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ABSTRACT

Mobile applications offer a wide range of opportunities for psychological data collection,
such as increased ecological validity and greater acceptance by participants compared to
traditional laboratory studies. However, app-based psychological data also pose data-analytic
challenges because of the complexities introduced by missingness and interdependence of
observations. Consequently, researchers must weigh the advantages and disadvantages of
app-based data collection to decide on the scientific utility of their proposed app study. For
instance, some studies might only be worthwhile if they provide adequate statistical power.
However, the complexity of app data forestalls the use of simple analytic formulas to esti-
mate properties such as power. In this paper, we demonstrate how Monte Carlo simulations
can be used to investigate the impact of app usage behavior on the utility of app-based
psychological data. We introduce a set of questions to guide simulation implementation
and showcase how we answered them for the simulation in the context of the guessing
game app Who Knows (Rau et al., 2023). Finally, we give a brief overview of the simulation
results and the conclusions we have drawn from them for real-world data generation. Our
results can serve as an example of how to use a simulation approach for planning real-
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world app-based data collection.

Introduction

Mobile applications are frequently used for psycho-
logical data assessment in various fields, such as treat-
ment of depression symptoms (Roepke et al., 2015),
cognitive screening for dementia of the elderly
(Brouillette et al., 2013; Zorluoglu et al., 2015), or the
relationship between alcohol consumption and risk-
taking tendency (Smith et al., 2017). They are advan-
tageous with respect to external or ecological validity
(Harari et al., 2016) and evoke high acceptance among
subjects (Ben-Zeev et al., 2014; Miner et al, 2016).
Moreover, they offer the possibility to provide the
participants with personalized feedback (Wenz et al.,
2022), to notify them whenever they need to engage
in data collection again (Alkhaldi et al, 2016;
Pavliscsak et al., 2016), and to transfer data in real
time (Fischer & Kleen, 2021). They also allow for an
easy implementation of planned missingness designs,
for example by presenting only a random subset of
stimuli to each subject. However, aside from being

time-consuming and costly to develop, mobile appli-
cations also offer less control over the participation
process compared to traditional on-site, offline studies
which threatens data quality. For example, Torous
et al. (2020) estimated in their meta-analysis that the
dropout rate in studies that used apps to collect
depressive symptoms was nearly 50%.

Consequently, researchers are confronted with the
challenge to weigh the benefits offered by app-based
data assessment against the disadvantages in terms of
data quality. To accomplish this, they must know the
type and amount of data their app would need to pro-
duce in order to be useful for answering their sub-
stantive research question.

Other than for most common study designs such
as randomized experiments or cross-sectional surveys,
however, there is no straightforward way to calculate
criteria for scientific utility, including the power or
required sample size of an app study. The reason for
this is that psychological data assessed with an app is
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characterized by possibly complex data structures with
high degrees of data missingness due to dropouts and
complex missingness patterns. Explicit formulas for
analyses such as power calculations are not available
for these data structures. Therefore, it is challenging
to plan the required sample in advance in the context
of app-based studies. Instead of disregarding these
challenges or avoiding the endeavor altogether, we
assert that a prudent approach would involve stepping
back and systematically examining the conditions
under which the proposed app study can yield actual
scientific insights.

In the present article, we introduce Monte Carlo
simulation studies as solutions to these challenges.
Monte Carlo simulation is a statistical technique
where sample data are generated repeatedly from a
known population model and are then analyzed in
each sample. Properties of these analyses such as esti-
mation bias or statistical power are then examined by
averaging the results across all samples (Morris et al,,
2019). This technique allows researchers to manipulate
all data-generating mechanisms and thereby explore
how different scenarios (e.g., different sample sizes,
dropout rates, confounding influences, and so forth)
would impact their outcome metric of interest. In
many research settings, this outcome metric is the
statistical power when testing a particular hypothesis.
Other outcome metrics may include the relative bias
in the estimation of a particular fixed effect or, as
showcased in this paper, the reliability of random
effects estimated from the data. Throughout this art-
icle, we will use the term "scientific utility" to encap-
sulate all criteria researchers might find useful to
evaluate whether their research question can be effect-
ively addressed using app data. We aim to provide
guidelines for Monte Carlo simulations of app-based
psychological data. For this matter, we will outline
considerations researchers need to make when plan-
ning such a simulation study and demonstrate them
using the simulation we conducted in the context of
the guessing game app Who Knows (Rau et al., 2023).

Background

One major challenge for app-based psychological data
assessment is that the longitudinal nature of the
underlying research design may complicate sample
size considerations. For example, Roepke et al. (2015)
evaluated the effects of an app-based clinical treatment
over time. They tracked the progress of patients who
used their depression and anxiety treatment applica-
tion SuperBetter. Patients were to use the app over a

period of time and the potential reduction in symp-
toms was investigated to evaluate the app’s efficacy. A
problem in such setups is that all variables of theoret-
ical interest might change over time, but collecting
many time-variant covariates can be burdensome—
potentially reducing the participants’ compliance.
Furthermore, since data for a single subject is col-
lected at multiple times, longitudinal data are statistic-
ally dependent—but this dependency is also a
function of the interval between measurements. And
this may not be the only data dependency to account
for. For instance, if Roepke et al. (2015) would have
provided therapeutic assistance to their participants,
data might systematically vary across therapists, too,
representing another source of interdependence. A
similar logic can be applied when random samples of
stimuli or items are presented to participants making
them sources of variance that need to be accounted
for (Judd et al., 2012; Yarkoni, 2022).

In addition, longitudinal data practically always dis-
play missingness to some degree. This might be
because subjects drop out of the study and thus do not
provide any data beyond a certain measurement time
or only respond to a subset of study variables or at a
subset of the measurement occasions. Consequently,
app-based psychological data assessment is generally
characterized by a high degree of dropouts (see, e.g.,
Meyerowitz-Katz et al., 2020; Torous et al., 2020) and
missing data, too. As a result of a highly unbalanced
number of observations across participants, estimates
of state variables (e.g., average mood levels of partici-
pants) may differ in their reliability. This presents
another challenge for data analysis, where results are
biased unless missingness is handled appropriately.

A related challenge for researchers planning an
app-based study is that the dropout rate in an app
study is difficult to predict. In Meyerowitz-Katz et al.
(2020) meta-analysis of app studies on mental health,
the dropout rates of observational studies varied
between 91% in a 1-year lasting RCT and 18% in an
observational trial that lasted 6 weeks. They point out,
however, that their findings are “limited by high het-
erogeneity and the lack of reporting in many trials on
attrition rates” (Meyerowitz-Katz et al., 2020, p. 8).
According to Pfammatter et al. (2017), there are some
aspects that can explain high dropout rates, such as
misunderstanding of the trial’'s components, low per-
ceived usefulness of the app, or little recall of the
incentive structure. In summary, app-based psycho-
logical data always displays missingness, although the
exact extent and pattern is difficult to predict.



The Who Knows application

Who Knows (Rau et al, 2023) is a mobile application that aims to gather
psychological data in an affordable and joyful way that minimizes partici-
pant burden, facilitates participation, and yields high ecological validity. Its
data can address a myriad of questions within person perception research
and beyond, including the psychological characteristics of the “good judge”
(@ person who judges others more accurately than most other judges), the
“good target” (a person who is judged by others more accurately than
most other targets), and the “good trait” (a characteristic that is judged
more accurately than most other characteristics; Funder, 2012).

Since participation is not externally incentivized, any user who
downloads the app—who we call perceiver from now on- can partake
in as many game rounds as they like. When starting a game in the
application, the perceiver is shown a short introductory video of a tar-
get person. In this video, the target provides a brief self-introduction
of themselves including their profession, hobbies, relationship status,
and three adjectives which describe them. After watching the video,
the perceiver is asked to judge the target in terms of five everyday
characteristics. Example items are “Has [the target] ever experienced
heartbreak?” or “Has [the target] ever been involved in politics?”. For
each accurate judgment, i.e., for each response that matches the tar-
get's self-description on an item, the perceiver acquires points. After
each game, the perceiver receives feedback about their performance.
In the app’s feedback area, they can also get an overview of their
overall performance compared to other users.

