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ABSTRACT 
The application of unidimensional IRT models requires item response data to be unidimen
sional. Often, however, item response data contain a dominant dimension, as well as one or 
more nuisance dimensions caused by content clusters. Applying a unidimensional IRT model 
to multidimensional data causes violations of local independence, which can vitiate IRT 
applications. To evaluate and, possibly, remedy the problems caused by forcing unidimen
sional models onto multidimensional data, we consider the creation of a projected unidi
mensional IRT model, where the multidimensionality caused by nuisance dimensions is 
controlled for by integrating them out from the model. Specifically, when item response 
data have a bifactor structure, one can create a unidimensional model based on projecting 
to the general factor. Importantly, the projected unidimensional IRT model can be used as a 
benchmark for comparison to a unidimensional model to judge the practical consequences 
of multidimensionality. Limitations of the proposed approach are detailed.
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Item response theory (IRT) is a set of psychometric 
models that characterize the relation between an indi
vidual’s standing on a latent variable (the “trait”) and 
their probability of responding to a binary or polyto
mous item in a specific category. In contemporary 
psychometrics, IRT models are often used to conduct 
basic psychometric analyses, to construct measures, 
and for administration and scoring. For these pur
poses, however, IRT models make strong assumptions 
about item response data. Most important, the appli
cation of unidimensional IRT models assumes that the 
item responses are unidimensional; that is, they are 
locally independent, conditional on a single latent 
variable (Chen & Thissen, 1997). In other words, uni
dimensional IRT models require that correlations 
among the items are completely explained by a single 
common factor that reflects the intended target trait 
assumed to underlie and cause the reliable variation 

in item responses. Establishing that data are unidi
mensional is critical, because important applications 
of unidimensional IRT—interpreting the estimated 
item and person parameters, computerized adaptive 
testing, scale linking and equating, and evaluating dif
ferential item functioning—depend, in large part, on 
the data being consistent with the unidimensionality 
assumption.

The unidimensionality requirement of unidimen
sional IRT is a strong restriction. For measures of 
any complex construct, item response data are typic
ally multidimensional, not strictly unidimensional 
(Humphreys, 1986; Ozer, 2001; Reckase et al., 1988, 
Zhang, 2007). Many measures have a latent structure 
where there is a dominant factor running through all 
the items reflecting the target trait and several nuis
ance dimensions reflecting common variance caused 
by clusters of items with similar content (Reise et al., 
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2013, 2023). This structure results when psychological 
traits have heterogeneous manifestations (Clark & 
Watson, 2019; Tellegen, 1991), so that clusters of 
items with different content are included to capture 
the trait’s conceptual breadth. Soto and John (2017), 
as one example, developed a measure of the Big Five 
dimensions using 15 “facet” traits (see also, Comrey 
(1961) and Hogan and Hogan (1995)).

If one believes that psychological constructs are hier
archically structured, such as in the Hierarchical 
Taxonomy of Psychopathology (HITOP; Kotov et al., 
2021), then any construct above the lowest rung of the 
hierarchy must, by definition, have heterogenous content 
and, thus, include a major and some minor dimensions. 
Heterogeneity will increase as one moves up the con
struct hierarchy (Morin et al., 2016). Multidimensionality 
due to content facets is consistent with Gustafsson and 
Åberg-Bengtsson (2010, Rules 1, 2, and 3, p. 108) who 
argue that to measure a broad trait, one must include 
content from lower, more conceptually narrow trait 
dimensions. It is also in line with Hampson, John, and 
Goldberg’s (1986) argument that, "Trait breadth and 
hierarchical organization are central structural principles 
in personality theory and research” (p. 37).

The tension between the unidimensionality 
assumption of IRT models and the multidimensional 
nature of psychometric data required for validity cre
ates a conundrum. Although application of unidimen
sional IRT is attractive, forcing multidimensional data 
onto unidimensional models leads to some degree of 
violation of the local independence assumption. Such 
violation leads to bias in the item and person param
eter estimates, which may spoil important IRT 
applications.

To address the challenges of applying a unidimen
sional IRT model to multidimensional data, some 
have adopted bifactor IRT models (Cai et al., 2011; 
Reise et al., 2023). The general factor in the bifactor 
IRT model represents the intended target dimension, 
and multidimensionality due to content facets is con
trolled for through a set of orthogonal group factors. 
Nevertheless, bifactor models have important limita
tions. First, as detailed below, the item parameter esti
mates in bifactor IRT models are difficult to interpret 
(Stucky & Edelen, 2014). Second, a bifactor IRT 
model is not parsimonious and is difficult to use in 
important IRT applications, such as scale linking, dif
ferential item functioning analysis, and computerized 
adaptive testing. Third, the group factors in a bifactor 
model sometimes consist of only a few items and, as 
such, are considered as contributing to “nuisance” 
variance rather than being of substantive interest.

