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ABSTRACT 
Cross-lagged panel models (CLPMs) are commonly used to estimate causal influences 
between two variables with repeated assessments. The lagged effects in a CLPM depend on 
the time interval between assessments, eventually becoming undetectable at longer inter
vals. To address this limitation, we incorporate instrumental variables (IVs) into the CLPM 
with two study waves and two variables. Doing so enables estimation of both the lagged 
(i.e., “distal”) effects and the bidirectional cross-sectional (i.e., “proximal”) effects at each 
wave. The distal effects reflect Granger-causal influences across time, which decay with 
increasing time intervals. The proximal effects capture causal influences that accrue over 
time and can help infer causality when the distal effects become undetectable at longer 
intervals. Significant proximal effects, with a negligible distal effect, would imply that the 
time interval is too long to estimate a lagged effect at that time interval using the standard 
CLPM. Through simulations and an empirical application, we demonstrate the impact of 
time intervals on causal inference in the CLPM and present modeling strategies to detect 
causal influences regardless of the time interval in a study. Furthermore, to motivate empir
ical applications of the proposed model, we highlight the utility and limitations of using 
genetic variables as IVs in large-scale panel studies.
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Introduction

Cross-lagged panel models (CLPM) are widely used to 
infer causal relationships between variables by analyz
ing observational data with repeated assessments. The 
magnitude and statistical significance of the lagged 
causal effects in the CLPM depend on the time interval 
between repeated assessments (Kuiper & Ryan, 2018). 
The lagged effect typically decays with an increasing 
time interval, which limits the reliable detection of 
causation in the CLPM. To address this limitation, we 
incorporate instrumental variables (IVs) into the 
CLPM (henceforth, IV-CLPM) to estimate both cross- 
sectional and lagged causal effects. In this paper, we 

focus on the impact of measurement intervals on the 
causal estimates in the traditional CLPM and the IV- 
CLPM, using both simulated and empirical data.

The CLPM is used to estimate causal influences over 
time based on Granger causality (Granger, 1969), 
wherein the cause temporally precedes the outcome and 
predicts the future values of the outcome. In the simplest 
CLPM (Figure 1(A)), two variables, say X and Y , are 
assessed on two occasions (T1 and T2). The model is 
considered “crossed” as it allows for the estimation of 
bidirectional causal influences between X and Y , and it 
is considered “lagged” as the effects are estimated across 
time (i.e., from T1 to T2). In addition, the CLPM con
trols for (i) the cross-sectional correlation between the 
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residuals of X and Y on each occasion (subsuming the 
covariance due to omitted confounding variables), and 
(ii) autoregressive effects across time, indicating the 
degree of stability of each construct (X and Y) over time. 
The predictive causal inference in CLPM may help to 
identify potential targets for interventions when experi
mental designs are either infeasible or unethical. As a 
result, the CLPM has long been a particularly appealing 
approach in social and behavioral research (e.g., Becker 
et al., 2012; Hawkley et al., 2010; Lac & Donaldson, 
2021; Patalay et al., 2015; van Ouytsel et al., 2019).

The lagged effects estimated in the CLPM depend 
on the time interval between repeated observations 

taken at times T1 and T2, i.e., DT ¼ T2 − T1 (Kuiper 
& Ryan, 2018). In practice, the time scale of measure
ments depends on multiple factors, including the pro
cess being studied, the research design, and the 
feasibility of the time frame. It may range from milli
seconds to months for neuroimaging, behavioral, and 
psychological traits and to years for maturational proc
esses. Given an appropriate time scale, as the time inter
val between the predictor and the outcome increases, 
the lagged effect decays asymptotically (e.g., as seen with 
the influence of loneliness on blood pressure; Hawkley 
et al., 2010), ultimately becoming practically undetectable 
at longer time intervals. Consequently, the failure to 

Figure 1. (A) CLPM: The cross-lagged panel model (CLPM) is used to estimate bidirectional lagged effects between X and Y (bY2X1 

and bX2Y1). This model was used as the reference model for integrating instrumental variables. (B) IV Regression: The instrumental var
iables regression (IVR) model fitted in a Structural Equation Modeling framework. The model uses the instrumental variable for X, IVx, 
to estimate the causal effect of X on Y (bYX ). (C) IV-CLPM: The proposed IV-CLPM model combines the CLPM with bidirectional IVR 
applied cross-sectionally at each wave. In addition to the lagged (i.e., “distal”) effects bY2X1 and bX2Y1, the model utilizes IVR to esti
mate cross-sectional (i.e., “proximal”) effects at each wave: bY1X1 and bX1Y1 at wave 1, and bY2X2 and bX2Y2 at wave 2. In all three path 
diagrams, squares/rectangles represent the observed variables, and circles represent latent variables. To improve readability, the mod
eling of means is not shown in this figure. For complete path diagrams with means, please see Figure A1 in the Appendix A.
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reject the null hypothesis of no causation may be due to 
either the absence of a causal effect or an inappropriate 
time interval. For example, in a study of problem behav
iors in early adolescence, Becker et al. (2012) found that 
delinquent behaviors predicted marijuana use, but not 
alcohol use, assessed nine months later. Here, the inter
pretation of the non-significant lagged effect of delin
quent behaviors on alcohol use is ambiguous. One 
cannot distinguish whether delinquent behaviors do not 
have a causal effect on alcohol use, or whether the time 
interval is too long for this effect to be detected. 
Therefore, a lack of evidence for lagged effects at a given 
time interval cannot be generalized to the overall causal 
relationship between two traits.

Among alternative methods of causal inference with 
observational data, Instrumental Variables Regression 
(IVR) is increasingly popular in fields, such as econom
ics (e.g., Cambini & Rondi, 2010; Hassan et al., 2020; 
Rakowski & Yamani, 2021) and epidemiology (e.g., 
George et al., 2022; Hamer et al., 2021; McDowell 
et al., 2015). This approach uses one or more exogen
ous predictors (i.e., the instrumental variables, IVs) of 
the hypothesized causal variable X to estimate its effect 
on the outcome Y. If the assumptions of IVR are met, 
the regression coefficient in the regression of Y on X 
represents the causal effect of X on Y (Bollen, 2012). 
Maydeu-Olivares et al. (2019) and Minic�a et al. (2018) 
have demonstrated that the IVR model can be imple
mented within the SEM framework using Maximum 
Likelihood estimation.

Although the IVR model allows for the estimation 
of causal effects in cross-sectional data, it does not 
necessarily imply that there is no temporal ordering 
of the cause and the outcome in the underlying causal 
process. This is because temporal precedence of the 
cause over the outcome has usually been accepted as a 
prerequisite for causality since David Hume’s seminal 
work in the philosophy of causation (Hume, [1739] 
2009). For example, in a population-level study of the 
relationship between unemployment and mental 
health in Finland, Amin et al. (2023) demonstrated 
using IVR analyses that unemployment rates had a 
detrimental causal effect on self-reported mental 
health. Here, the IVR analyses allowed the authors to 
differentiate the causal effect of unemployment on 
mental health from other sources of covariance (e.g., 
omitted confounding variables or reverse causality), 
even though the two variables were assessed simultan
eously. However, in the underlying causal process, 
unemployment (the cause) would still be expected to 
happen before a consequent decline in mental health 
(the outcome).

In this paper, we combine IVR with the CLPM by 
incorporating two IVs (one for each construct) in the 
traditional CLPM (henceforth, IV-CLPM). In addition 
to the lagged (i.e., “distal”) effects traditionally esti
mated in the CLPM, the IV-CLPM approach enables 
us to estimate cross-sectional (i.e., “proximal”) causal 
influences at each wave, without needing temporal 
ordering of the two variables. Using simulated data, 
we compared the proposed IV-CLPM and the trad
itional CLPM approaches and investigated how the 
time interval between repeated assessments impacts 
the causal inference in both models. We demonstrate 
that, while the distal effects become undetectable at 
longer time intervals, the causal relationship between 
X and Y remains detectable in the IV-CLPM in the 
two proximal effects (one at each wave). With the 
three causal effects estimated in the IV-CLPM, it is 
possible to test these parameter estimates separately or 
jointly using likelihood-ratio tests, which helps to 
evaluate different temporal aspects of causal influen
ces. Furthermore, comparing these likelihood-ratio 
test statistics provides a novel way to examine whether 
the time interval in a study is appropriate for studying 
Granger-causal influences between variables.

To provide an empirical example, we examined the 
causal influences between cigarette smoking and alcohol 
consumption using genetic variants as IVs. Tobacco and 
alcohol are among the most commonly used legal sub
stances of abuse (Hurley et al., 2012) and are leading 
contributors to the global disease burden (Gakidou 
et al., 2017). Epidemiological studies demonstrate a high 
degree of comorbidity between tobacco smoking and 
alcohol use (Mckee & Weinberger, 2013). However, sim
ple regression models in observational data cannot dif
ferentiate the extent to which this comorbidity can be 
attributed to (i) the causal effects of smoking on alco
hol use, (ii) the causal effects of alcohol use on smok
ing, and (iii) the effects of omitted variables influencing 
both smoking and alcohol use. The third category 
could include biological (e.g., genetic factors, brain 
reward pathways), psychological (e.g., externalizing and 
internalizing behaviors), and social (e.g., contextual 
cues) factors (Hurley et al., 2012). Moreover, evidence 
from experimental psychopharmacological studies sug
gests that the potential causal effects between smoking 
and alcohol use could plausibly be acute (i.e., prox
imal), chronic (i.e., distal), or both (Hurley et al., 2012; 
Mckee & Weinberger, 2013).

In our empirical analyses, we analyzed two waves 
of repeated assessments from the Netherlands Twin 
Register (Ligthart et al., 2019) to compare the CLPM 
and the IV-CLPM models, examining bidirectional 

344 M. SINGH ET AL.



causal influences between cigarette smoking status and 
alcohol use (drinks per week). Through this example, 
we demonstrate the etiological insights obtained by 
incorporating IVs into the CLPM, as well as the utility 
of using genetic variants (identified in genome-wide 
association studies) as IVs in large-scale panel studies 
with genetic data.

Methods

Instrumental variables regression

The SEM specification of the Instrumental Variables 
Regression (IVR) model (Maydeu-Olivares et al., 2019) 
is shown in Figure 1(B). In this model, the effect of X 
on Y can be estimated using the instrumental variable 
for X (IVx), even if X and Y are assessed simultaneously. 
Per this model, X completely mediates the effect of IVx 
on Y, such that IVx has no direct effect on Y. The IVR 
model also allows us to estimate the covariance between 
the residuals of Y and X (CovExy), in addition to the 
coefficient of the regression path from X to Y (bYX). If 
the correlation between the residuals of Y and X is 
small, standard regression approaches may be appropri
ate for estimating the approximate causal effect of X on 
Y. By adding the instrumental variable IVx to the model, 
this assumption can be investigated empirically.