The target who is presented to the perceiver in a game is
selected randomly from a pool of 50 available targets. However, as a
constraint by the app algorithm, each target is to be rated once
(twice, thrice,...) before they can be rated a second (third,
fourth, ...) time by a given perceiver. For each target, there exists a
pool of roughly 60 items on which they have provided self-reports as
accuracy criteria. These items are a random subset out of a pool of
820 items in total. The five items presented in a specific game are
sampled from all items which the perceiver has never answered for
the presented target before. That is, every combination of a perceiver,
a target, and a specific item can occur at most once in the dataset.

Like the data from other psychological apps, Who Knows data have a
hierarchical structure, as there are multiple observations for each per-
ceiver, target, and item. This implies a cross-classified multilevel structure
with observations on a lower level and perceivers, targets, and items as
higher-level units. This form of interdependency among different data-
points needs to be accounted for in the analysis of Who Knows data.

Furthermore, the Who Knows application can be expected to yield
considerable dropout rates (i.e, participants who stop playing after some
games) and a substantial amount of missing data. In fact, we expected
exceptionally high levels of missingness because our approach to rely
exclusively on intrinsic motivation implies that perceivers need not judge
every target on every available item to contribute to the data collection.
Outcomes for other combinations of targets and items for these per-
ceivers would be missing. In addition, a high degree of data combina-
tions is expected to be missing a priori because the present targets gave
self-report only regarding a random subset of items, resulting in a source
of planned missingness in the data (Graham et al., 2006).

As a result, it was questionable for us whether Who Knows could
produce enough data to make up for the deficits in data quality that
result from the voluntary participation approach. Traditional power
analyses fell short due to the incompleteness and complexity of the
data. Also, given that the collection of person perception data through
a non-incentivized guessing game is unprecedented in the literature,
we were essentially agnostic about the amount of missing data that
was to be expected. Consequently, we decided to simulate Who Knows
data under varying degrees of missingness to evaluate the app’s scien-
tific utility, as a function of missingness. Our simulation script can be
retrieved from tinyurl.com/appstudysimulation. (Rau et al., 2023)

Tutorial

To prepare a Monte Carlo simulation, one must first
answer several questions regarding the underlying
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statistical model, study design, anticipated missingness
patterns, and data analysis. In the following, we will
outline these necessary considerations. We will describe
which questions must be asked regarding each aspect,
outline their general relevance and implications for the
simulation and, finally, illustrate which decisions were
made for the simulation of the Who Knows data.

We conducted our simulation using the statistics
software R, version 4.2.1 (R Core Team, 2022). Many R
packages are available that allow for a user-friendly
implementation of simulation studies by providing
population parameters for different population models.
Examples are simsem (Pornprasertmanit et al., 2021) for
structural equation models, SIMR (Green & MacLeod,
2016) for (G)LMMs, or powRICLPM (Mulder, 2022) for
data simulations with random intercept cross-logged
panel modeling. Other statistical software packages such
as Mplus (Muthén & Muthén, 1998-2017) also provide
simulation functionalities for such purposes.

Data generation process

As a first step, one needs to decide on a generation pro-
cess behind the data. That is, the properties of the out-
come and predictor variables as well as their mathematical
relationship need to be specified. To obtain realistic app
data, we suggest simulating observations at a level that
allows for the highest flexibility in data generation with
respect to the population model and the introduction of
missingness to the data. Hence, typically data for each
observation (e.g., measurement occasion) should be simu-
lated. That is, values for all relevant dependent (outcome)
and independent (predictor) variables need to be simulated
so that missingness patterns can be flexibly introduced to
the data by deletion from a hypothetical complete data set.

What is the outcome variable?

The characteristics of the outcome variable are important
for the choice of the statistical model, especially its level
of measurement and its distribution. It is also important
to think about whether the outcome variable is measured
only once or repeatedly. Another aspect to consider is
whether the outcome is a manifest or latent variable, and
the outcome’s unit. Table 1 provides an overview of how
typical outcome variables in psychological research can
be characterized in terms of the above criteria.

The outcome variable in Who Knows is a naturally dichotomous and
manifest single-item measure depicting either a perceiver's correct (i.e.,
equal to 1) or incorrect (i.e., equal to 0) response to a single target on
a single item. (Note that there is also a small portion of items which
use a continuous response format in the actual app but our simulation
focused on the dichotomous case for the sake of simplicity).
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Table 1. Examples of outcome variables.

Variable Level of measurement Distribution Latent vs. manifest Unit

Reaction time Ratio e.g., Ex-gaussian Manifest (Milli-)seconds
Extraversion Interval Gaussian Latent Likert scale
Amount of waste of a household Ratio Gaussian Manifest Kilograms/pounds
Smartphone Ownership Dichotomous Bernoulli (Binary) Manifest Binary (Yes/No)
Number of Purchases Online Count Poisson Manifest Count (e.g., per month)

What is the population model?

Apart from these basic characteristics of the outcome
variable, it is important for the definition of the popu-
lation model to identify potential predictor variables
and their relationship to the outcome. All predictor
variables and factors should be characterized as realis-
tically as possible as well. This may include the inde-
pendent variables related to the study design that are
systematically manipulated as part of the study, such
as the study condition or the distance between meas-
urement occasions, on the one hand. On the other
hand, there might be covariates or demographic fea-
tures of the participants that relate to the outcome,
like age or income. When assessing longitudinal data,
in addition to such time-invariant predictors, there
might be time-variant predictor variables. An example
of such would be a symptom catalog that is collected
in parallel with the actual outcome. As for the out-
come variable, all these variables should be described
regarding their level of measurement, distribution,
and presence of measurement error. For the sake of
simplicity, we focus on manifest (vs. latent) variable
models during the tutorial part. These models are
simpler, because their analysis necessitates less theor-
etical assumptions and less sophisticated statistical
techniques. This also fits with Who Knows as an
example case, where data analysis exclusively pertains
to manifest variables.

In addition, the specific mathematical relationship
between the outcome and the predictor variables
must be considered. When choosing a statistical
framework to simulate data, several things need to
be considered. Repeated measurements, which is
common in app-based studies, result in a nested data
structure in which responses from the same partici-
pant are more similar than responses from different
participants (e.g., Hedeker & Gibbons, 2006). In
these contexts, it is important that the population
model is capable of producing data that mimic these
interdependencies in a realistic fashion. To account
for this, for instance, linear growth models, general-
ized linear mixed models (GLMMs), or cross-lagged
panel models could be used as population models. In

order to evaluate estimation stability under varying
usage scenarios, the population model should match
the analysis model.

In the following, we will focus on the use of
GLMMs as a framework for data synthesis and ana-
lysis. GLMMs allow for flexible simulation and ana-
lysis of data with specific dependencies or with
missingness, as well as for a distinction between
fixed and random effects. In addition, GLMMs allow
for modeling various types of outcome measures
(e.g., continuous, dichotomous or count variables) as
well as non-linear relationships between outcome
and predictors. Therefore, we consider GLMMs a suit-
able framework for the simulation of longitudinal data
as they are often collected with apps. Another advan-
tage of GLMMs for data simulation is the possibility
to accommodate for a range of data with varying
degrees of structural complexity such as models with
higher-level predictors, models with more than two
levels, and models with more complex structures such
as crossed random effects. For instance, it has been
argued that participants and items should always be
considered as (crossed) random effects whenever par-
ticipants are presented with a set of multiple stimuli
(Judd et al., 2012; Yarkoni, 2022). We briefly illustrate
the specification of an LMM with random effects
across participants using the study of Roepke et al.
(2015).

Roepke et al. (2015) were interested in digitally
monitoring the efficacy of their depression and anx-
iety treatment application SuperBetter.