In the present research, we attempt to overcome these 
limitations by transforming the bifactor IRT model 
parameters. Specifically, we create a projective unidimen
sional IRT (PIRT) model based on projecting to a gen
eral factor in a bifactor IRT model as previously 
developed (Ip, 2010a, 2010b; Ip & Chen, 2014; Ip et al., 
2013; Stucky et al., 2013; Stucky & Edelen, 2014). We 
propose that the PIRT model has two important applica
tions. First, it can be used as a standalone unidimen
sional model for IRT applications (Ip & Chen, 2014). 
Stucky et al. (2013), for example, demonstrate how PIRT 
derived from a bifactor model can be used to create uni
dimensional short-forms with content diversity. Kim and 
Cho (2020) recently applied PIRT based on a bifactor 
model to perform true-score equating. Second, it can be 
used as a benchmark comparison model to judge the 
practical effect of model misspecification caused by 
imposing unidimensional IRT models on multidimen
sional data. This latter application is in the spirit of 
Crişan et al. (2017), who argue for careful consideration 
of the practical consequences of model violations.

To understand the problem of multidimensional 
data, we provide a small set of simulations to illustrate 
the consequences of forcing multidimensional data 
into a unidimensional IRT model. These illustrative 
simulations provide a foundation for understanding 
the strengths and limitations of our proposed project
ive IRT modeling approach.

Multidimensional data forced into 
unidimensional IRT models

Consider a researcher who wishes to use a multi-item 
scale to assess a single, broad psychological construct. 
We assume that the variance on each item can be 
decomposed into four orthogonal parts: (a) a general 
trait (reflected in all the items) that represents the 
intended target construct, (b) group component (vari
ance shared with a subset of content similar items), 
(c) a specific component (reliable, systematic variance 
unique to the item), and (d) random error. This is the 
canonical bifactor structure originally proposed by 
Holzinger and Swineford (1937).

Consider first the upper left panel in Table 1, 
which displays a bifactor structure in the factor ana
lytic metric with one general and three orthogonal 
group factors. Demonstration A (Demo-A, upper left 
panel) has 15 items, and each item has a factor load
ing on the general factor of 0.60 and zero loadings on 
the group factors. This structure represents a unidi
mensional model where all items are related to the 
general dimension equally. Given the known relation 

346 S. P. REISE ET AL.



between the ordinal factor model and the IRT model 
(Kamata & Bauer, 2008; Takane & De Leeuw, 1987), 
the equivalent slope in a unidimensional 2-parameter 
logistic (2PL; Equation (1)) model is shown in 
Equation (2):

P xi ¼ 1jhð Þ ¼
expðai h − bið ÞÞ

1þ expðai h − bið ÞÞ

¼
expðaihþ ciÞ

1þ expðaihþ ciÞ
, (1) 

where P xi ¼ 1jhð Þ is the probability of endorsing 
ðxi ¼ 1Þ item i as a function of a continuous, nor
mally-distributed latent variable h, typically, specified 
to be mean 0 and variance 1. The ai parameter is a 
slope or “discrimination” determining the steepness of 
the item response function; bi is a location parameter 
– the point on the latent trait where the probability of 

endorsing the item is 0.50; ci is an intercept equal to 
−aibi:

ai ¼
ki
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2
i

q 1:7ð Þ ¼
:60
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − :602
p 1:7ð Þ ¼ 1:275 (2) 

In Equation (2), ki is a factor loading in the ordinal 
factor model (Takane & De Leeuw, 1987); thus, in a 
unidimensional model with a true factor loading of 
0.60, the true slope in the 2PL model is 1.275. In all 
simulations below, we assume factor thresholds (si) 
and IRT intercept parameters are zero for each item. 
We also assume that the latent variables have a stand
ard normal distribution.

