
time interval (AT = T2 —T1) in the fitted models was increased sequentially from 1 through 50. This figure depicts the models
with AT =1, 2, and 3.
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Figure A5. Likelihood-ratio tests (LRTs) of the effects of X on Y in the bidirectional (left) and unidirectional (right) versions of the
IV-CLPM, given data with unidirectional effects of X on Y. The non-centrality parameters were obtained by fixing to zero the causal
parameters in models fitted to data with N = 1000, byy = 0.4, byy = 0, byox1 = 0.8, byyy1 = 0.8, and r,,, = 0.3.
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Figure A6. Results of (A) the CLPM (with means and covariates) and (B) the best-fitting IV-CLPM (with means and covariates)
examining bidirectional causal effects between smoking status (Smk) and alcoholic drinks per week (Alc), assessed three years
apart. The paths have been labeled with the point estimate and its standard error (in parentheses). The dashed path in the CLPM
indicates a non-significant causal estimate. The CLPM suggests a likely unidirectional causal process, with a significant effect of
smoking on alcohol use, but not vice versa. On the contrary, the IV-CLPM suggests a more complex bidirectional causation, with a
significant proximal effect of alcohol use on smoking, which, in turn, has a reciprocal distal effect on alcohol use. In both path dia-
grams, squares/rectangles represent the observed variables, and circles represent latent variables. Triangles represent constants
used to model the traits’ mean levels.
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