In their study, they distinguished between two dif-
ferent versions of the app—which we label SBI and
SB2- and a patient control group, the waiting list,
that did not use the app.

In one part of their study, they modeled the level-1
within-person change in the total depression score
over time T and predicted the level-1 slope with the
dichotomous higher-level study group variables Ggg;
and Ggp,. Because Yj;, the single ith response of
patient j, is a continuous variable, the data could be
analyzed with the following linear mixed model
(LMM):



Yi= o + Uoj

~~ ~—
Random intercept
across participants

Fixed intercept

+ o+ causm X Gsai
~— —— ——

Fixed slope  Random slope for ~ Dichotomous variable
study group 1 Sfor study group 1
+  cusp X Gsp2 + Uoj
—— ~—— \

Dichotomous variable
for study group 2

Random slope for

Random slope
study group 2

across participants

X T,' + 8,']'

~~ ~—
Measuring Level 1
point i residuum

(1)

The effects of interest in the original study were the dif-
ferences between the two versions of SuperBetter and the
control group. In the above model, this would correspond
to the parameters of the cross-level interactions ¢y, sp;
and cqy, sp2. To further illustrate the flexibility of GLMMs,
we expand the above example and assume that partici-
pants were assigned to different therapists who supported
them in using the app. One therapist k supports various
participants which results in therapists resembling a
higher-order random effect in which participants and
observations are nested. Adding therapists as random
effect to Equation (1) results in:

Yik =  cooo  + Uojo + ook

~~ ~— ~~

Random intercept
across participants

Fixed intercept Random intercept

across therapists

+ 1 <o +  cuosm X Gspi
~ S~——
Fixed slope  Random slope for ~ Dichotomous variable
study group 1 Sfor study group 1
+  cuosez X Gspa
SN—— S~~~

Dichotomous variable
for study group 2

Random slope for
study group 2

+ Uijo + Uiok

~— ~~
Random slope

across participants

Random slope
across therapists

X Ti + Sijk
~—

~—~
Measuring Level 1
point i residuum

)
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The random therapist intercept wugoy depicts the
effect therapist k has on depression symptoms at the
beginning of the study for T; = 0. The random ther-
apist slope effect u;or resembles the effect therapist k
has on the development of depression symptoms over
time.

We believe that investigation of psychological
symptoms over time, like Roepke et al. (2015) did, is
a typical use case of an app in psychological research.
The resulting longitudinal data is however character-
ized by interdependencies such as multiple observa-
tions belonging to the same subject. This calls for the
use of more complex statistical frameworks because
simpler models (e.g., pre-post comparisons after
aggregation over measurement occasions) cannot
unveil more complex temporal dynamics which is
actually a strength of intensive longitudinal studies.
Simulation-based study planning allows researchers to
adequately answer the substantive research question of
app studies such as the one by Roepke et al. (2015)
despite the high data complexity.

Among other frameworks such as linear growth
models and cross-lagged panel models, (G)LMMs
allow for adequately representing the data characteris-
tics that come along with app-based psychological
data collection. As Formulas (1) and (2) show, they
can also be used to easily implement additional sour-
ces of data interdependence. In addition, they are able
to account for data missingness, too (e.g., Hedeker &
Gibbons, 2006). Given the wide applicability of
(G)LMMs to simulate psychological app data, we will
focus on them in the following.

The outcome of a single observation in Who Knows, Yiik, is
the result of perceiver i judging target j on a single item k.
Because i, j, and k contribute to multiple outcomes, observa-
tions are not independent. We account for this dependency
by assuming a hierarchical data structure where each lower-
level observation belongs to one higher-level combination of
perceiver, target, and item, respectively. Since there can be
an observation for each combination of higher-level units, the
corresponding model is a crossed random effects model. In
addition, we considered the respective combination of target
j and item k to contribute to the outcome as a random inter-
action effect.

In Who Knows, the outcome of j judging j in terms of k
(Yiix) can either be correct or incorrect and, thus, is a naturally
dichotomous variable. As a result, the mathematical relation-
ship between predictors and outcome is not linear. Rather,
the effects of perceiver i, target j, item k, and the combin-
ation of j and k contribute to the probability of a correct out-
come P(Yj = 1).

Binomial GLMMs (with a logit-link function) offer the possi-
bility to model the non-linear relation between predictors and
outcome within a hierarchical data structure. For this purpose,
the linear combination of the random effects is inserted into

the logistic formula:
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P T 0 TxI
exp(cooo + t; + 1) + wy + uy™)

1+ exp(cono + uf + u]-T + ul + uﬁ“)

P(Yijk = l)

uf is the perceiver effect of j, u’ the target effect of j, and
ul, the item effect of k. u].TkX’ is the ‘interaction effect of target j
and item k. All these effects depict deviations from the mean
intercept coop that determines the average probability of a cor-
rect response. Because there are no predictors in our model,
the resulting equation is a random intercept-only model. To
obtain a dichotomous value of either 0 or 1 as the simulated
outcome for one observation, we randomly drew a single value
from a Bernoulli distribution with p equal to P(Yj =1),
thereby inducing unpredicted error into the outcome.

Choosing the parameters of the population model
After choosing an appropriate population model, it is
necessary to consider possible choices for model
parameters (e.g., effect sizes or regression coefficients).
It is crucial to choose realistic values for the parame-
ters and simulation conditions, respectively, because
the validity of the simulation depends on it. Ideally,
values can be inspired by existing literature or pilot
studies having conducted similar analyses. In general,
we recommend investigating a wide range of plausible
values when uncertainty regarding a specific param-
eter is large. Exploring multiple plausible scenarios
allows researchers to investigate the influence of the
uncertain parameter value and thereby ensures that
conclusions from the simulation do not depend too
much on specific choices.

For variables related to the study design, such as
study groups or time intervals between measurements,
plausible values for the simulation should be derived
from the study plan. Simulated values for time-variant
and time-invariant predictors, on the other hand,
must be drawn randomly from distributions. For each
of these, plausible parameters must be set and
assumptions on their distributions must be made
prior to simulation to represent the distribution of the
respective variable in the population. Time-invariant
predictors or random effects in LMMs can be simu-
lated from a single multivariate distribution, for
instance, a normal distribution with mean vector p
and variance-covariance predictor matrix X. The
assumption of normal distribution can also be violated
to investigate the consequences of non-normality for
the analyses (e.g., Auerswald & Moshagen, 2015). If
the population model includes time-variant predictors,
the multivariate distribution of the predictor variables
must also describe auto-correlations of predictor vari-
ables and cross-lagged relations between predictor var-
iables (Biesanz, 2012; Hertzog & Nesselroade, 2003).

Regardless of the statistical model, real outcome
data can rarely be fully explained by the predictor

variables which results in error terms adding “noise”
to the data. Typically, the error is assumed to be inde-
pendent from the other variables and, in linear mod-
els, a normal distribution centered at zero with error
variance 67 is often assumed:

¢~ N(0,02) (3)

Higher values for the error variance o2 add more
noise to the data. This simulates the case in which the
predictors explain a smaller proportion of variance on
the outcome, leading to a less precise estimation of
the true model parameters in the later analysis. As the
residuals are conceptualized as random variables, they
can be drawn from any distribution, that is, the
assumption of normally distributed residuals can be
violated to observe its impact on the data analysis. It
should be noted that a realistic choice for the level of
noise variance is crucial for the validity of the simula-
tion, especially too optimistic choices must be avoided.
In the absence of similar previous studies, we recom-
mend to use typical effect sizes of the respective field as
a guideline what constitutes small, medium, and large
effects. In the realm of psychological research, Cohen
(1988) considered Pearson r values of 0.10, 0.30, and
0.50 to correspond to small, medium, and large effects,
respectively. Median effect sizes, however, also depend
on the sub-discipline (Schafer & Schwarz, 2019). In per-
sonality psychology, for example, lower thresholds of
0.10, 0.20, and 0.30 are considered adequate (Gignac &
Szodorai, 2016). We encourage researchers to take their
time and thoughtfully select effect sizes that align as
specifically as possible with the nuances and complex-
ities of the planned study.