Formally, the instrumental variable, IVx, is required to 
satisfy three main assumptions (Labrecque & Swanson, 
2018): (i) it is associated with X (“relevance”), (ii) it is 
not correlated with the residual variance of Y, given X 
(“exclusion restriction”), and (iii) it is independent of the 
(omitted) confounding variables (“exchangeability”). As 
shown by Maydeu-Olivares et al. (2020), under these 
assumptions, IVR can provide consistent estimates of the 
causal effect of X on Y, and it is robust to alternative 
sources of covariance between X and Y, including omit
ted confounding variables, reciprocal causation, reverse 
causation, and no causation. As is the case in any statis
tical model, inference of the causal estimates in IVR 
depends on the IV assumptions being satisfied. However, 
it may not be possible to assess some of these assump
tions empirically (such as “exclusion restriction”), 
behooving researchers to rely on theoretical reasoning for 
the selection of appropriate IVs. In addition, sensitivity 
analyses may help to examine the robustness of the 
causal estimates to assumption violations.

IV-CLPM

The proposed IV-CLPM model is shown in Figure 1(C). 
The model incorporates two IVs, IVx and IVy, into the 
traditional CLPM with two time-points, thus allowing 

for the IVR model to be applied cross-sectionally at 
each study wave. Adding IVs to the CLPM allows us to 
estimate three types of causal effects between X and Y. 
First, the IVR-estimated cross-sectional (i.e., proximal) 
effects at wave 1 (bY1X1 and bX1Y1) reflect the causal 
process that unfolded up to the first assessment. Second, 
the lagged (i.e., distal) effects of X1 on Y2 (bY2X1) and of 
Y1 on X2 (bX2Y1) represent the Granger-causal influen
ces between X and Y, given the time interval between 
waves 1 and 2. Third, the IVR-estimated proximal 
effects at wave 2 (bY2X2 and bX2Y2) reflect the causal 
influences that unfolded between waves 1 and 2 but 
were not captured by the distal effects. Thus, the wave-2 
proximal effects represent conditional IVR estimates, 
controlling for the IVR estimates at wave 1 and the dis
tal Granger effects. The terms “proximal” and “distal” 
underscore the temporal relationship between the pre
dictor and the outcome for that estimate, indicating 
whether the outcome (e.g., Y2) was assessed simultan
eously (bY2X2) or on a subsequent occasion (bY2X1).

Data generation

We simulated time-series data with reciprocal causal 
effects between two variables, X and Y (Figure 2), to 
compare our proposed IV-CLPM with the traditional 
CLPM. We included two IVs in the simulated data: 
IVx with a direct effect on X, and IVy with a direct 
effect on Y, on every occasion. In the data-generating 
model, we only include lagged paths to represent the 
causal effects between X and Y. This specification is 
consistent with the expectation that, in the true causal 
process, the cause temporally precedes the outcome.

To generate the data, we calculated the expected 
covariance matrix with a selected set of parameter val
ues, given T ¼ 150 time points, using the Reticular 
Action Model (RAM; McArdle & McDonald, 1984) 
formula for the covariance structure:

R ¼ ðI − AÞ−1 S ðI − AÞ−1T, 

where R is the expected covariance matrix. As men
tioned in the introduction, the time scale of these 150 
repeated measurements would depend on the variables 
studied, potentially varying from milliseconds to years. 
Given two variables (X and Y) on each of the T time 
points, plus two IVs (IVx and IVy), R is m�m, 
where m ¼ 2ð1þ TÞ: The matrix A ðm�mÞ con
tains the bidirectional proximal and distal regression 
coefficients, the coefficient of the regression of X on 
IVx, and the coefficient of the regression of Y on IVy. 
The matrix S ðm�mÞ contains the variances and 
covariance of IVx and IVy, the residual variances of X 
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and Y, and the cross-sectional covariances of these 
residuals.

Given the m�m covariance matrix R, we simulated 
data with an arbitrary N ¼ 1000, using the mvrnorm() 
function in the MASS package (Venables & Ripley, 
2002), with the option empirical¼TRUE (i.e., exact 
data simulation; van der Sluis et al., 2008). This method 
ensures that the covariance matrix of the simulated data 
exactly equals R and that the true parameter values are 
recovered exactly upon fitting the true model to the data. 
In other words, the exact-data simulation approach is 
analogous to fitting a model to the exact population 
covariance matrix and means vector. Furthermore, this 
approach ensures that the likelihood-ratio test statistic 
obtained when a parameter is fixed to zero equals the 
non-centrality parameter of the non-central chi-square 
distribution, with no stochastic variation.

We simulated multiple datasets using different per
mutations of parameter levels for data generation, 
allowing us to examine the impact of population 
parameters on the changes in causal estimates across 
time intervals. These parameters included the first- 
order causal path from X to Y, bYX 2 ð0:1, 0:2Þ, the 
first-order causal path from Y to X, bXY 2 ð0:1, 0:2Þ, 
the first-order autoregressive path (AR1) of X, bX2X1 2

ð0:5, 0:7Þ, AR1 of Y, bY2Y1 2 ð0:5, 0:7Þ, and the 
cross-sectional correlation between the residuals of X 
and Y, rexy ¼ CExEyi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VExi � VEyi

p
2 ð0:1, 0:3Þ, set 

to be constant across all occasions. Both IVs were 
standardized to have a mean of 0 and a variance of 1, 
and had a correlation, rIV ¼ rðIVx, IVyÞ ¼ 0:25: The 
direct effect of IVx on X on every occasion was set at 
bX ¼ 0:08, while the direct effect of IVy on Y 
was bY ¼ 0:08:

To examine the impact of time intervals on the 
causal estimates, we considered a stationary model. In 
a stationary time-series, the time index (i) has essen
tially no impact on the cross-sectional covariances (RiÞ

among the variables (Gagniuc, 2017; Ryabko, 2019). 
When parameters are estimated in such a system, they 
depend on the time interval, DT ¼ Ti � Tj ði > jÞ, 
but not on the particular time points Ti and Tj: To 
operationalize stationarity in this report, we consider it 
achieved when the elements of Ri differ from those of 
Ri−1 by <0.0001.

The data-generating model used in this study is a 
Markovian process, i.e., the information at time point 
Ti subsumes all past information and is sufficient to 
predict the information at the subsequent time point 
Tiþ1: The system is also time-homogeneous, i.e., the 
values of the causal paths do not change with the 
time index. When such a time-series is simulated with 
admissible parameter values over an extended number 
of time points, it usually meets the stationarity criteria 
beyond a certain time point. We established that the 
data-generating model achieved stationarity by T ¼ 70, 
given bYX ¼ 0:2, bXY ¼ 0:2, bX2X1 ¼ 0:7, bY2Y1 ¼ 0:7, 
rexy ¼ 0:1: When the AR1 (bX2X1 and bY2Y1) parame
ters were smaller, the model reached stationarity at an 
earlier time point. We discarded data before T ¼ 100, 
thus ensuring stationarity. (See Appendix Table A1 for 
the correlations between variables over a range of time 
points beyond T ¼ 100:)

At stationarity, the effect size of an IV on its 
respective variable depended on the values of the 
other data-generating parameters. Thus, the R2 for the 
regression of X on IVx in the stationary model ranged 
from 2.09% (given bYX ¼ 0:1, bXY ¼ 0:1, bX2X1 ¼ 0:5, 

Figure 2. Data-generating model: The data-generating model with bidirectional first-order causal effects between X and Y (bYX 

and bXY ) simulated over 150 time points. The instrumental variable for X, IVx, has an unchanging direct effect on X (bX ) at every 
time point. Likewise, the instrumental variable for Y, IVy, directly affects Y (bY ) at all time points. Squares/rectangles represent the 
observed variables, and circles represent latent variables (i.e., the variances in this model). To improve readability, the modeling of 
means is not shown in this figure. For a complete path diagram with means, please see Figure A2 in the Appendix A.
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bY2Y1 ¼ 0:5, rexy ¼ 0:3) to 8.03% (given bYX ¼ 0:2, 
bXY ¼ 0:2, bX2X1 ¼ 0:7, bY2Y1 ¼ 0:7, rexy ¼ 0:1). The 
regression of Y on IVy had an equivalent R2, as simi
lar parameter values were used for X and Y. These 
parameter levels were chosen to be consistent with 
modest-sized regressions of behavioral and psychiatric 
traits on exogenous IVs (e.g., polygenic scores), and 
with commonly observed AR1 parameter estimates.

We also considered a unidirectional version of the 
IV-CLPM, which uses the instrumental variable IVx 
to estimate the proximal and distal effects of X on Y 
(Appendix Figure A3). To test this model and compare 
it to the bidirectional version, we simulated a time-series 
with unidirectional causal effects of X on Y (i.e., with 
the effect of Y on X set to zero), given N ¼ 1000 and 
the following parameter settings: bYX ¼ 0:4, bXY ¼ 0, 
bX2X1 ¼ 0:8, bY2Y2 ¼ 0:8, rexy ¼ 0:3, bX ¼ 0:1, bY ¼

0:1, and rIV ¼ 0: The time-series reached stationarity 
by around T ¼ 50: To ensure stationarity for model-fit
ting, we discarded the data before T ¼ 100: At statio
narity, the R2 for the regression of X on IVx was 8.26%.

Model fitting

To each simulated dataset, we fitted a series of IV- 
CLPMs with varying time intervals. To do so, we set 
wave 1 at time point T ¼ 100 and wave 2 at T þ DT, 
and we changed the DT sequentially from 1 to 50, thus 
increasing the time interval (Appendix Figure A4). 
Because the data-generating model is stationary, the 50 
models fitted to a particular dataset differed only in the 
time interval between the two waves. This design allowed 
us to examine how the time interval between study 
waves influences the distal and proximal effects estimated 
in the IV-CLPM (Figure 1(B)). To compare the IV- 
CLPM with the traditional CLPM, we also fitted models 
without the IVs and the proximal effects to obtain distal 
effects in the standard CLPM (Figure 1(A)), using the 
same datasets. Further, the datasets simulated using dif
ferent parameter values allowed us to examine the impact 
of population parameters on the causal estimates, given 
varying time intervals in a stationary model.

We tested the causal parameter estimates in both 
models using likelihood-ratio tests (LRTs; Wilks, 
1938). The LRT statistic equals the difference between 
the −2� log-likelihood (−2lnL) of the freely estimated 
model and that of a nested, restricted model with one 
or more of the causal parameters fixed to zero. When 
using exact data simulation, the LRT statistic from fix
ing a parameter equals the non-centrality parameter 
(NCP) of non-central chi-square distribution, which 
can be used to calculate the statistical power to reject 

the null hypothesis (van der Sluis et al., 2008). Thus, 
larger NCP values indicate higher power to estimate 
the tested parameter.

In the traditional CLPM, bidirectional causation 
can be tested using a two-degrees-of-freedom (2df) 
LRT of the reciprocal distal effects between X and Y. 
If the 2df LRT is significant, follow-up 1df tests can 
be used to discern the distal effect in each direction of 
causality. By contrast, in the IV-CLPM, the causal 
influences can be first tested through a 6df LRT of all 
three types of bidirectional causal effects (across time, 
at wave 1, and at wave 2), providing an omnibus test 
of causal influences between X and Y, given the data 
from two study waves. A significant omnibus test can 
be followed up with a 3df joint LRT of the three 
causal effects in each direction, followed by separate 
1df LRTs of each causal parameter.