Based on the true IRT model, we simulated 10,000 
cases and estimated a 2PL model using the full- 
information marginal maximum likelihood method 
available in mirt (Chalmers, 2012). With this large 

Table 1. The effects of forcing multidimensional data onto a unidimensional model in factor analytic and IRT metrics.
Demonstration A – unidimensional Demonstration B – unequal group

True loadings Estimated True loadings Estimated

Bifactor model 1-factor Bifactor model 1-factor

Item kGen kGrp1 kGrp2 kGrp3 k̂ â kGen kGrp1 kGrp2 kGrp3 k̂ â

1 .60 0 0 0 .59 1.23 .60 .70 0 0 .92 3.91
2 .60 0 0 0 .61 1.30 .60 .70 0 0 .92 3.87
3 .60 0 0 0 .60 1.28 .60 .70 0 0 .91 3.71
4 .60 0 0 0 .59 1.24 .60 .70 0 0 .91 3.85
5 .60 0 0 0 .60 1.27 .60 .70 0 0 .91 3.74
6 .60 0 0 0 .61 1.30 .60 0 .50 0 .53 1.05
7 .60 0 0 0 .61 1.30 .60 0 .50 0 .53 1.07
8 .60 0 0 0 .61 1.30 .60 0 .50 0 .52 1.05
9 .60 0 0 0 .60 1.27 .60 0 .50 0 .53 1.06
10 .60 0 0 0 .62 1.34 .60 0 .50 0 .53 1.05
11 .60 0 0 0 .61 1.30 .60 0 0 .30 .51 1.01
12 .60 0 0 0 .59 1.25 .60 0 0 .30 .50 0.97
13 .60 0 0 0 .60 1.29 .60 0 0 .30 .48 0.94
14 .60 0 0 0 .61 1.30 .60 0 0 .30 .48 0.93
15 .60 0 0 0 .61 1.31 .60 0 0 .30 .49 0.96

Demonstration C equal group Demonstration D cross-loadings

True factor loadings Estimated True factor loadings Estimated

Bifactor model 1-factor Bifactor model 1-factor

Item kGen kGrp1 kGrp2 kGrp3 k̂ â kGen kGrp1 kGrp2 kGrp3 k̂ â

1 .60 .50 0 0 .65 1.46 .60 .50 0 .10 .68 1.58
2 .60 .50 0 0 .66 1.49 .60 .50 0 0 .63 1.39
3 .60 .50 0 0 .65 1.45 .60 .50 0 0 .65 1.45
4 .60 .50 0 0 .66 1.48 .60 .50 0 0 .64 1.42
5 .60 .50 0 0 .65 1.46 .60 .50 0 0 .64 1.42
6 .60 0 .50 0 .66 1.51 .60 .30 .50 0 .77 2.05
7 .60 0 .50 0 .65 1.45 .60 0 .50 0 .67 1.56
8 .60 0 .50 0 .64 1.40 .60 0 .50 0 .68 1.58
9 .60 0 .50 0 .65 1.45 .60 0 .50 0 .68 1.57
10 .60 0 .50 0 .66 1.48 .60 0 .50 0 .69 1.64
11 .60 0 0 .50 .65 1.45 .60 0 .50 .50 .80 2.30
12 .60 0 0 .50 .65 1.45 .60 0 0 .50 .65 1.46
13 .60 0 0 .50 .65 1.47 .60 0 0 .50 .64 1.40
14 .60 0 0 .50 .65 1.44 .60 0 0 .50 .65 1.46
15 .60 0 0 .50 .64 1.44 .60 0 0 .50 .64 1.43

Note: k are factor loadings, k̂ are estimated factor loadings; a are IRT slopes; â are estimated IRT slopes. Subscripts Gen, Grp1 … Grp3 refer to general 
and group factors in a bifactor model. Cross loadings in boldface type.
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sample size, it is not surprising that in both the factor 
analytic and the IRT metric, true parameters for the 
one-dimensional model are well recovered. Both the 
estimated factor loadings and IRT slope parameters 
are unbiased; they reflect the general factor (i.e., the 
intended “target” dimension that explains the correla
tions among the items).

In Demonstration B (Demo-B; upper right panel), 
each item has the same 0.60 true factor loading on 
the general factor. The main difference from Demo A 
is that we have added three orthogonal group factors 
of five items each that vary in loading strength (0.70, 
0.50, and 0.30), and, thus, communality. We simulated 
10,000 cases and fit a 2PL (see Equation (1)) using 
mirt. In Demo B, the estimated factor loadings are not 
close to the true loadings of 0.60 nor the slopes to 
1.275. In short, the loadings and IRT slopes in the 
unidimensional models are pulled toward the first set 
of five items that have the highest item intercorrela
tions, yielding estimated slopes of approximately 3.82 
for these items.