Our data generating model only contained the overall intercept cooo
and four random effects uf, ujT, u, and u}kx’. Cooo determines the
mean of the probability of a correct outcome P(Y;; = 1), while the
random effects represent whether specific perceivers, targets, and
items, respectively, are judged more or less correctly than this aver-
age. All random effects were drawn from independent normal distri-
butions with a corresponding mean of zero and variance o2 :
N(O, 05)4 Altogether, we needed to choose values for five different
parameters: cooo, as well as the four random effect variances.

On average, people make somewhat accurate personality judgments
even on a very limited informational basis, mostly by using knowledge
about broad social categories (stereotype accuracy, Jussim et al., 2009,
2015; e.g., based on gender, Lockenhoff et al.,, 2014; or age, Chan et al.,
2012). We translated this principle into an above-chance mean probabil-
ity of a correct outcome by setting copo to 0.7. As a result, the mean cor-
rect outcome probability was 67%. Further, the extent to which people
make accurate judgments should strongly depend on the combination
of judged characteristic and target. Based on this, we assigned the high-
est effect variance to the target item interaction effect with o2_,= 0.36.
The variances of the other three random main effects followed in
descending order of assumed importance to variance explanation with
perceiver variance af, = 0.125, target variance a% = 0.04, and item vari-
ance g2 = 0.01. The resulting random effect distributions are provided
in Figure 1.
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Figure 1. Random effect distributions used for simulating Who Knows data.
Note. The random effects were transformed into probability scale for the sake of interpretability. Following the GLMM population
model, the original (normally distributed) random effects were generated on a logit-scale.

App usage scenarios

After implementing the steps from Section 2.1 in stat-
istical software such as R, one can generate complete
sample data for arbitrary sample sizes and parameter
choices based on the defined population model and
variables related to the study design. Another impor-
tant consideration for the simulation is the choice of
potential sample sizes. This is an especially difficult
consideration for data collected with apps because
both the number of observations and the pattern and
degree of missingness in the data typically depend on
user behavior which cannot be pre-planned. We
therefore recommend investigating multiple usage
scenarios representing rather pessimistic as well as
rather optimistic expectations.

What are the sampling scheme and design factors?
To maximize control over missingness patterns, one
should first create a complete dataset from the popula-
tion and then randomly delete a number of values based
on the anticipated missingness mechanism. The number
of observations in the complete data set depends on the
number of participants, study conditions, measurement
occasions, items, and possibly additional design factors.
The amount of data required to answer one’s
research question is usually of great interest and a rea-
son for conducting traditional power analyses. With this
in mind, we recommend alternating the sample sizes or

the numbers of items (or any other variable that affects
the length of the final data set) between simulation con-
ditions to gain insight into the required data quantity.

For Who Knows data generation, our goal was to first simulate the
theoretically complete data set where every combination of perceiver,
target, and item occurs exactly once. The result is a long-format data
set where the total number of observations is the product of the
numbers of perceivers (Np), targets (Ny), and items (N)), Np * Ny * N,

Values for Ny and N, were given by our app study design and set
constant in each condition, to Ny = 50 and N, = 820. The number of
target x item combinations is the result of Ny * N, = 41,000.
However, because participation in our app study is entirely voluntary,
the number of perceivers that engage in data collection could hardly
be predicted. Since this is a crucial value for deriving strategies for
advertising and recruiting, we were interested in how different Np
would affect the data and our simulation results. Therefore, we
decided to simulate three different conditions for varying Np with val-
ues of 300, 1000, and 5000. The lengths of the resulting long-format
data sets of the three Np conditions were 12.3 million, 41 million, and
205 million datapoints, respectively.

Planned missingness: Does every participant go
through every study condition?

Planned missingness refers to missingness that is due to
study design, where certain values are expected to be
missing a priori. An example of this would be present-
ing only a subset of the total item pool to each partici-
pant, thereby burden, and
collecting data for a greater variety of items. The degree

reducing participant

of planned missingness can also be considered a variable
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design factor that can be varied between simulation con-
ditions because it directly impacts the data quantity.

In the Who Knows app, targets’ self-reports are available for only 60
out of the total 820 items for each target which results in data com-
binations for the rest of the items being planned as missing. We
accounted for this by deleting observations for a random subset of
760 items for each target from the total data set created in the previ-
ous step.

Unplanned missingness: How frequently do partici-
pants use the app?

Another problem with remote data collection via an
app is the lack of control over participation, which
leads to high levels of dropouts (Meyerowitz-Katz
et al, 2020; Torous et al, 2020). The resulting
unplanned missingness is the main reason why we rec-
ommend simulating app data, because it creates difficul-
ties in determining necessary sample sizes using
traditional power analyses. Important considerations
concern (1) the missingness mechanism, that is, whether
data are missing (completely) at random or not at ran-
dom, (2) how user behavior affects missingness, and (3)
what pessimistic and optimistic scenarios could look like.

The nature of the missingness mechanism is
defined by whether there are variables that explain the
missingness of certain values. We refer to Schafer and
Graham (2002) who developed a conceptualization
that includes differentiating data that is missing com-
pletely at random (MCAR), missing at random
(MAR), or not at random (MNAR). Missing data are
MCAR if the probability of a missing value is not
related to either another measured variable or the
value itself. Data are MAR when the probability of a
missing value is related to some other measured vari-
able but not to the value itself. For data that is
MNAR, the probability of a missing value is related to
the value itself. This would be the case if patients with
poor therapy outcomes were systematically missing at
the last measurement occasion in the above-men-
tioned therapy study (Roepke et al., 2015).

Insights on reasons for dropout in remote studies
and resulting missingness can be found in the litera-
ture (e.g., Briiggen & Dholakia, 2010; Nestler et al.,
2015). If one concludes that the application of interest
produces data that is not MCAR, the corresponding
mechanism can be programmed into missingness
introduction, i.e., data deletion, in the next step."

1Systematic missingness can, for instance, be introduced to the simulation
from a second GLMM with the missingness status (0 = not missing, 1 =
missing) as dependent variable and whatever predictors seem suitable.
The generated dichotomous random variable can then be used to filter
out the missing values from the complete data set.

In accordance with the specified missingness mech-
anism, the user behavior and participation scheme
contribute to missingness in the data. General attrition
to app studies (see, e.g., Meyerowitz-Katz et al., 2020;
Torous et al., 2020), enjoyable app experience, sample
characteristics, and variance of dropout between par-
ticipants are additional factors to consider in user
behavior. If one’s study collects time-series data, one
needs to consider whether re-participation after
absence at a given timepoint should be possible, and
then establish appropriate missingness distributions
for each timepoint.

Since all the considerations above are educated
guesses at most, we recommend simulating optimistic
and pessimistic missingness scenarios in separate condi-
tions to evaluate the effect of missingness on the data.
This applies to both the extend of missingness and the
missingness mechanisms. Optimistic scenarios would
then include cases with little to no dropout and/or data
that is MCAR or at least MAR. More pessimistic scen-
arios would resemble cases in which many people drop
out and the missingness mechanism is related to the
missing value itself, resulting in data that is MNAR.

The most complete data the app can possibly pro-
duce—that is, with no dropouts, whatsoever- can serve
as a reference condition. For an easy implementation
of missingness into the data set, the R package
missMethods (Rockel, 2022) can be used.

For our simulation, we assumed that no variable could explain the distri-
bution of missingness on the outcome. As a result, data was MCAR and
we were able to simulate missingness due to dropout by randomly delet-
ing observations for the given participant perceivers.