To assess whether the IV-CLPM provides a better 
modeling approach than the CLPM at a particular time 
interval, we conducted a joint 2df LRT of (unidirec
tional) distal and wave-2 proximal effects in the former, 
and compared it with the CLPM’s 1df LRT of distal 
effect. Both these LRTs test the null hypotheses for the 
causal influences occurring between waves 1 and 2. So, 
the larger the difference between the NCPs of the two 
tests, the more substantial the benefit of fitting the IV- 
CLPM and estimating the wave-2 proximal effect.

We also fitted both the unidirectional and the 
bidirectional IV-CLPM to the dataset simulated with 
unidirectional causation. As before, we set wave 1 at 
T ¼ 100 and wave 2 at T þ DT, with DT increasing 
sequentially from 1 to 50. We compared the NCPs in 
the two models to investigate whether fitting the uni
directional model increases the power to detect caus
ation (vs. the bidirectional model) in data with 
unidirectional effects.

Empirical application

We used both the CLPM and the IV-CLPM models to 
examine bidirectional causal influences between cigar
ette smoking status and alcohol use (drinks per week), 
using relevant genetic variants as IVs. For these analy
ses, we used data from the Netherlands Twin Register 
(NTR; Ligthart et al., 2019), which is a community- 
based longitudinal study of twins and their families, 
established at the Vrije Universiteit (VU) Amsterdam. 
The NTR study has been approved by the Central Ethics 
Committee on Research Involving Human Subjects of 
the VU Medical Center, Amsterdam (IRB codes 2008/ 
244 and 2010/359). Informed consent was obtained 
from all study participants before data collection.
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The NTR collects data on health, behaviors, per
sonality, and lifestyle factors, along with biological 
samples, including DNA from whole blood and buccal 
tissue. The DNA samples have been genotyped on sin
gle-nucleotide polymorphism (SNP) microarrays. The 
human genome has �3.2 billion nucleotide base pairs 
(the smallest unit of DNA). A SNP is a genetic locus 
that is one base-pair long, where more than one type 
of nucleotide exists in the population; hence the term 
SNP (often pronounced “snip”). Tens of millions of 
SNPs have so far been identified in the global human 
population (Auton et al., 2015). SNP microarrays pro
vide a scalable laboratory tool for measuring (i.e., 
“genotyping”) a subset of the common SNPs (typically 
around a million) that an individual carries (Wang 
et al., 1998). These genotyped SNPs can then be ana
lyzed as markers to identify genetic loci associated 
with a trait of interest. Such a study design is known 
as a genome-wide association study or GWAS 
(Uffelmann et al., 2021). As explained below, the 
SNPs associated with a trait (or a weighted sum of 
such SNPs) can serve as potential IVs (provided other 
IV assumptions are satisfied).

Participants
In the current analyses, we included genotyped 
European-ancestry adult individuals with two waves 
of survey data collected three years apart: the Adult 
NTR (ANTR) Survey 8 (in 2009) and the ANTR 
Survey 10 (in 2012). (Henceforth, we refer to these 
two surveys as waves 1 and 2, respectively.) To avoid 
the clustering of study participants within families, we 
selected one individual per family for the current 
analyses. In these analyses, we included data from 
4895 individuals, with 3983 and 3803 participants hav
ing non-missing observations at waves 1 and 2, 
respectively. This sample comprised 1745 males and 
3150 females (self-reported gender, matched with bio
logical sex inferred from the genotype). The age at 
wave 1 ranged from 15 to 94 years (Mean ¼ 43:95, 
S:D: ¼ 15:87 years), while wave 2 had an age range of 
18 to 90 years (Mean ¼ 46:96, S:D: ¼ 16:71 years). 
Sex and age were used as covariates with fixed effects 
at each wave in both the CLPM and the IV-CLPM.

Measures
Current cigarette smoking status and alcohol use were 
measured through self-reports. Smoking status assess
ment consisted of three response options: “Never 
smoked regularly,” “Used to smoke but quit” (i.e., for
mer smoking), and “Currently Smoking.” We treated 
this measure as an ordinal variable with a normally 

distributed latent liability, under the Liability 
Threshold Model (Verhulst & Neale, 2021). We fixed 
the two thresholds (corresponding to the three levels) 
at −0:5 and 0:5, allowing us to freely estimate the 
mean and variance of the underlying liability scale at 
each wave (Mehta et al., 2004). Alcohol Use was oper
ationalized as the number of alcoholic drinks con
sumed per week. The participants reported their 
current consumption of a variety of alcoholic drinks 
in a typical week, which was aggregated into a seven- 
point scale (<1, 1–2, 3–5, 6–10, 11–20, 21–40, and 
>40 drinks per week). We treated this variable as a 
continuous variable. Figure 3 shows the distribution 
of both traits at each wave (four variables in total). 
The numbers of non-missing observations on each 
variable and the pairwise subject overlap between vari
ables are shown in Table 1.

Genetic instrumental variables
We used a weighted sum of SNPs (i.e., a polygenic 
score, or PGS) associated with smoking status and 
drinks per week as their respective IV. A typical SNP 
involves two variant forms (called “alleles”) at a base- 
pair position in the population, say A1 and A2. As 
humans have two sets of chromosomes (one from 
each biological parent), there are three possible allele 
combinations for a given SNP (except the SNPs on 
sex chromosomes) in an individual: A1A1, A1A2, or 
A2A2. The SNP can be coded according to the number 
of trait-increasing alleles (say, A2) as 0, 1, and 2, 
respectively. A PGS is then computed as a weighted 
linear combination of these values across all SNPs asso
ciated with a trait. The weights are based on the SNP- 
trait association effect sizes estimated through GWAS 
in an independent, ancestry-matched sample (Wray 
et al., 2021). An individual’s PGS for a trait reflects 
their genetic propensity for that trait, relative to the 
general population. The utility of PGSs as IVs has pre
viously been demonstrated in other SEM-based exten
sions of IVR (Castro-de-Araujo et al., 2023; Minic�a 
et al., 2018) and applied empirically (e.g., de Vries 
et al., 2021; Lim et al., 2022; Oginni et al., 2023).

In general, the use of genetic variants as IVs is 
referred to as Mendelian Randomization (MR) ana
lysis (Davey Smith & Ebrahim, 2003; Lawlor et al., 
2008). Here, the term “Mendelian Randomization” 
refers to the random segregation and independent 
assortment of genetic loci during gamete formation in 
the parents. Consequently, the alternative alleles of a 
SNP can be assumed to be randomly distributed at 
the population level and, thus, be independent of 
potential environmental confounding (i.e., the 
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“exchangeability” assumption). Thus, genetic IVs are 
interpretable as Bollen (2012)’s “randomization IVs.” 
Another advantage of genetic IVs is that one can 
safely assume that there is no reverse causation from 
a trait, such as smoking, to the associated SNPs.

In this study, we used the results from large-scale 
European-ancestry GWAS meta-analyses of “smoking 
initiation” and “drinks per week” (Saunders et al., 

2022), excluding the NTR from the GWAS meta-ana
lysis, to derive PGSs associated with the smoking and 
alcohol use measures in the NTR (i.e., the “relevance” 
assumption). The PGSs were calculated using LDpred 
v0.9 (Vilhj�almsson et al., 2015). Both PGSs were resi
dualized for the SNP microarray platform and the first 
10 genetic principal components, and then standar
dized to have a mean of zero and S.D. of one. As a 
PGS summarizes the effects of many SNPs, it has a 
much larger effect size than the individual SNPs, 
reducing the risk of weak-instrument bias in the IV- 
CLPM. In the NTR, the residualized PGS of smoking 
explained 2.2 and 2.4% of the variance in the smoking 
status at waves 1 and 2, respectively (controlling for 
age and sex). Likewise, the PGS of drinks per week 
had an incremental R2 of 1.2 and 1.0% at waves 1 and 
2, respectively. Supplemental Methods describe in 
greater detail the methods and procedures used for 
genotyping and quality control of the genetic data, 

Figure 3. The univariate distributions of alcohol use and smoking status variables at wave 1 (Adult NTR survey 8) and wave 2 
(Adult NTR survey 10) in the Netherlands Twin Register data used in our empirical example. Alcohol use was operationalized as 
the number of alcoholic drinks per week, with the seven levels corresponding to <1, 1–2, 3–5, 6–10, 11–20, 21–40, and >40 
drinks per week, respectively. The cigarette smoking status variable was a categorical variable with three response options: 
1 ¼ “Never smoked regularly,” 2 ¼ “Used to smoke but quit” (i.e., former smoking), and 3 ¼ “Currently Smoking.”

Table 1. The number of observations of each variable and 
pairwise overlap between variables.

Alcohol  
at T1

Alcohol  
at T2

Smoking  
at T1

Smoking  
at T2

Alcohol at T1 3394
Alcohol at T2 2074 3064
Smoking at T1 2582 1929 3181
Smoking at T2 2123 2464 2336 3203

Note. The study sample comprised 4895 individuals, of whom 3983 and 3803 
individuals provided data at waves 1 and 2, respectively. The number 
of observations per variable are listed along the diagonal (highlighted). 
The off-diagonal values indicate the number of observations of pairwise 
overlap between variables.
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genetic principal component analysis, and PRS 
calculation.

The two (residualized) PGSs, used as IVs in this 
example, showed a Pearson correlation of r ¼ 0:196 
(95% confidence interval ¼ 0.168, 0.222). This correl
ation between the PGSs arises due to covariance 
between the SNP-smoking and SNP-alcohol associa
tions (in the respective GWAS), suggesting a genetic 
overlap between the two traits (called “pleiotropy”). 
This overlap of genetic signals can arise through mul
tiple mechanisms. On the one hand, this could imply 
a direct causal effect of one trait on the other. For 
instance, if alcohol use has a causal effect on smoking, 
the SNPs that influence alcohol use will indirectly also 
influence smoking. Consequently, these SNPs will be 
shared between the two PGSs, albeit with different 
weights. This type of genetic overlap (called mediated 
or “vertical” pleiotropy) forms the essence of MR 
analyses (Richmond & Davey Smith, 2022). On the 
other hand, the genetic overlap between traits (and, in 
turn, a correlation between their PGSs) can arise if 
the SNPs influencing trait X also influence trait Y via 
a pathway that excludes trait X (called unmediated or 
“horizontal” pleiotropy) (Richmond & Davey Smith, 
2022). These SNPs will also be shared between the 
two PGSs. For instance, in the current analyses of 
smoking and alcohol use, SNPs in the BDNF (brain- 
derived neurotrophic factor) gene, which influences 
drug reward mechanisms, could show horizontal plei
otropy and influence the two traits separately (Liu 
et al., 2019, p. 240).

Horizontal pleiotropy, if not modeled, is a threat 
to the validity of genetic IVs (and standard MR analy
ses), as it violates the “exclusion restriction” assump
tion. However, the use of PGSs in the proposed 
IV-CLPM is arguably more robust to horizontal plei
otropy than standard MR approaches, as it allows for 
paths (or chains of paths) to connect the PGS of one 
trait with the opposite trait, independent of a direct 
causal effect between the two traits. Specifically, the 
model accounts for the covariance between the two 
PGSs, Cixiy ¼ covðIVx, IVyÞ (Figure 1(C)). For instance, 
the PGS of smoking (IVx) is thus allowed to covary 
with alcohol use at wave 1 (Y1) through the PGS of 
alcohol use (IVy), i.e., Cixiy � by1, independent of 
smoking (X1). In other words, the direct regression 
paths between the traits accommodate vertical plei
otropy (given true causal effects between the traits), 
while the covariance between PGSs potentially accom
modates genetic confounding or horizontal pleiotropy. 
This use of PGSs as correlated IVs in a bidirectional 
IVR model, averting (to some extent) potential 

violations of the “exclusion restriction” assumption, is 
consistent with the model proposed in Castro-de- 
Araujo et al. (2023).