Since participation in Who Knows data generation is entirely vol-
untary, the individual user behavior relates strongly to the degree of
missingness. Consequently, we assumed that the degree of missing
data varies between perceivers because some contributed more to
data collection than others. To obtain the number of observations
which needs to be set missing for each individual perceiver, we drew
their individual number of games they did complete (their GPP;
games per perceiver) from a skew-normal distribution truncated at the
value 1 (perceivers need to play at least one game to be present in
the data). For each perceiver, data for games that would exceed their
GPP was deleted from the data set with planned missingness created
in an earlier step.

We wanted to simulate three missingness scenarios that ranged
from rather optimistic to pessimistic which we labeled high, average,
and low participation, indicating the respective number of games in
the condition. To do so, we specified three different parameters sets
for the distributions from which individual GPPs were sampled. The
distribution parameters were & = [20, 5, 1], @ = [50, 30, 10], and «
= [10, 10, 10]. For 100 of the resulting distributions the average
mean GPPs (GPPs) were [59.45, 29.07, 4.98], the average median
GPPs were [53, 24, 4], and the average skewnesses were [0.84, 0.94,
1.05]. For an outline of the resulting distributions, see Figure 2.

Although highly unrealistic, we also simulated the case where
every participant completed every possible trial, resulting in 600
games for each participant and the most complete data possible, the
ideal GPP condition. The results of this condition were planned to
serve as a benchmark for the other three.
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Figure 2. Skew-normal distributions for the number of games per perceiver (GPP) for three different GPP conditions in the simula-

tion of who knows data.

Statistical analysis

Upon having generated a complete data set with the
underlying model and deleting missing values, statis-
tical analyses can be performed and the results for the
given simulation parameters can be evaluated. For this
purpose, two choices must be made: First, an appro-
priate framework for analyzing the given data struc-
ture and for answering the substantive research
question must be selected. Second, adequate outcome
metrics need to be chosen to decide on the study’s
scientific utility based on the analysis results.

What are the applied statistical frameworks?

Each simulated data set should be analyzed with an
appropriate statistical method—mimicking the anal-
yses that could be conducted with the real data set.
Choices for an adequate framework consider its cap-
acity to answer the research question and might
consider robustness to missingness, computation
time, or simplicity. It is also possible to conduct
analysis using different techniques to weigh them up
against each other and gain insight into which
framework offers most advantages to data analysis
under which data prerequisites. For instance,
depending on the research questions, data sets that
could be analyzed with (G)LMMs could also be ana-
lyzed using a two-step GLM approach (ie., a GLM is
fit for each level-2 unit and results are aggregated across
all level-2 units). Using a GLM with cluster-robust
standard errors, or generalized estimation equations.
These data-analytic approaches can be directly com-
pared in the simulation.

As we explained earlier, a good choice to assess
whether the true model parameters of the simulation
can be recovered reliably is to use same statistical
framework for analysis as has been used for the simu-
lation before. Apart from that, the influence of differ-
ent analytical choices can be compared directly. For
instance, one might want to compare different options
to handle missingness, such as full information max-
imum likelihood (Schafer & Graham, 2002; Wickham
& Giordano, 2022), multiple imputation (Graham
et al., 1996), or Markov Chain Monte Carlo algorithm
(Wickham & Giordano, 2022) over one that is not
(e.g., last observation carried forward, Zhu, 2014; list-
wise 2003).
Importantly, each simulated data set should be ana-
lyzed with the full intended analysis pipeline including
preprocessing steps.

and pairwise deletion, Newman,

For data analysis, we were interested in whether the true individual
random effects uf, u, uj, and ul*' could be reliably recovered. For
this matter, we analyzed the data’ with the same framework we used
for data generation: the binomial GLMM.

However, because of the long computation time that was needed
for binomial GLMM estimation, we also estimated the individual ran-
dom effects by aggregating the associated outcomes into mean scores.
Compared to the GLMM estimation, we expected this aggregated mean
approach to provide advantages in computation time but also to yield
less reliable estimates. As such, pitting both of these approaches
against each other when analyzing the simulated data would clarify
which approach would be preferable in which data scenario.

What are the outcome metrics of interest and what
are criteria for scientific utility?

It is important to define criteria for acceptable and
unacceptable data quality before running the simulation
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study. For this matter, the goal is to (1) find appropriate
outcome metrics for the research question of the simula-
tion and (2) formulate adequate thresholds for it.
Depending on the research question, different outcome
metrics can be computed. For example, if the simulation
is supposed to give insight on estimation accuracy of the
true effects, the outcome metric of choice might be esti-
mation bias (i.e., the difference between the estimated and
the true value), estimation error (ie., the empirical stand-
ard error) or coverage of confidence intervals (ie., the
proportion of samples in which the CIs contained the
true value). If one is interested in the statistical power of
an effect, the corresponding outcome metric would be the
proportion of samples in which the null hypothesis for
that effect is rejected (when there actually is an effect).
Ideally, for each metric of interest, thresholds should
be defined to provide a final evaluation of the app’s sci-
entific utility under different simulation conditions. This
allows to declare certain conditions as insufficient to
answer one’s research question. For instance, a relative
estimation bias of < |10%| for a given effect could be
considered sufficient. Regarding statistical power, a
threshold of 80% is often considered sufficient for psy-
chological studies (Cohen, 1992) and is commonly used
as a benchmark in power simulation studies (e.g.,
Brysbaert & Stevens, 2018). While guidelines for suitable
thresholds can often be found in methodological papers,
there is no universal recommendation, as the choice of
thresholds heavily relies on the specific research area and
its implications. For example, in scenarios where an
unreliable estimate or a falsely negative test result carries
significant consequences (e.g., when screening for suicidal
risk), aiming for higher diagnostic precision or statistical
power than generally recommended is warranted.
However, in other instances, the costs of pursuing high
precision or power may not be justified. Valuable sources
for determining appropriate thresholds include insights
from previous studies on similar topics and recommen-
dations from professional organizations in the field.

The main goal of the Who Knows application is to differentiate per-
ceivers based on their ability to judge targets in terms of everyday
life characteristics. In follow-up studies, this variance of the perceiver
effect might be explained by other third variables, such as the Big
Five personality traits. Another possible application might be to make
decisions for individuals based on their score in Who Knows, like find-
ing the “best judge” amongst a group of colleagues. For both of
these matters, the application needs to accurately recover the true
rank-order of perceiver effects. Consequently, the metric that we were
most interested in was the reliability of perceiver effects which we
computed as the Pearson correlation between the simulated true per-
ceiver effects and the perceiver effects estimated in our analyses.
Following Nunnally’s (1978) recommendations, we established different
reliability thresholds to ultimately evaluate the simulation. We used a
threshold of re/=0.80 to identify simulation conditions that are suitable
to answer group level research questions, such as the relation between
individuals’ ability to judge others in Who Knows and their agreeableness.

Further, we considered conditions with reliabilities of rel > 0.90 appropriate
for guiding individual-level decisions based on Who Knows scores. These
thresholds were meant to guide our overall evaluation of the scientific
utility of data collection with the Who Knows app across various scenarios.

Procedure/pseudo code

The present considerations regarding the simulation
preparation must be implemented into software code to
generate and analyze data. Independent of the particular
software in use, the logic of the simulation procedure
can be summarized by the following pseudo code:

SET condition values
SET number of samples
SET population parameter values
FOR each simulation condition
FOR each simulated sample
COMPUTE complete data set with population
model and parameters
APPLY planned missingness to dataset (optional)
APPLY unplanned missingness to dataset (optional)
APPLY preprocessing steps to dataset (optional)
APPLY statistical model(s) to dataset
COMPUTE relevant metrics
SAVE raw dataset and analysis results
END FOR
END FOR
FOR each simulation condition
SUMMARIZE metrics
END FOR

For Who Knows, we used the statistics software R, ver-
sion 4.2.1 (R Core Team, 2022). The simulation scripts
can be retrieved from tinyurl.com/appstudysimulation.