Model fitting
We fitted both the CLPM and the IV-CLPM models, 
controlling for sex and age at each wave. In both anal
yses, we began with the full model estimating bidirec
tional causal effects and then tested more restricted 
models to arrive at the most parsimonious model. As 
outlined above (in the case of simulated data), we 
constrained the relevant causal paths to zero and then 
compared the nested models using the LRT. In add
ition, we looked at the Akaike information criterion 
(AIC; Akaike, 1974). The AIC adjusts a model’s likeli
hood by including a penalty for the number of param
eters estimated in the model, thus balancing model fit 
and model complexity (Vrieze, 2012). When compar
ing multiple models, we selected the model with the 
lowest AIC as the best-fitting, most parsimonious 
model.

All statistical analyses were performed using the 
OpenMx package (version 2.20.6; Neale et al., 2016) in 
the R statistical programming environment (version 
4.1.2; R Core Team, 2021). We verified that all models 
were locally identified (Hunter et al., 2021). In the 
empirical example, we conducted statistical tests 
(LRTs) with an alpha of 0.05.

Results

Impact of time interval on causal inference in 
CLPM and IV-CLPM

Causal estimates
The distal effects in the traditional CLPM (Figure 4(A)) 
increase briefly as the time interval between study 
waves (DT) initially increases, and then gradually 
decreases to reach an asymptote close to zero at 
extended intervals. Consequently, in the example 
shown in Figure 4(A), the lagged effect would vary 
from around 0.3 at DT ¼ 5 to <0.05 at DT > 30: The 
peak estimates during the initial rise and the estimates 
at longer time intervals are higher with a larger first- 
order causal effect size and stronger autocorrelations of 
the two variables (Figures 5(B,D,F)). Moreover, with 
stronger autocorrelation of either variable, the distal 
effects take longer to decay. The cross-sectional correl
ation between the residuals of the two variables does 
not affect the estimated distal effects in the CLPM 
(Figure 6).

The three causal effect types in the IV-CLPM show 
distinct patterns based on the time interval between 
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study waves. The proximal effects at wave 1 do not 
vary with the time interval (Figure 4(B)). These esti
mates capture the causal influences that occurred 
before the first measurement occasion (i.e., wave 1 in 
the model), and so remain unchanged as the time 
point of wave 1 is unchanged. Distal effects in the IV- 
CLPM follow trends similar to those observed in the 
traditional CLPM: there is a brief initial increase in 
the distal effect size, followed by a steady decline 
across increasing time intervals. However, compared 
to the CLPM, the peak of the distal effect in the IV- 
CLPM at short intervals is attenuated. Also, in the IV- 
CLPM, the distal effect at longer time intervals 
approaches zero regardless of the first-order causal 
effect size and the autocorrelations of the two varia
bles. Lastly, the proximal effects at wave 2 increase 
gradually as the time interval increases, reaching an 
asymptote that approaches the proximal effect at wave 
1 (given stationarity). As expected, a larger first-order 
causal effect size and stronger autocorrelation of the 
outcome (Figures 5(A,E)) lead to higher estimates for 
all three effects (except for the distal effect at longer 
intervals, which invariably approaches zero). Unlike 
the CLPM, the autocorrelation of the predictor vari
able has little impact on the causal estimates in the 
IV-CLPM (Figure 5(C)).

Likelihood-ratio tests
With increasing time intervals in the traditional 
CLPM, the 2df LRT of bidirectional distal effects and 
the 1df LRTs of the distal effect in each direction 

follow the patterns seen in the causal estimates 
(Figure 7(A)). The NCP obtained from these LRTs 
trends toward zero at longer time intervals. Therefore, 
at extended intervals, the small distal effects in the 
CLPM are unlikely to be detected.

In the IV-CLPM, the NCP obtained from an omni
bus 6df LRT of bidirectional causation shows a similar 
overall pattern across increasing time intervals, first 
briefly increasing and then gradually decreasing 
toward an asymptote (Figure 7(B)). However, com
pared to the traditional CLPM’s 2df NCP (of the two 
distal effects), the asymptote reached by the IV- 
CLPM’s 6df NCP is substantially higher. Similarly, in 
each direction of causation, the 3-df NCP of the three 
causal estimates in the IV-CLPM is considerably 
larger than the CLPM’s 1df NCP of the distal effect. 
As the IV-CLPM has opportunities to resolve the 
causal process into three effect types, the power to 
detect these effects separately (i.e., through the 1df 
tests in each direction of causation) is necessarily 
lower than their joint 3df LRT.

Choosing between CLPM and IV-CLPM

At shorter time intervals, the power to estimate the 
distal effect in the CLPM is higher than that for esti
mating the three causal effects separately in the IV- 
CLPM. Here, “short” is a relative term indicating that, 
for a particular causal process, the time interval 
between two repeated assessments is short enough for 
a lagged Granger effect to adequately capture most of 

Figure 4. Impact of the time interval on (A) the distal effect in CLPM and (B) the distal and the two proximal effects in the IV- 
CLPM, with both models fitted to the data generated using the model in Figure 2. In the CLPM (A), the distal effect estimated 
increases briefly and then decreases asymptotically with increasing time intervals, varying from around 0.3 at an interval of 4 units 
to <0.05 at intervals longer than 30 units. In the IV-CLPM (B), the distal effect follows a pattern like that in the CLPM, but while 
the distal effect decays at longer intervals, the proximal effects can help estimate the causal effects. The plots illustrate the esti
mates for the effect of X on Y, given the first-order causal effect of X on Y¼ 0.2, the effect of Y on X¼ 0.2, first-order autoregres
sion (AR1) of X¼ 0.7, AR1 of Y¼ 0.7, and the correlation between the residuals of X and Y¼ 0.3.
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the causal influences. In such a case, the traditional 
CLPM is likely well-suited for estimating lagged 
effects, although one cannot know so beforehand. 
Therefore, it would be desirable to gauge whether the 
time interval in a study is appropriate for fitting the 
traditional CLPM (estimating only the distal effects) 
vs. the IV-CLPM (estimating both proximal and distal 
effects). To do so, we first compare the IV-CLPM’s 
2df LRT of (unidirectional) distal and wave-2 prox
imal effects to the CLPM’s 1df LRT of the distal effect 
(Figure 8). When the time interval between study 
waves is reasonably short, the 1df NCP from the 
CLPM is closely approximated by the 2df NCP in the 

IV-CLPM’s joint test of distal and wave-2 proximal 
effects. As the time interval increases, the difference 
between the two NCPs widens, suggesting an increas
ing benefit of fitting the IV-CLPM and resolving the 
causal influences into distal and proximal effects.

To evaluate whether the IV-CLPM would be a bet
ter modeling approach than the CLPM at a particular 
time interval, we can compare the 1df NCP of wave-2 
proximal effect to the 2df NCP of distal and wave-2 
proximal effects (in each direction of causation). 
If the former is much smaller than the latter, it would 
suggest that the time interval between study waves is 
reasonable for fitting the CLPM with this pair of 

Figure 5. The estimated causal effect of X on Y in the IV-CLPM (Figure 1(C)) and the CLPM (Figure 1(A)) at varying time intervals 
between study waves, given different levels of the first-order (i.e., at DT ¼ 1) causal effect of X on Y (A,B), first-order autoregres
sion (AR1) of predictor X (C,D), and AR1 of outcome Y (E,F) in the data-generating model (Figure 2). For ease of display, the time 
intervals are shown up to 40 units, by which point all parameter estimates are close to their asymptotes. (A,B) The first-order 
causal effect does not impact the rate at which the distal effect decays with increasing time intervals in either model. However, a 
larger first-order causal effect size does lead to larger causal estimates in both models (as expected). Note, though, that the distal 
effect in the IV-CLPM approaches zero at longer intervals, regardless of the first-order causal effect size. (C,D) A larger AR1 param
eter (i.e., greater stability over time) of the predictor variable leads to a larger distal effect in the CLPM across time intervals, as 
well as slower decay of the distal effect with increasing intervals. On the contrary, the degree of AR1 in the predictor has 
minimal impact on the causal estimates in the IV-CLPM. Note that in panel C, the two curves for the Proximal Effect at Wave 1 
have fully overlapped, so only one of the two curves is visible. (E,F) The AR1 parameter of the outcome variable impacts the causal 
estimates in both models: a higher level of outcome AR1 leads to larger causal estimates and slower decay of the distal effect in 
both models.
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variables. Also, the IV-CLPM will likely have relatively 
low power to estimate the distal and proximal effects 
separately. In this case, it would be prudent to test 
whether the wave-2 proximal effect can be constrained 
to be zero, such that the interpretation of the IV- 
CLPM’s distal effect is equivalent to the CLPM’s 
distal effect. The new distal effect in the IV-CLPM 
will then capture the causal influences that unfolded 
between waves 1 and 2. This proposed workflow 
would allow one to assess empirically whether the 
time interval is indeed appropriate for fitting the trad
itional CLPM and, if so, modify the IV-CLPM to esti
mate the distal effect one would obtain from the 
CLPM.

On the other hand, if the 1df NCP of wave-2 prox
imal effect (e.g., from X to Y) approximates the joint 
2df NCP of distal and wave-2 proximal effects, this 
would indicate that (1) the study waves are too far 

apart to meaningfully detect Granger causal effects, 
even though X likely has a causal effect on Y; and (2) 
the proximal effects at wave 2 approximate the causal 
influences occurring between waves 1 and 2. At such 
extended time intervals, the benefit of using the IV- 
CLPM over traditional CLPM is evident, as the former 
retains the power to detect causation through prox
imal effects and joint tests, while the power to detect 
causality in the CLPM evaporates.

A note on the correlation between the residuals

In the traditional CLPM, the cross-sectional correl
ation between the residuals of X and Y at wave 2, 
rexy2 ¼ CExEy2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VEx2 � VEy2

p
, captures all sources of 

covariance besides the Granger causal effects. That is, 
the correlation subsumes the covariance arising due 
to the causal effects between X and Y that were 

Figure 6. Variation in the causal estimates (effect of X on Y) and the cross-sectional correlation between the residuals of X and Y 
in (A) the CLPM and (B) the IV-CLPM, at varying levels of correlation between the residuals in the data (r_exy). The residual correl
ation in the data has a negligible impact on the causal estimates in either model, but affects the correlation of the residuals in 
the model, r_exy1 and r_exy2. Given stationarity, the correlation of the residuals also varies with changes in the causal estimates, 
which, in turn, depend on the time interval between study waves. For ease of display, the time intervals are shown up to 40 units, 
by which point all parameter estimates are close to their asymptotes.
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not accounted for by the distal Granger effects. 
Therefore, with increasing time intervals in a station
ary model, the distal effects decrease, and the correl
ation between the residuals increases (Figure 6(A)).