The simulation results showed that perceiver reliability is merely a func-
tion of perceiver missingness or, in other words, the GPP. Because per-
ceivers using Who Knows will vary greatly in their individual GPP the
question arises for whom there will be sufficient data to achieve reliabil-
ities of 0.80 or 0.90 in the data. By subdividing the perceivers in our
simulated data into groups of specific GPP ranges, we were able to cal-
culate and plot the perceiver reliability as a function of GPP (see Figure
3). This revealed that perceivers need to play 30 to 40 games (and rate
150 to 200 items) to yield reliabilities of 0.80 or above. For perceiver reli-
abilities above 0.90, perceivers need to play 70 to 80 games.

These findings have direct implications for data collection with Who
Knows. They show that it might be reasonable to exclude data from per-
ceivers with a GPP less than 30 from further analysis because their data
is not reliable enough to draw scientific conclusions. Another implication
is that more emphasis should be placed on incentivizing existing per-
ceivers in the app to play a minimum of 30 games than on acquiring
new perceivers. This insight found its way into the design of the real
Who Knows app by allowing perceivers to unlock the available feedback
about their performance only after reaching certain experience levels.

Our Who Knows simulation aimed for recovering the true rank-order
of random effects. More specifically, the goal was to identify simulation
conditions that could recover the rank-order of perceiver effects




sufficiently well, with perceiver reliabilities of at least 0.80 for group-level
research on perceiver effects and reliabilities of at least 0.90 for individ-
ual-level research. Table 2 gives an overview of the reliabilities as a func-
tion of analysis approach, the number of perceivers Np, and the GPP
condition for each different random effect. The ideal condition resembles
the highly unlikely scenario of every perceiver having engaged in every
possible trial and generated every possible combination of perceiver, tar-
get, and item. We included it into the simulation and analysis as refer-
ence for the results yielded for other simulation conditions and to
understand the impact of unplanned missingness on the results.

As for perceivers, every reliability in the GPP conditions with ideal
and high GPP, independent of statistical approach or Np, exceeded
.80. Reliabilities of perceiver effects exceeded 0.90 only in the ideal
GPP conditions. Therefore, if our simulation parameters and assump-
tions were realisticc, Who Knows can only be used to investigate
research questions that relate to group-level (rather than individual-
level) perceiver effects, as we do not expect the ideal GPP conditions
to represent realistic scenarios. Consequently, if individual estimates
are of interest, perceivers will need to be externally incentivized to
play a larger number of games as most of them would play just
for fun.

Results furthermore showed slight advantages of the GLMM
approach over the mean-based approach in terms of recovering true
random effects. This effect grew larger for poor data conditions (e.g.,
those with GPP = 5 and Np = 300) with a high degree of missing-
ness. On the other hand, GLMM estimations was sometimes a matter
of hours for a single data set, especially for good data conditions
with many observations (e.g., those with GPP = 61 and N, = 5000).
We conclude that for analyses of Who Knows data GLMM estimation
is to be preferred for poor data conditions, whereas for good data
conditions the mean-based approach represents the better choice, as
it yields similarly accurate results in only a fraction of computation
time.

Concluding remarks

Our approach has several advantages over traditional
approaches performed to identify data prerequisites
before collection, such as power analyses. Foremost,
given resources, it can

enough computational
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incorporate arbitrary degrees of data complexity
regarding interdependencies and missingness, as well
as non-linear relations or complex dynamics in time
series. Our simulation of Who Knows data serves as a
good example for the complex intertwinement of dif-
ferent data characteristics that can be generated, as it
implemented multilevel structures, different degrees of
missingness, and a non-linear logistic response func-
tion between predictors and outcome. Conventional
power analyses, on the other hand, lack the flexibility
to be used for more complex applications (Brysbaert
& Stevens, 2018; Green & MacLeod, 2016). Moreover,
they cannot investigate the effect of missingness on
the data, whereas Monta Carlo simulations have been
explicitly recommended as a viable solution to this
(Davey & Savla, 2010; Wu, 2004). Simulations also
provide the opportunity to observe the effects of cer-
tain parametric or distributional assumptions on the
performance of analysis approaches, which is typically
not possible with analytic power analyses.

While many model parameters need to be antici-
pated to simulate data and the generalizability of the
simulation results is limited to these parameters,
power analyses are subject to the same limitations,
too. In fact, the sparse basis on which parameters for
power analyses are often guessed has been criticized
before (Gelman & Carlin, 2014). By systematically
altering certain simulation parameters between differ-
ent conditions, our approach can identify those
parameters that are critical to the scientific utility of
one’s app study and derive direct measures for

60 70 80 90 100 110

Games per Perceiver

Figure 3. Perceiver reliabilities as a function of the number of games per perceiver (GPP).
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Table 2. Reliabilities of the four random effects as a function
of analysis approach, Np, and GPP condition.

Random effects

Approach Np  GPP condition Perceivers Targets Items Target X ltem

GLMM 5000 Ideal 99" 93" 30 98"
High 87 93" 30 97"
Average 77 .92: 30 95"
Low 48 a1 27 85%
1000 Ideal 99" 93" 30 97"
High 87% 92" 29 92"
Average 77 a1 27 87*
Low 48 84 19 61
300 Ideal 99°  93° 30 96"
High 87 90" 26 81%
Average 77 87F 22 .70
Low A7 69 .12 40
Mean-based 5000 Ideal 99" 93" 26 93"
High 8% 93" 25 92"
Average 71 .92: .25 91*
Low 40 90" 23 82*
1000 Ideal 99" 93° 25 93"
High 86* 92" 24 88*
Average 71 91" 23 84%*
Low A1 8* 16 58
300 Ideal 99" 92" 25 91*
High 86%  .90° 22 79
Average 71 87F .19 .68
Low 40 68 .10 36

Note. * > 0.80; reliabilities > 0.90 are presented in bold font.

practice. For example, by simulating different degrees
of data missingness in terms of different GPP distri-
butions, we inferred the importance of the GPP in
recovering the rank-order of perceiver effects. We
incorporated this finding into real data generation by
increasing the focus on individual perceiver feedback
as an incentivization, especially for playing the first 30
games in Who Knows. In either case, we recommend
cross-checking the simulation result patterns for
plausibility with findings from the literature. For
instance, the relationship between the GPP and the
reliability of perceiver effects is supported by the psy-
chometric literature, as it mimics the Spearman-
Brown relation (Brown, 1910; Spearman, 1910).
Moreover, there are aspects of real data generation
that should be reflected in the simulation, but over
which one has no control (e.g., the dropout rate).
Therefore, to assess how realistic the simulated scen-
arios were, they should be compared with the real
data as soon as these become available. In our case, a
comparison with real Who Knows data showed that
the true distribution of GPPs has a mean GPP of
23.60, a median GPP of 18 and a skewness of 2.09
and is thus similar (except for the skewness) to the
average GPP condition defined by us.

There are two prerequisites of implementing the
simulation approach which might seem like obstacles
that are not present in traditional power analyses: the
choice of an appropriate mathematical framework for

data generation and its translation into code. We argue,
however, that meeting these prerequisites hardly
exceeds the effort of a power analysis: Once an appro-
priate mathematical framework for the analysis is
found, the same framework can be used for data gener-
ation, too. Finding a suitable framework for analysis,
however, is not a prerequisite exclusive to the simula-
tion approach, but is necessary to accurately represent
true data relations and derive correct conclusions from
any scientific study. Therefore, the mathematical com-
plexity of the simulation study does typically not
exceed the complexity of the analysis itself. In fact, run-
ning a simulation study before data collection may help
researchers to explicitly plan statistical analyses before-
hand which is also necessary for preregistrations. The
subsequent translation of the statistical framework into
code is moreover facilitated by packages that are avail-
able for the prominent programming languages, such
as R. This way, the simulation approach is accessible to
researchers with little programming knowledge, too.

Conclusion

The present work highlighted the usefulness of con-
ducting a Monte Carlo simulation to evaluate the sci-
entific utility of an app-based psychological study
prior to data collection. In addition, we provided a set
of questions that can guide researchers in conducting
their own simulation. App-based data collection
promises great benefits in psychological research but
the complex data structures resulting from them can
make it hard to know ahead of time whether a par-
ticular study will pay off scientifically. The present
work showcased the usefulness of Monte Carlo simu-
lations to forecast the scientific utility of app studies
by flexibly accounting for the interdependence and
missingness of observations which are common in
these data environments. Although there may be edge
cases for which our propositions are incomplete, they
can guide the general thought processes and steps that
researchers would follow in implementing a particular
simulation. With the present tutorial, researchers now
have checklist and a set of recommendations at hand
with which they can evaluate in advance the scientific
utility of planned app study studies such that they can
take full advantage of the promises of mobile data
collection.

Disclosure statement

No potential conflict of interest was reported by the
author(s).



Article information

Conflict of interest disclosures: Each author signed a form
for disclosure of potential conflicts of interest. No authors
reported any financial or other conflicts of interest in rela-
tion to the work described.

Ethical principles: The authors affirm having followed pro-
fessional ethical guidelines in preparing this work. These
guidelines include obtaining informed consent from human
participants, maintaining ethical treatment and respect for
the rights of human or animal participants, and ensuring
the privacy of participants and their data, such as ensuring
that individual participants cannot be identified in reported
results or from publicly available original or archival data.

Funding: This work was not funded.

Role of the funders/sponsors: None of the funders or
sponsors of this research had any role in the design and
conduct of the study; collection, management, analysis, and
interpretation of data; preparation, review, or approval of
the manuscript; or decision to submit the manuscript for
publication.

References

Alkhaldi, G., Hamilton, F. L, Lau, R., Webster, R., Michie,
S., & Murray, E. (2016). The effectiveness of prompts to
promote engagement with digital interventions: A sys-
tematic review. Journal of Medical Internet Research,
18(1), e6. https://doi.org/10.2196/jmir.4790

Auerswald, M., & Moshagen, M. (2015). Generating corre-
lated, non-normally distributed data using a non-linear
structural model. Psychometrika, 80(4), 920-937. https://
doi.org/10.1007/s11336-015-9468-7

Ben-Zeev, D., Brenner, C. J., Begale, M., Duffecy, J., Mohr,
D. C.,, & Mueser, K. T. (2014). Feasibility, acceptability,
and preliminary efficacy of a smartphone intervention for
schizophrenia. Schizophrenia Bulletin, 40(6), 1244-1253.
https://doi.org/10.1093/schbul/sbu033

Biesanz, J. (2012). Autoregressive longitudinal models.
Handbook of Structural Equation Modeling, 459-471.
https://psycnet.apa.org/record/2012-16551-027

Brouillette, R. M., Foil, H., Fontenot, S., Correro, A., Allen,
R., Martin, C. K., Bruce-Keller, A. J., & Keller, J. N.
(2013). Feasibility, reliability, and validity of a smart-
phone based application for the assessment of cognitive

MULTIVARIATE BEHAVIORAL RESEARCH 891

function in the elderly. PloS One, 8(6), €65925. https://
doi.org/10.1371/journal.pone.0065925

Brown, W. (1910). Some experimental results in the correl-
ation of mental abilities. British Journal of Psychology,
1904-1920, 3(3), 296-322. https://doi.org/10.1111/j.2044-
8295.1910.tb00207.x

Briiggen, E., & Dholakia, U. M. (2010). Determinants of
participation and response effort in web panel surveys.
Journal of Interactive Marketing, 24(3), 239-250. https://
doi.org/10.1016/j.intmar.2010.04.004

Brysbaert, M., & Stevens, M. (2018). Power analysis and
effect size in mixed effects models: A tutorial. Journal of
Cognition, 1(1), 9. https://doi.org/10.5334/joc.10

Chan, W., Mccrae, R. R, De Fruyt, F, Jussim, L.,
Lockenhoff, C. E., De Bolle, M., Costa, P. T., Sutin, A. R,,
Realo, A., Allik, J., Nakazato, K., Shimonaka, Y.,
Hrebickovd, M., Graf, S., Yik, M., Brunner-Sciarra, M.,
De Figueroa, N. L., Schmidt, V., Ahn, C.-K,
Terracciano, A. (2012). Stereotypes of age differences in
personality traits: Universal and accurate? Journal of
Personality and Social Psychology, 103(6), 1050-1066.
https://doi.org/10.1037/20029712

Cohen, J. (1988). Statistical power analysis for the behavioral
sciences. (2nd ed.). L. Erlbaum Associates.

Cohen, J. (1992). Statistical power analysis. Current
Directions in Psychological Science, 1(3), 98-101. https://
doi.org/10.1111/1467-8721.ep10768783

Davey, A., & Savla, J. (2010). Statistical power analysis with
missing data: A structural equation modeling approach.
Routledge.

Fischer, F., & Kleen, S. (2021). Possibilities, problems, and
perspectives of data collection by mobile apps in longitu-
dinal epidemiological studies: Scoping review. Journal of
Medical Internet Research, 23(1), el7691. https://doi.org/
10.2196/17691

Funder, D. C. (2012). Accurate personality judgment.
Current Directions in Psychological Science, 21(3), 177-
182. https://doi.org/10.1177/0963721412445309

Gelman, A., & Carlin, J. B. (2014). Beyond power calcula-
tions. Perspectives on Psychological Science: A Journal of
the Association for Psychological Science, 9(6), 641-651.
https://doi.org/10.1177/1745691614551642

Gignac, G. E., & Szodorai, E. T. (2016). Effect size guide-
lines for individual differences researchers. Personality
and Individual Differences, 102, 74-78. https://doi.org/10.
1016/j.paid.2016.06.069

Graham, J. W, Hofer, S. M., & MacKinnon, D. P.
(1996). Maximizing the usefulness of data obtained with
planned missing value patterns: An application of max-
imum likelihood procedures. Multivariate Behavioral
Research, 31(2), 197-218. https://doi.org/10.1207/s1532
7906mbr3102_3

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille,
P. E. (2006). Planned missing data designs in psycho-
logical research. Psychological Methods, 11(4), 323-343.
https://doi.org/10.1037/1082-989X.11.4.323

Green, P., & MacLeod, C. J. (2016). SIMR: An R package
for power analysis of generalized linear mixed models by
simulation. Methods in Ecology and Evolution, 7(4), 493-
498. https://doi.org/10.1111/2041-210X.12504

Harari, G. M., Lane, N. D., Wang, R., Crosier, B. §,
Campbell, A. T, & Gosling, S. D. (2016). Using



892 (&) S.KUEPPERS ET AL.

smartphones to collect behavioral data in psychological
science: Opportunities, practical considerations, and
challenges. Perspectives on Psychological Science: A
Journal of the Association for Psychological Science, 11(6),
838-854. https://doi.org/10.1177/1745691616650285

Hedeker, D. R., & Gibbons, R. D. (2006). Longitudinal data
analysis. Wiley & Sons Ltd.

Hertzog, C., & Nesselroade, J. R. (2003). Assessing psycho-
logical change in adulthood: An overview of methodo-
logical issues. Psychology and Aging, 18(4), 639-657.
https://doi.org/10.1037/0882-7974.18.4.639

Judd, C. M., Westfall, ], & Kenny, D. A. (2012). Treating
stimuli as a random factor in social psychology: A new and
comprehensive solution to a pervasive but largely ignored
problem. Journal of Personality and Social Psychology,
103(1), 54-69. https://doi.org/10.1037/a0028347

Jussim, L., Cain, T. R, Crawford, J. T., Harber, K, &
Cohen, F. (2009). The unbearable accuracy of
stereotypes. In T. D. Nelson (Ed.), Handbook of prejudice,
stereotyping, and  discrimination  (pp.  199-227).
Psychology Press.