In the IV-CLPM, the cross-sectional covariance 
between X and Y at wave 1 is accounted for by the 
wave-1 proximal effects, the covariance path between 
X1 and Y1, as well as the covariance between the two 
IVs. As the proximal effects represent the cumulative 
causal influences accrued up to that point, these effects 
can be larger than the observed cross-sectional covari
ance between X1 and Y1: Consequently, the correlation 
of their residual variances at wave 1 in the IV-CLPM 
(rexy1 ¼ CExEy1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VEx1 � VEy1

p
) may be negative, even if 

the reciprocal causal effects and the correlation of the 
residuals in the population (i.e., the simulated data in 
this paper) are all positive (Figure 6(B)). Furthermore, 
at wave 2, the distal effects, the wave-2 proximal 
effects, and the covariance between the residual varian
ces of X2 and Y2 (CX2Y2), provide additional paths con
tributing to the total covariance between X2 and Y2: As 
the distal and the wave-2 proximal effects change at 
different time intervals, the correlation of wave-2 resid
uals (rexy2 ¼ CExEy2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VEx2 � VEy2

p
) can be positive, 

negative, or zero (given stationarity). Therefore, the 
correlation between the residuals in the IV-CLPM may 
be difficult to interpret substantively.

Figure 7. Likelihood-ratio tests (LRTs) of the causal estimates in the traditional CLPM and the IV-CLPM at varying time intervals 
between study waves. (A) CLPM: The non-centrality parameter (NCP) obtained from a 2-degrees-of-freedom (2df) test of bidirec
tional distal effects, and that obtained from a 1df LRT of a unidirectional distal effect (shown here is X to Y). (B) IV-CLPM: The NCP 
from a 6df omnibus test of bidirectional causal estimates of three types: the proximal effect at wave 1 (Proximal_W1), the distal 
effect, and the proximal effect at wave 2 (Proximal_W2). A significant omnibus test is followed up with a 3df LRT of the three 
causal effects in each direction, and, finally, the 1df LRTs of the three causal effects separately (in each direction of causation). The 
NCPs were obtained by fixing to zero the parameters of interest in models fitted to data with N ¼ 1000, bYX ¼ 0:2, bXY ¼ 0:2, 
bX2X1 ¼ 0:7, bY2Y1 ¼ 0:7, and rexy ¼ 0:3:

Figure 8. Comparison of the IV-CLPM’s joint test of (unidirec
tional) distal and wave-2 proximal effects with its 1df LRT of 
wave-2 proximal effect, as well as with the CLPM’s 1df LRT of 
distal effect. For reference, the IV-CLPM’s 1df LRT of distal 
effect is also shown. Comparing the 2df LRT statistic (dark red) 
with the 1df LRT of wave-2 proximal effect (dark blue) in the IV- 
CLPM can help gauge whether a particular time interval would 
be appropriate for fitting the traditional CLPM. The non-centrality 
parameters were obtained by fixing to zero the parameters of 
interest in models fitted to data with N ¼ 1000, bYX ¼ 0:2, 
bXY ¼ 0:2, bX2X1 ¼ 0:7, bY2Y1 ¼ 0:7, and rexy ¼ 0:3:
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Bidirectional vs. unidirectional IV-CLPM in data 
with unidirectional causation

We obtained the NCPs from the 1df LRTs of the three 
causal effects of X on Y in both the unidirectional and 
the standard bidirectional IV-CLPM fitted to the data
set with unidirectional causation (X causing Y). For all 
three effect types (wave-1 proximal, distal, and wave-2 
proximal effects), the NCPs obtained from both models 
followed similar trends with increasing time intervals, 
consistent with the pattern seen using data with bidir
ectional causation (Appendix Figure A5). However, the 
NCPs in the unidirectional model were slightly smaller 
than the equivalent statistics in the bidirectional model. 
Therefore, even though the unidirectional IV-CLPM is 
the more parsimonious model, given data with unidir
ectional causation, it does not provide any power 
advantage over the bidirectional model.

Empirical examination of smoking and alcohol use

CLPM
Examining the bidirectional causal influences between 
smoking status and alcohol use (drinks per week) with 
the CLPM (Figure 9(A)), an omnibus LRT of both 
causal paths (Table 2) was statistically significant 
(NCP ¼ 8:29, df ¼ 2, p ¼ 0:016). Testing the two 
causal paths separately, we found a significant lagged 
effect of smoking on alcohol use (NCP ¼ 5:21, df ¼ 1, 
p ¼ 0:022), while the reverse lagged effect of alcohol 
use on smoking was non-significant (NCP ¼ 2:75, 
df ¼ 1, p ¼ 0:097). However, a restricted model with 

the effect of alcohol use on smoking set to zero did 
marginally increase the model AIC (DAIC ¼ 0:29), 
suggesting a slightly less parsimonious model fit. Thus, 
the estimates from the CLPM indicated a significant 
effect of smoking status on alcohol use (bY2X1 ¼ 0:062, 
S:E: ¼ 0:027), but a non-significant reverse effect 
(bX2Y1 ¼ 0:018, S:E: ¼ 0:011), given a time interval of 
three years. Table 3 shows all the parameter estimates 
from the full CLPM model.

IV-CLPM
Table 2 shows that an omnibus LRT of all six causal 
paths in the IV-CLPM model (three in either direc
tion of causation) was statistically significant 
(NCP ¼ 14:08, df ¼ 6, p ¼ 0:029). When testing the 
two directions of causation separately, the joint LRT 
of the three causal paths was statistically non-signifi
cant: for smoking ! alcohol (NCP ¼ 6:67, df ¼ 3, 
p ¼ 0:083), and for alcohol ! smoking (NCP ¼ 6:94, 
df ¼ 3, p ¼ 0:074). However, in both cases, the effect 
sizes are plausible, and fixing the causal paths to zero 
worsened the AIC (DAIC ¼ 0:67 and DAIC ¼ 0:95, 
respectively).

We did two additional joint LRTs in either direc
tion of causation. First, we tested both proximal 
effects jointly (i.e., the causal paths added in the IV- 
CLPM, beyond the causal effect estimated in the 
CLPM). Second, we jointly tested the distal effect and 
the wave-2 proximal effect (i.e., the causal influences 
between waves 1 and 2). Based on the joint LRTs and 
the AICs of the restricted models testing the causal 

Figure 9. Results of (A) the CLPM and (B) the best-fitting IV-CLPM examining bidirectional causal effects between smoking status 
(Smk) and alcoholic drinks per week (Alc), assessed three years apart. The paths have been labeled with the point estimate and its 
standard error (in parentheses). The dashed path in the CLPM indicates a non-significant causal estimate. The CLPM suggests a 
likely unidirectional causal process, with a significant effect of smoking on alcohol use, but not vice versa. On the contrary, the IV- 
CLPM suggests a more complex bidirectional causation, with a significant proximal effect of alcohol use on smoking, which, in 
turn, has a reciprocal distal effect on alcohol use. In both path diagrams, squares/rectangles represent the observed variables, and 
circles represent latent variables. To improve figure readability, means and covariates are not shown in this figure. For a complete 
path diagrams with means and covariates, please see Figure A6 in the Appendix A.
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paths from smoking status to alcohol use (Table 2), the 
best-fitting model (with the lowest AIC) was the one 
with both proximal effects constrained to zero (i.e., 
with only a distal effect of smoking on alcohol use). 
On the other hand, among the models testing the 
paths from alcohol use to smoking status, the best-fit
ting model (with the lowest AIC) had both the distal 
effect and the wave-2 proximal effect constrained to 
zero (i.e., with only a proximal effect of alcohol use 
on smoking status at wave 1).

Based on these LRTs, we retained a restricted IV- 
CLPM model (Figure 9(B)) with a distal effect of 
smoking status on alcohol use (bY2X1 ¼ 0:065, 
S:E: ¼ 0:027), and a reverse proximal effect of alcohol 
use on smoking status at wave 1 (bX1Y1 ¼ 0:196, 
S:E: ¼ 0:094). In this model, the LRTs testing these 
two causal paths separately were both statistically sig
nificant: distal smoking ! alcohol (NCP ¼ 5:77, 
df ¼ 1, p ¼ 0:016), and proximal alcohol ! smoking 
(NCP ¼ 4:39, df ¼ 1, p ¼ 0:036). Parameter estimates 

Table 2. Model fit statistics and likelihood ratio rests in models examining causal influences between smoking status and alco
hol use.

Base model Comparison model
# Estimated  
parameters −2lnL df AIC

LRT

NCP �df p

I. CLPM
Full CLPM 18 31,699.08 12,828 31,735.08
Full CLPM No bidirectional lagged effects 16 31,707.37 12,830 31,739.37 8.29 2 0.0159
Full CLPM No Smoking ! Alcohol lagged effect 17 31,704.29 12,829 31,738.29 5.21 1 0.0225
Full CLPM No Alcohol ! Smoking lagged effect 17 31,701.83 12,829 31,735.83 2.75 1 0.0971

II. IV-CLPM
Global tests

Full IV-CLPM 31 59,109.02 22,605 59,171.02
Full IV-CLPM No bidirectional causal effects 25 59,123.10 22,611 59,173.10 14.08 6 0.0288
Full IV-CLPM No Smoking ! Alcohol causal effects 28 59,115.69 22,608 59,171.69 6.67 3 0.0833
Full IV-CLPM No Alcohol ! Smoking causal effects 28 59,115.97 22,608 59,171.97 6.94 3 0.0738

Smoking ! Alcohol
Full IV-CLPM No proximal effects at waves 1 and 2 29 59,110.24 22,607 59,168.24 1.21 2 0.5451
Full IV-CLPM No distalþwave-2 proximal effects 29 59,114.39 22,607 59,172.39 5.37 2 0.0683

Alcohol ! Smoking
Full IV-CLPM No proximal effects at waves 1 and 2 29 59,113.10 22,607 59,171.10 4.07 2 0.1305
Full IV-CLPM No distalþwave-2 proximal effects 29 59,111.70 22,607 59,169.70 2.67 2 0.2626

Best-fitting IV-CLPM (Smoking ! Alcohol distal effect, plus Alcohol ! Smoking proximal effect at wave 1)
Full IV-CLPM Best-fit IV-CLPM 27 59,112.89 22,609 59,166.89 3.86 4 0.4247
Best-fit IV-CLPM No Smoking ! Alcohol distal effect 26 59,118.65 22,610 59,170.65 5.77 1 0.0163
Best-fit IV-CLPM No Alcohol ! Smoking proximal effect 26 59,117.28 22,610 59,169.28 4.39 1 0.0362

−2lnL: −2� log-likelihood of the model; df: degrees of freedom; AIC: Akaike information criterion; LRT: likelihood ratio test; NCP: non-centrality 
parameter¼�−2lnL.

Table 3. Parameter estimates in the full CLPM applied to smoking status and alcohol use.
Parameter Description Estimate SE Wald’s T p-Value

Regression paths
bx2x1 Smoking (Smk) at T1 ! Smk at T2 0.805 0.022 36.262 0.0000
by2x1 Smk at T1 fi Alcohol (Alc) at T2 0.062 0.027 2.284 0.0223
bx2y1 Alc at T1 fi Smk at T2 0.018 0.011 1.661 0.0967
by2y1 Alc at T1 ! Alc at T2 0.668 0.015 44.592 0.0000

(Co)variances
Vx1 Residual variance of Smk at T1 0.766 0.035 22.111 0.0000
Cx1y1 Covariance of residuals of Smk and Alc at T1 0.212 0.025 8.636 0.0000
Vy1 Residual variance of Alc at T1 1.707 0.041 41.985 0.0000
Vx2 Residual variance of Smk at T2 0.179 0.010 18.774 0.0000
Cx2y2 Covariance of residuals of Smk and Alc at T2 0.044 0.013 3.367 0.0008
Vy2 Residual variance of Alc at T2 0.820 0.025 33.453 0.0000

Covariates
b_smk_age Age ! Smk 0.007 0.001 7.969 0.0000
b_alc_age Age ! Alc 0.009 0.001 8.024 0.0000
b_smk_female Female sex ! Smk −0.086 0.030 −2.897 0.0038
b_age_female Female sex ! Alc −0.807 0.039 −20.716 0.0000

Intercepts
b0_smk1 Intercept of Smk at T1 −0.341 0.050 −6.819 0.0000
b0_alc1 Intercept of Alc at T1 3.814 0.062 61.430 0.0000
b0_smk2 Intercept of Smk at T2 −0.440 0.053 −8.350 0.0000
b0_alc2 Intercept of Alc at T1 3.576 0.066 54.242 0.0000

Note. Rows shown in bold indicate estimates of the causal paths between smoking status (latent liability scale of an ordinal variable 
with levels: never–former–current smoking) and alcohol use (drinks per week).
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from the best-fitting, restricted IV-CLPM model are 
shown in Table 4. For completeness, the parameter 
estimates from the full IV-CLPM model are shown in 
Appendix Table A2.

Discussion

In this report, we confirmed the prior observation 
that the lagged Granger effects in the CLPM decay 
with increasing time intervals between study waves. 
We proposed the novel IV-CLPM approach to investi
gate causal effects when the CLPM’s lagged effects 
become undetectable at extended intervals. In the 
traditional CLPM, it is only possible to detect lagged 
effects within a narrow range of time intervals, and 
this window is primarily dependent on the autocorre
lations of the two variables. On the other hand, in the 
IV-CLPM, the lagged Granger effects (i.e., the distal 
effects) are complemented by the IVR-based estima
tion of cumulative causal influences that have accrued 
over time (i.e., the proximal effects). Given the IVR- 
estimated proximal effects, the IV-CLPM allows us to 
infer causality even as the Granger-causal influences 
decay. Substantively, while the proximal effects help 
infer whether a predictor has a causal impact on the 
outcome, the distal effects would allow us to predict 

whether the effects of an intervention (on the pre
dictor variable) would remain appreciable after a 
given time interval, with critical policy and practice 
implications. We also presented an empirical applica
tion, in which we examined bidirectional causal influ
ences between cigarette smoking status and alcohol 
use (drinks per week) assessed three years apart. In 
this application, while the CLPM failed to reject the 
null hypothesis for a distal effect of alcohol use on 
smoking status, the IV-CLPM suggested that a prox
imal effect of alcohol on smoking fits the data better 
than the distal one.

Causal inference at varying time intervals

The situation in which the proximal effect is signifi
cant while the distal effect is not (as was the case in 
our empirical analyses) sheds light on the relative 
importance of past and concurrent assessments of the 
causal variable. The significant proximal effect of alco
hol use on smoking in our example is consistent with 
increased smoking urge and smoking behavior 
reported following alcohol consumption (Epstein 
et al., 2007; Mckee & Weinberger, 2013). At the same 
time, the non-significant distal effect suggests that this 
effect of alcohol use on smoking status fades away 

Table 4. Parameter estimates in the best-fitting IV-CLPM model applied to smoking status and alcohol use.
Parameter Description Estimate SE Wald’s T p-Value

Regression paths
bx1 PGS of Smoking (Smk) ! Smk at T1 0.146 0.016 8.901 0.0000
bx2 PGS of Smk ! Smk at T2 0.014 0.013 1.085 0.2777
by1 PGS of Alcohol (Alc) ! Alc at T1 0.169 0.021 8.054 0.0000
by2 PGS of Alc ! Alc at T2 0.037 0.018 2.036 0.0418
bx2x1 Smk at T1 ! Smk at T2 0.808 0.022 36.461 0.0000
by2x1 Smk at T1 fi Alc at T2 (Distal) 0.065 0.027 2.404 0.0162
bx1y1 Alc at T1 fi Smk at T1 (Proximal) 0.196 0.094 2.095 0.0362
by2y1 Alc at T1 ! Alc at T2 0.662 0.015 44.032 0.0000

(Co)variances
Vpx Variance of the PGS of Smk 1.000 0.020 49.472 0.0000
Cixiy Covariance of the PGSs 0.196 0.015 13.441 0.0000
Vpy Variance of the PGS of Alc 1.000 0.020 49.472 0.0000
Vx1 Residual variance of Smk at T1 0.726 0.040 18.248 0.0000
Cx1y1 Covariance of residuals of Smk and Alc at T1 −0.119 0.158 −0.751 0.4526
Vy1 Residual variance of Alc at T1 1.679 0.040 41.973 0.0000
Vx2 Residual variance of Smk at T2 0.179 0.010 18.803 0.0000
Cx2y2 Covariance of residuals of Smk and Alc at T2 0.047 0.013 3.611 0.0003
Vy2 Residual variance of Alc at T2 0.819 0.025 33.486 0.0000

Covariates
b_smk_age Age ! Smk 0.007 0.001 8.026 0.0000
b_alc_age Age ! Alc 0.009 0.001 8.014 0.0000
b_smk_female Female sex ! Smk −0.088 0.030 −2.974 0.0029
b_alc_female Female sex ! Alc −0.812 0.039 −21.041 0.0000

Intercepts
b0_resSmkPRS Intercept (mean) of the PGS of Smk 0.000 0.014 0.000 1.0000
b0_resAlcPRS Intercept (mean) of the PGS of Alc 0.000 0.014 0.000 1.0000
b0_smk1 Intercept of Smk at T1 −0.347 0.049 −7.007 0.0000
b0_alc1 Intercept of Alc at T1 3.818 0.062 61.984 0.0000
b0_smk2 Intercept of Smk at T2 −0.442 0.052 −8.466 0.0000
b0_alc2 Intercept of Alc at T1 3.580 0.065 54.752 0.0000

Note. Rows shown in bold indicate estimates of the causal paths between smoking status (latent liability scale of an ordinal variable 
with levels: never–former–current smoking) and alcohol use (drinks per week).
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over time. Given these results, it is important to 
emphasize the distinction between the causal effect 
estimated based on the observed data (i.e., the “causal 
inference”) and the true, unobserved causal phenom
enon. As discussed above, although the proximal 
effect is estimated as a cross-sectional path in the IV- 
CLPM, it does not necessarily imply that there is no 
temporal ordering between alcohol consumption (the 
cause) and smoking status (the outcome) in the true 
causal process. Rather, these findings suggest that 
alcohol consumption has a more immediate effect on 
smoking behavior, which is better approximated by a 
cross-sectional path than a lagged path over a time 
interval of three years. At smaller time intervals, this 
causal effect may indeed be best estimated as a lagged 
effect, as previously reported in a study using eco
logical momentary assessments (Piasecki et al., 2011).

Another possible example of this scenario is the 
study by Ma et al. (2019) of the relationship between 
anxiety and blood cortisol levels during early adoles
cence. Here, the authors found that social anxiety 
symptoms predicted blood cortisol levels assessed 
three years later, while physiological anxiety symp
toms did not, even though the latter were concur
rently correlated with cortisol levels. Adding IVs for 
physiological anxiety [e.g., genetic variants associated 
with anxiety (Levey et al., 2020)] to this model and 
estimating the proximal and distal effects in the IV- 
CLPM could help assess whether recent physiological 
anxiety symptoms have a causal influence on blood 
cortisol, even if the effect dissipates over three years.

Even when the time interval between study waves 
is too long for there to be a detectable distal effect, 
the IV-CLPM can be used to gain insights into how 
causal processes change over time. For example, if the 
underlying causal process is stationary, as the distal 
effect approaches zero at an extended time interval, 
the proximal effects at the two waves become approxi
mately equal (Figure 4(B)). However, if the two prox
imal effects have different magnitudes (even as the 
distal effect is zero), that would indicate that the 
underlying causal process is not stationary. Applied in 
developmental cohort studies (i.e., where individuals 
from a specific age group are recruited and followed 
up longitudinally), the IV-CLPM could thus help 
assess whether the predictor’s effect (or the magnitude 
thereof) depends on the development stage at the two 
waves. As such, the IV-CLPM offers an attractive 
approach for identifying developmentally sensitive causal 
processes in studies, such as the Adolescent Brain 
Cognitive Development (ABCD) StudyVR (Garavan et al., 
2018), the National Longitudinal Study of Adolescent 

Health (Add Health; Harris, 2013), and the Twins Early 
Development Study (TEDS; Rimfeld et al., 2019). These 
studies have also collected and genotyped DNA samples 
from the study participants, opening opportunities for 
using appropriate genetic variants as IVs for causal 
modeling.

In the IV-CLPM, the joint test of distal and wave-2 
proximal effects, coupled with its comparison to the 
LRTs of these paths separately, provides a novel tool 
to examine whether the time interval between study 
waves is appropriate for testing Granger causality 
between two variables. Thus, for assessing causation 
between the variables of interest, evidence from the 
IV-CLPM can guide the selection of the most appro
priate dataset (based on the time intervals in different 
available datasets). Here, it should be noted that the 
optimal time interval may differ for different pairs of 
variables, such that a time interval (in a given study 
with several variables) that is appropriate for estimat
ing lagged Granger causality between variables X and 
Y may not be so for the causal effects between varia
bles X and Z.

The unidirectional version of the IV-CLPM uses 
one IV (for the predictor variable X) to estimate the 
proximal and distal effects of X on Y (Appendix 
Figure A3). As the unidirectional model does not offer 
any power advantage over the full (bidirectional) IV- 
CLPM, the latter provides the more appropriate point 
of departure for model-fitting. If there is no evidence 
of feedback causal effects in the full model, the good
ness-of-fit indices of the full model and the more par
simonious unidirectional model can be compared. The 
unidirectional IV-CLPM can also be the starting 
model if the a priori theory posits a unidirectional 
causal process.

Application to smoking status and alcohol use

Our goal with this application was to demonstrate the 
empirical feasibility of the proposed model, as well as 
the etiological insights that this model might provide 
compared to the standard CLPM. Additionally, we 
demonstrated the utility of using genetic variants as 
IVs. For a detailed discussion of genetic IVs (i.e., 
Mendelian Randomization analyses), we refer the 
reader to previous review papers by Davey Smith and 
Ebrahim (2003), Lawlor et al. (2008), and Richmond 
and Davey Smith (2022), to name a few.