Jussim, L., Crawford, J. T., & Rubinstein, R. S. (2015).
Stereotype (in) accuracy in perceptions of groups and
individuals. Current Directions in Psychological Science,
24(6), 490-497. https://doi.org/10.1177/0963721415605257

Lockenhoff, C. E., Chan, W., McCrae, R. R,, De Fruyt, F,
Jussim, L., De Bolle, M., Costa, P. T., Jr, Sutin, A. R,
Realo, A., Allik, J, Nakazato, K., Shimonaka, Y.,
Hrebickovd, M., Graf, S., Yik, M., Fickovd, E., Brunner-
Sciarra, M., Leibovich de Figueora, N., Schmidt, V., Ahn,
C-k., Ahn, H-n., ... Terracciano, A. (2014). Gender stereo-
types of personality. Journal of Cross-Cultural Psychology,
45(5), 675-694. https://doi.org/10.1177/0022022113520075

Meyerowitz-Katz, G., Ravi, S., Arnolda, L., Feng, X,
Maberly, G., & Astell-Burt, T. (2020). Rates of attrition
and dropout in app-based interventions for chronic dis-
ease: Systematic review and meta-analysis. Journal of
Medical Internet Research, 22(9), €20283. https://doi.org/
10.2196/20283

Miner, A., Kuhn, E., Hoffman, J. E., Owen, J. E., Ruzek, J. L,
& Taylor, C. B. (2016). Feasibility, acceptability, and poten-
tial efficacy of the PTSD Coach app: A pilot randomized
controlled trial with community trauma survivors.
Psychological Trauma: Theory, Research, Practice and
Policy, 8(3), 384-392. https://doi.org/10.1037/tra0000092

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using
simulation studies to evaluate statistical methods.
Statistics in Medicine, 38(11), 2074-2102. https://doi.org/
10.1002/sim.8086

Mulder, J. D. (2022). Power analysis for the random inter-
cept cross-lagged panel model using the powRICLPM R-
package. Structural Equation Modeling: A
Multidisciplinary Journal, 30(4), 645-658. https://doi.org/
10.1080/10705511.2022.2122467

Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus user’s
guide. (8th ed.). Muthén & Muthén.

Nestler, S., Thielsch, M., Vasilev, E., & Back, M. D. (2015).
Will they stay or will they go? Personality predictors of
dropout in an online study. International Journal of
Internet Science, 10(1), 37-48.

Newman, D. A. (2003). Longitudinal modeling with ran-
domly and systematically missing data: A simulation of

ad hoc, maximum likelihood, and multiple imputation
techniques. Organizational Research Methods, 6(3), 328-
362. https://doi.org/10.1177/1094428103254673

Nunnally, J. C. (1978). An overview of psychological meas-
urement. Clinical Diagnosis of Mental Disorders, 97-146.
https://doi.org/10.1007/978-1-4684-2490-4_4

Pavliscsak, H., Little, J. R, Poropatich, R. K., McVeigh,
E. L., Tong, J., Tillman, J. S., Smith, C. H., & Fonda, S. J.
(2016). Assessment of patient engagement with a mobile
application among service members in transition. Journal
of the American Medical Informatics Association: JAMIA,
23(1), 110-118. https://doi.org/10.1093/jamia/ocv121

Pfammatter, A. F., Mitsos, A, Wang, S., Hood, S. H., &
Spring, B. (2017). Evaluating and improving recruitment
and retention in an mHealth clinical trial: An example of
iterating methods during a trial. mHealth, 3, 49-49.
https://doi.org/10.21037/mhealth.2017.09.02

Pornprasertmanit, S., Miller, P., Schoemann, A., Jorgensen,
T. D. (2021). simsem: SIMulated structural equation mod-
eling. R package version 0.5-16. https://CRAN.R-project.
org/package=simsem.

Rau, R, Grosz, M. P., & Back, M. D. (2023). A large-scale,
gamified online assessment of first impressions: The Who
Knows project. https://doi.org/10.31234/osf.io/gb4av

R Core Team. (2022). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing. https://www.R-project.org/

Rockel, T. (2022). missMethods: Methods for missing data. R
package version 0.4.0, https://CRAN.R-project.org/pack-
age=missMethods.

Roepke, A. M., Jaffee, S. R,, Riffle, O. M., McGonigal, J.,
Broome, R, & Maxwell, B. (2015). Randomized con-
trolled trial of SuperBetter, a smartphone-based/internet-
based self-help tool to reduce depressive symptoms.
Games for Health Journal, 4(3), 235-246. https://doi.org/
10.1089/g4h.2014.0046

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our
view of the state of the art. Psychological Methods, 7(2),
147-177. https://doi.org/10.1037/1082-989X.7.2.147

Schafer, T., & Schwarz, M. A. (2019). The meaningfulness
of effect sizes in psychological research: Differences
between sub-disciplines and the impact of potential
biases. Frontiers in Psychology, 10, 813. https://doi.org/10.
3389/fpsyg.2019.00813

Smith, A., de Salas, K, Lewis, I, & Schiiz, B. (2017).
Developing smartphone apps for behavioural studies: The
AlcoRisk app case study. Journal of Biomedical Informatics,
72, 108-119. https://doi.org/10.1016/j.jbi.2017.07.007

Spearman, C. (1910). Correlation calculated from faulty
data. British Journal of Psychology, 3(3), 271-295. https://
doi.org/10.1111/j.2044-8295.1910.tb00206.x

Torous, J., Lipschitz, J., Ng, M., & Firth, J. (2020). Dropout
rates in clinical trials of smartphone apps for depressive
symptoms: A systematic review and meta-analysis.
Journal of Affective Disorders, 263, 413-419. https://doi.
org/10.1016/j.jad.2019.11.167

Wenz, A., Jackle, A., Burton, J., & Couper, M. P. (2022).
The effects of personalized feedback on participation and
reporting in mobile app data collection. Social Science
Computer Review, 40(1), 165-178. https://doi.org/10.1177/
0894439320914261



Wickham, R. E., & Giordano, B. L. (2022). Implementing
planned missingness in stimulus sampling designs:
Strategies for optimizing statistical power and precision
while  limiting  participant  burden. Journal  of
Experimental Social Psychology, 101, 104349. https://doi.
org/10.1016/j.jesp.2022.104349

Wu, L. (2004). Exact and approximate inferences for
nonlinear mixed-effects models with missing covariates.
Journal —of the American Statistical ~ Association,
99(467), 700-709. https://doi.org/10.1198/0162145040000
01006

MULTIVARIATE BEHAVIORAL RESEARCH 893

Yarkoni, T. (2022). The generalizability crisis. The
Behavioral and Brain Sciences, 45, el. https://doi.org/10.
1017/50140525X20001685

Zhu, X. (2014). Comparison of four methods for handing
missing data in longitudinal data analysis through a
simulation study. Open Journal of Statistics, 04(11), 933
944. https://doi.org/10.4236/0js.2014.411088

Zorluoglu, G., Kamasak, M. E., Tavacioglu, L., & Ozanar, P. O.
(2015). A mobile application for cognitive screening of
dementia. Computer Methods and Programs in Biomedicine,
118(2), 252-262. https://doi.org/10.1016/j.cmpb.2014.11.004



	Using Monte Carlo Simulation to Forecast the Scientific Utility of Psychological App Studies: A Tutorial
	Abstract
	Introduction
	Background

	Tutorial
	Data generation process
	What is the outcome variable?
	What is the population model?
	Choosing the parameters of the population model

	App usage scenarios
	What are the sampling scheme and design factors?
	Planned missingness: Does every participant go through every study condition?
	Unplanned missingness: How frequently do participants use the app?

	Statistical analysis
	What are the applied statistical frameworks?
	What are the outcome metrics of interest and what are criteria for scientific utility?

	Procedure/pseudo code

	Concluding remarks
	Conclusion
	Disclosure statement
	Article information
	Open Scholarship
	References