In our analyses, the CLPM indicated a statistically 
significant distal effect of smoking status on alcohol 
use (drinks per week), but the evidence for a reverse 
effect of alcohol use on smoking status was 
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inconclusive. On the other hand, the IV-CLPM sug
gested a more complex bidirectional relationship 
involving a significant proximal effect of alcohol con
sumption on smoking status, in addition to the distal 
effect of smoking status on alcohol use found in the 
CLPM. Epidemiological studies have shown the con
comitant use of alcohol and tobacco (Falk et al., 
2006). Concurrent alcohol use is also reported to be 
associated with the transition from never smoking to 
(non-daily) current smoking (Campbell et al., 2012). 
Furthermore, high alcohol consumption is associated 
with a higher risk of smoking relapse (transition from 
former to current smoking), while low alcohol con
sumption is associated with a higher success of smok
ing cessation (transition from current to former 
smoking) (Weinberger et al., 2013). Our findings indi
cate that this relationship might be attributed, to some 
extent, to a causal effect of the quantity of alcohol con
sumption on smoking behavior. Experimental studies 
point to various potential mechanisms through which 
alcohol consumption may increase smoking behaviors, 
including increased craving to smoke and decreased 
ability to resist smoking (Mckee & Weinberger, 2013).

On the other hand, the distal effect of smoking sta
tus on alcohol use is consistent with the results of 
prior Mendelian Randomization analyses (Reed et al., 
2022), as well as a U.S.-based longitudinal community 
study which also had a time interval of three years 
(Harrison & Mckee, 2011). Nicotine (from cigarettes) 
has been shown to reinforce alcohol reward (Mckee & 
Weinberger, 2013). Nicotine exposure may also coun
teract some of the negative neurocognitive effects of 
alcohol (e.g., subjective intoxication, cognitive impair
ment, and gait disturbance), increasing alcohol toler
ance (Hurley et al., 2012). Both mechanisms could 
lead to increased alcohol consumption over time.

Limitations

The three causal effects in the IV-CLPM provide 
unique information about the causal process that 
unfolded over different time windows. However, the 
power to test the three null hypotheses separately is 
relatively low, underscoring the need for large sample 
sizes. Although low power is a limitation of IVR gen
erally, this problem inevitably worsens with increasing 
model complexity. In our empirical example, we 
observed larger standard errors of the causal estimates 
in the full IV-CLPM than in the restricted, best-fitting 
model (with the number of causal estimates reduced 
from three to one in either direction of causation; 
Appendix Table A2 vs. Table 4). Thus, even if the full 

model has limited power to estimate the three causal 
estimates precisely, it provides a useful point of 
departure when both proximal and distal effects are 
plausible (as was the case in our applied example of 
smoking and alcohol use).

As with the traditional CLPM, the IV-CLPM can
not distinguish the within-individual causal process from 
stable, between-individual heterogeneity (or the unmeas
ured time-invariant covariates). Doing so requires at 
least three repeated assessments and the introduction of 
a random intercept for each trait in the model (RI- 
CLPM; Hamaker et al., 2015). Second, like the CLPM, 
the IV-CLPM is a discrete-time model. In this model, it 
is assumed that all study participants have approximately 
uniform intervals between the two measurements, which 
may not always be the case. Alternative continuous-time 
approaches, such as stochastic differential equations (e.g., 
see Driver & Voelkle, 2018; Oud & Jansen, 2000), can 
overcome the need for equal intervals through direct 
modeling of the measured time intervals. Because of 
these limitations of the CLPM, future studies are 
planned to develop a random-intercept IV-CLPM model 
for panel data with three or more waves and to explore 
the integration of IVs into continuous-time longitudinal 
models. We discuss some of these potential extensions 
in the section on Future Research below.

Consistent with the IVR model (Bollen, 2012), care
ful selection of appropriate IVs is vital for robust causal 
inference in the IV-CLPM. As is true for all statistical 
models, the inference of IVR estimates rests on the val
idity of the model assumptions. Specifically, it is 
assumed that the IV influences the “outcome” variable 
only indirectly, exclusively through the path mediated 
by the causal variable (“exclusion restriction”). In other 
words, for estimating the effect of X on Y using the 
instrumental variable IVx, it is assumed that the 
residual variance of Y is uncorrelated with IVx. If this 
assumption is violated, the IVR-estimated proximal 
effects will be biased, and the bias increases with a 
larger covariance between IVx and the residual of Y 
(Maydeu-Olivares et al., 2019). In the proposed IV- 
CLPM, the two IVs are allowed to covary freely, which, 
in turn, allows the IV of one trait to covary with the 
other trait, independent of a direct causal effect 
between the two traits. In this case, IVx is a valid IV 
for estimating the (cross-sectional) proximal effects of 
X on Y in the IV-CLPM if the residual variance of Y 
(EY1 and EY2 in Figure 1(C)) is uncorrelated with IVx 
(i.e., over and above the sources of covariance between 
IVx and Y already included in the model).

The use of polygenic scores (PGSs) as IVs in our 
empirical application accommodates, at least to some 

MULTIVARIATE BEHAVIORAL RESEARCH 359



extent, potential violations of this assumption, as the 
correlation between the two PGSs (due to shared 
SNPs) allows for the IV (IVx) to covary with the 
“outcome” trait (Y), independent of the causal effects 
between the two traits. However, to infer the proximal 
effect of alcohol use on smoking status in this applica
tion, we need to assume that there is no (unmodeled) 
covariance between the PGS of alcohol use and the 
residual variance of smoking status (which is not 
empirically verifiable). Moreover, it is assumed that 
the IV is not associated with any confounding varia
bles affecting the predictor and the outcome 
(“exchangeability”). In our empirical application, the 
random segregation of genetic variants underpins this 
assumption. That said, as it is not possible to test all 
the assumptions of the selected IV in a particular 
empirical application (and thereby be certain that it 
fully satisfies these assumptions), consistency of the 
causal estimate in sensitivity analyses can help to add 
confidence to the causal inference. Therefore, to 
strengthen the evidence for the causal effects reported 
in our empirical application, it is advisable to perform 
additional sensitivity analyses of the validity of the 
IVs and other model assumptions.

For an empirical illustration of the proposed 
model, we operationalized smoking behaviors as an 
ordinal variable of smoking status (current vs. former 
vs. never smoking). However, smoking is a complex, 
multi-faceted construct with different etiological fac
tors underlying smoking initiation, maintenance, 
heaviness, cessation, and relapse (Audrain-McGovern 
et al., 2015; Mahajan et al., 2021; West, 2017). 
Therefore, further research is needed for a compre
hensive examination of the causal relationship 
between alcohol consumption and different aspects of 
smoking status (e.g., initiation, maintenance, and ces
sation) and heaviness (e.g., cigarettes per day).

Future research and potential extensions of IV- 
CLPM

Models with more than two waves
In this report, we used the simplest case of CLPM for 
introducing the IV-CLPM approach, i.e., a model with 
two variables and two waves of data. This approach 
could be extended to the CLPM with three or more 
waves. However, for data with more than two waves, 
it is worth exploring if and how IVs could be inte
grated with alternative models that may address some 
of the other limitations of the CLPM (which, in turn, 
also apply to the IV-CLPM), as discussed in the previ
ous section.

Adding IVs to a random-intercept CLPM (RI-CLPM; 
Hamaker et al., 2015) would allow differentiation of the 
causal process from stable between-individual differen
ces, but would require data with at least three repeated 
assessments. In the RI-CLPM, the cross-lagged (causal) 
and autoregressive paths are modeled at the level of 
occasion-specific residuals (i.e., occasion-specific devia
tions from the individual-level mean). Conceptually, 
the random intercept controls for unmeasured, stable 
individual-level variance in that construct, while the IV 
controls for the measured individual-level variance. 
Likewise, the covariance of the two random intercepts 
reflects the covariance attributable to the unmeasured 
time-invariant confounders, analogous to the measured 
(time-invariant) genetic confounding captured by the 
covariance of the two PGSs in our empirical example.

Further, if four or more repeated assessments are 
available, an alternative random-intercept approach 
could be to incorporate IVs into the dynamic panel 
model (DPM; Allison et al., 2017). Although the ini
tially proposed DPM included the causal paths in one 
direction only (say, X ! Y), its recent iterations allow 
for bidirectional (i.e., cross-lagged) causal effects 
(Andersen, 2022; Murayama & Gfr€orer, 2022). The 
DPM approach is argued to be less restrictive than the 
RI-CLPM and a more appropriate random-intercept 
model when the causal process in not stationary 
(Andersen, 2022).

Both the RI-CLPM and the DPM can help reduce 
the bias in the lagged causal effects, relative to the 
standard CLPM (and, by extension, the IV-CLPM pre
sented here). However, a downside of using these 
alternative approaches as the base model for incorpo
rating IVs into panel data would be that the power 
for estimating the causal effects (the primary parame
ters of interest) decreases with increasing model com
plexity and the number of estimated parameters from 
CLPM to RI-CLPM to DPM (Murayama & Gfr€orer, 
2022). The utility and feasibility of adding IVs to 
these alternative models is an important subject for 
future research.

Models with more than two variables
The IV-CLPM can also be extended to models with 
more than two variables, building on prior extensions 
of the CLPM. If multiple traits are hypothesized to 
have potential reciprocal causal influences on each 
other, such complex multivariate systems can be rep
resented by the “mutualism” model, with pairwise 
bidirectional causal effects between variables 
(Borsboom et al., 2021; van der Maas et al., 2006). For 
repeated-measures data, this model has previously 
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been extended as a CLPM with more than two varia
bles, called the “dynamic mutualism” model, estimat
ing pairwise cross-lagged effects between variables 
(Mcelroy et al., 2018). The dynamic mutualism model 
could also be seen as a less-restricted, bidirectional 
version of the unidirectional auto-regressive mediation 
model proposed by Maxwell et al. (2011). The latter 
involves three variables X, Y, and M, where M acts as 
a partial or complete mediator of the effects of X on 
Y. That is, X is allowed to have a lagged effect on M, 
which, in turn, may have a lagged effect on Y. In a 
model with partial mediation, X may also have a dir
ect lagged effect on Y.

As in the standard CLPM, the lagged effects in 
these models will also depend on the time interval 
between assessments. Importantly, the time interval 
appropriate for estimating the lagged effects may dif
fer across different pairs of variables in the multivari
ate system. Future research should examine the 
impact of time intervals on the causal inference in 
such multivariate models, as well as the pros and cons 
of adding IVs to these models to estimate proximal 
and distal effects. However, similar to the models with 
more than two waves, it will be important to examine 
the impact of increasing model complexity on the 
power to estimate the causal effects in these models.

Comparison with continuous-time models
Here, we have presented the impact of time intervals 
on causal inference in the CLPM and the utility of 
adding IVs within a discrete-time modeling frame
work (which also encompasses the RI-CLPM and the 
DPM). On the other hand, continuous-time models, 
such as those using stochastic differential equations 
(SDE), offer a more generalizable approach to estimate 
lagged causal effects in panel data (Voelkle et al., 
2012). These models estimate the cross-lagged (and 
auto-regressive) effects per unit of time in the true 
continuous causal process (i.e., the derivative of these 
lagged effects with respect to time). As such, the esti
mated causal effects are not specific to the observed 
time intervals, thus overcoming the dependence of the 
lagged causal effects on the time intervals between 
study waves. The appropriate interval between dis
crete-time observations (i.e., the sampling rate) 
required for capturing the underlying continuous-time 
process is defined by the Nyquist-Shannon sampling 
theorem (Luke, 1999). If the Nyquist-Shannon criterion 
is not met in a study, the time interval may not be 
appropriate for fitting a continuous-time model. For 
an in-depth exposition of this theorem in the context 

of continuous-time modeling in behavioral sciences, 
we refer the reader to Voelkle and Oud (2013).

Future research should examine the utility of integrat
ing IVs with continuous-time models in the SEM frame
work, especially when the Nyquist-Shannon criterion is 
not met in a study. This approach can offer additional 
advantages over discrete-time models, including accom
modating non-uniform time intervals across study par
ticipants (Oud & Jansen, 2000), as mentioned above in 
the Limitations section. If three or more repeated assess
ments are available in a study, continuous-time models 
can also allow controlling for individual-level heterogen
eity, akin to the discrete-time RI-CLPM and DPM 
approaches (Voelkle et al., 2012).

Conclusion

The IV-CLPM can help address the ambiguity of non- 
significant causal estimates in the traditional CLPM. 
By estimating both Granger/lagged causal effects and 
the IVR-based proximal causal effects, the IV-CLPM 
can help detect causation even when the Granger- 
causal influences in the CLPM have decayed due to a 
long time interval. Thereby, the IV-CLPM can over
come the dependence of the traditional CLPM’s causal 
inference on the time interval between measurement 
occasions. Furthermore, the model provides a novel 
approach to examining whether the time interval in a 
study is appropriate for studying Granger-causal proc
esses between a pair of variables. Finally, the proposed 
model also provides a flexible point of departure for 
exploring the integration of IVs with other longitudinal 
models, including models with random intercepts. To 
motivate empirical applications of the IV-CLPM, we 
have also illustrated the utility and limitations of using 
polygenic scores as IVs in large-scale panel studies with 
genetic data.
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Appendix A 

Table A1. Pearson’s correlations between the model variables in one of the simulated datasets, showing some of the time points 
used for model-fitting.

IVx IVy X100 X101 X125 X150 Y100 Y101 Y125 Y150

IVx 1
IVy 0.2500 1
X100 0.2834 0.2227 1
X101 0.2834 0.2227 0.8490 1
X125 0.2834 0.2227 0.1581 0.1640 1
X150 0.2834 0.2227 0.1087 0.1092 0.1581 1
Y100 0.2227 0.2834 0.6877 0.6904 0.1532 0.1038 1
Y101 0.2227 0.2834 0.6904 0.6877 0.1591 0.1042 0.8490 1
Y125 0.2227 0.2834 0.1532 0.1591 0.6877 0.1532 0.1581 0.1640 1
Y150 0.2227 0.2834 0.1038 0.1042 0.1532 0.6877 0.1087 0.1092 0.1581 1

Note. The simulated time-series was stationary over the time points used for model-fitting (i.e., from T ¼ 100 to T ¼ 150), as indicated by the correlations and 
between the instrumental variable (IVx) and Xi (r ¼ 0:2834), IVx and Yi (r ¼ 0:2227), and the cross-sectional correlations between Xi and Yi (r ¼ 0:6877). The 
shown correlations are based on a time-series with the direct effect on IVx on X, bX ¼ 0:08; the direct effect on IVy on Y, bY ¼ 0:08; the first-order autore
gressive coefficient (AR1) for X, bX2X1 ¼ 0:7; the AR1 for Y, bY2Y1 ¼ 0:7; the first-order causal effect of X on Y, bYX ¼ 0:2; the first-order causal effect of Y on 
X, bXY ¼ 0:2; the cross-sectional correlation between the residuals of X and Y, rexy ¼ 0:2; and the correlation of IVx and IVy, rIV ¼ 0:25:

Table A2. Parameter estimates in the full IV-CLPM model applied to smoking status and alcohol use.
Parameter Description Estimate SE Wald’s T p-Value

Regression paths
bx1 PGS of Smoking (Smk) ! Smk at T1 0.144 0.017 8.335 0.0000
bx2 PGS of Smk ! Smk at T2 0.014 0.013 1.084 0.2783
by1 PGS of Alcohol (Alc) ! Alc at T1 0.160 0.023 7.077 0.0000
by2 PGS of Alc ! Alc at T2 0.036 0.019 1.910 0.0561
by1x1 Smk at T1 fi Alc at T1 (Proximal) 0.158 0.143 1.108 0.2680
bx2x1 Smk at T1 ! Smk at T2 0.809 0.032 25.202 0.0000
by2x1 Smk at T1 fi Alc at T2 (Distal) 0.303 1.071 0.283 0.7774
bx1y1 Alc at T1 fi Smk at T1 (Proximal) 0.200 0.100 1.996 0.0459
bx2y1 Alc at T1 fi Smk at T2 (Distal) 0.083 0.233 0.358 0.7208
by2y1 Alc at T1 ! Alc at T2 0.669 0.027 24.449 0.0000
by2x2 Smk at T2 fi Alc at T2 (Proximal) 20.298 1.326 20.225 0.8223
bx2y2 Alc at T2 fi Smk at T2 (Proximal) 20.100 0.349 20.285 0.7757

(Co)variances
Vpx Variance of the PGS of Smk 1.000 0.020 49.472 0.0000
Cixiy Covariance of the PGSs 0.196 0.015 13.441 0.0000
Vpy Variance of the PGS of Alc 1.000 0.020 49.472 0.0000
Vx1 Residual variance of Smk at T1 0.729 0.043 17.146 0.0000
Cx1y1 Covariance of residuals of Smk and Alc at T1 −0.244 0.198 −1.234 0.2174
Vy1 Residual variance of Alc at T1 1.633 0.046 35.566 0.0000
Vx2 Residual variance of Smk at T2 0.196 0.089 2.208 0.0272
Cx2y2 Covariance of residuals of Smk and Alc at T2 0.181 0.365 0.495 0.6205
Vy2 Residual variance of Alc at T2 0.861 0.260 3.312 0.0009

Covariates
b_smk_age Age ! Smk 0.007 0.001 8.046 0.0000
b_alc_age Age ! Alc 0.009 0.001 8.018 0.0000
b_smk_female Female sex ! Smk −0.088 0.030 −2.978 0.0029
b_alc_female Female sex ! Alc −0.812 0.039 −21.034 0.0000

Intercept
b0_resSmkPRS Intercept (mean) of the PGS of Smk 0.000 0.014 0.000 1.0000
b0_resAlcPRS Intercept (mean) of the PGS of Alc 0.000 0.014 0.000 1.0000
b0_smk1 Intercept of Smk at T1 −0.346 0.049 −7.007 0.0000
b0_alc1 Intercept of Alc at T1 3.819 0.062 61.955 0.0000
b0_smk2 Intercept of Smk at T2 −0.444 0.052 −8.511 0.0000
b0_alc2 Intercept of Alc at T1 3.579 0.065 54.707 0.0000

Note. Rows shown in bold indicate estimates of the causal paths between smoking status (latent liability scale of an ordinal variable 
with levels: never–former–current smoking) and alcohol use (drinks per week).
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Figure A1. (A) CLPM (with means): The cross-lagged panel model (CLPM) is used to estimate bidirectional lagged effects between 
X and Y (bY2X1 and bX2Y1). This model was used as the reference model for integrating instrumental variables. (B) IV Regression 
(with means): The instrumental variables regression (IVR) model fitted in a Structural Equation Modeling framework. The model 
uses the instrumental variable for X, IVx, to estimate the causal effect of X on Y (bYX ). (C) IV-CLPM (with means): The proposed IV- 
CLPM model combines the CLPM with bidirectional IVR applied cross-sectionally at each wave. In addition to the lagged (i.e., 
“distal”) effects bY2X1 and bX2Y1, the model utilizes IVR to estimate cross-sectional (i.e., “proximal”) effects at each wave: bY1X1 and 
bX1Y1 at wave 1, and bY2X2 and bX2Y2 at wave 2. In all three path diagrams, squares/rectangles represent the observed variables, 
and circles represent latent variables. Triangles represent constants used to model the variables’ mean levels.
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Figure A3. Unidirectional IV-CLPM. The model combines a unidirectional version of the two-wave Cross-Lagged Panel Model 
(CLPM) with Instrumental Variables Regression (IVR) applied cross-sectionally at each wave. In addition to the lagged (i.e., “distal”) 
effect of X on Y (bY2X1), the model utilizes IVR to estimate cross-sectional (i.e., “proximal”) effects at each wave: bY1X1 at wave 1, 
and bY2X2 at wave 2. The squares/rectangles represent the observed variables, and circles represent latent variables. Triangles rep
resent constants used to model the variables’ mean levels.

Figure A2. Data-generating model (with means): The data-generating model with bidirectional first-order causal effects between X 
and Y (bYX and bXY ) simulated over 150 time points. The instrumental variable for X, IVx, has an unchanging direct effect on X (bX ) 
at every time point. Likewise, the instrumental variable for Y, IVy, directly affects Y (bY ) at all time points. Squares/rectangles repre
sent the observed variables, and circles represent latent variables (i.e., the variances in this model). Triangles represent constants 
used to model the variables’ mean levels.
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Figure A4. Schematic of the study design for examining the impact of time interval on the causal inference in the proposed IV- 
CLPM and the traditional CLPM models. A stationary time series was generated with two constructs (X and Y) and their respective 
instrumental variable (IVx and IVy) with bidirectional first-order lagged effects between X and Y. To this data, a series of two-wave 
IV-CLPM and CLPM models were fitted. Across the models, the first wave (T1) was fixed at an arbitrary time-point in the stationary 
time series, while the second wave (T2) was changed by an increment of one unit in every successive model. In so doing, the 
time interval (DT ¼ T2 − T1) in the fitted models was increased sequentially from 1 through 50. This figure depicts the models 
with DT ¼ 1, 2, and 3.
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Figure A6. Results of (A) the CLPM (with means and covariates) and (B) the best-fitting IV-CLPM (with means and covariates) 
examining bidirectional causal effects between smoking status (Smk) and alcoholic drinks per week (Alc), assessed three years 
apart. The paths have been labeled with the point estimate and its standard error (in parentheses). The dashed path in the CLPM 
indicates a non-significant causal estimate. The CLPM suggests a likely unidirectional causal process, with a significant effect of 
smoking on alcohol use, but not vice versa. On the contrary, the IV-CLPM suggests a more complex bidirectional causation, with a 
significant proximal effect of alcohol use on smoking, which, in turn, has a reciprocal distal effect on alcohol use. In both path dia
grams, squares/rectangles represent the observed variables, and circles represent latent variables. Triangles represent constants 
used to model the traits’ mean levels.

Figure A5. Likelihood-ratio tests (LRTs) of the effects of X on Y in the bidirectional (left) and unidirectional (right) versions of the 
IV-CLPM, given data with unidirectional effects of X on Y. The non-centrality parameters were obtained by fixing to zero the causal 
parameters in models fitted to data with N ¼ 1000, bYX ¼ 0:4, bXY ¼ 0, bX2X1 ¼ 0:8, bY2Y1 ¼ 0:8, and rexy ¼ 0:3:
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