In Demo B the latent variable no longer reflects the 
common variance among the items. Rather, when uni
dimensional models are applied to multidimensional 
data, the item parameters and latent variable are esti
mating a so-called “reference composite,” or what 
most-commonly is termed “functional dimension” (Ip 
et al., 2013). The functional dimension is a kind of 
weighted average of the dimensions. By virtue of 
being optimized to explain as much common variance 
as possible among the items, the unidimensional 
model overrepresents the (greater) common variance 
among this first set of items.

In Demo-C, as in Demos A and B, the general 
factor has loadings of 0.60; the group factor loadings 
are now all 0.50 (and, thus, equal communality). 
Again, simulating 10,000 cases, the unidimensional 
2PL model, when fit with mirt (Chalmers, 2012), has 
factor loadings and IRT slopes that are all too high. 
The unidimensional model has no way of pulling 
apart the common variance due to general and group 
factors, and, thus, it assumes that all common vari
ance is general variance.

Demo-D has the same structure as Demo-C, but it 
adds an additional complexity. One item on each of 
the group factors is specified as having a cross-loading 
on another of the group factors. Specifically, Item 1 
has a cross-loading of 0.10 on group factor 3. Item 6 
has a cross-loading of 0.30 on group factor 1, and 
Item 11 has a cross-loading of 0.50 on group factor 2. 
As we will soon illustrate, these cross-loadings can 
pose challenges for our proposed projection IRT 

approach. For now, we observe that in the present 
example, when we simulated 10,000 cases and fit a 
2PL model with mirt, the loadings and IRT slopes 
are more biased than in Demo-C, especially for the 
three items with cross-loadings. The factor loading, 
for example, for Item 11 is now 0.80, which is a sub
stantial distortion of its relation with the target 
dimension.

Unidimensionality and IRT modeling

These demonstrations make clear that, if your meas
urement goal is to fit a model that captures the com
mon variance among the items, forcing 
multidimensional data into unidimensional models 
can significantly interfere with that goal. Clearly, we 
need to proceed cautiously when considering a unidi
mensional IRT model application when we know the 
data are multidimensional. This raises the question, 
when are data “unidimensional enough,” such that we 
do not need to be concerned about applications of the 
unidimensional model (i.e., when can we expect prac
tical consequences to be trivial)?

There has been considerable research exploring 
conditions under which one can reasonably apply a 
unidimensional IRT model, despite its misspecifica
tion. As Ip (2010a) nicely summarizes this research, 
“If there is a predominant general factor in the data, 
and if the dimensions beyond that major dimension 
are relatively small, the presence of multidimensional
ity has little effect on item parameter estimates and 
the associated ability estimates. If, on the other hand, 
the data are multidimensional with strong factors 
beyond the first one, unidimensional parameterization 
results in parameter and ability estimates that are 
drawn toward the strongest factor in the set of item 
responses (this tendency is ameliorated to some extent 
if the factors are highly correlated)” (p. 397).

But how do we know if the first factor is “strong?” 
In Table 2, we consider some commonly-reported 
indices when applied to the data from Table 1. Our 
first set of indices assess the first factor strength but 
in slightly different ways. First, is the commonly 
reported eigenvalue ratio (EVR), reflecting the ratio of 
the first to second eigenvalue from the tetrachoric 
correlation matrix. Higher values ostensibly reflect a 
stronger general factor. In the data from the demon
strations, this ratio is relatively large for Demo-A. All 
other EVR values are above 3, a commonly noted 
“benchmark” for a “strong” general factor indicating 
that EVR would not detect issues with the data from 
the demonstrations.
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Next are two “unidimensional enough” indices 
derived from applying a bifactor model (Rodriguez 
et al., 2016). One index that quantifies general factor 
strength is the explained common variance (ECV; 
Reise et al., 2013; ten Berge & So�can, 2004). The ECV 
is the percent of common variance due to the general 
factor. The closer to 1.0, the more unidimensional the 
data. These values are all above 0.50, suggesting the 
general factor is stronger than the group factors. Two, 
Zinbarg et al. (2005, 2006) proposed coefficient omega 
hierarchical (xh), which is the percent of sum score 
variance due to the general factor. When xh is high, 
the reliable variance in composite scores is interpret
able as reflecting the general factor. Here, values range 
from 0.89 (Demo-A) to 0.74 (Demo-D), suggesting 
that the summed scores reflect a high degree of 
reliable variance coming from the general factor. 
Should these values be considered as evidence of uni
dimensional enough? On the other hand, as a referent, 
the xh coefficient can be compared to an index called 
omega total, xT , which estimates the reliability due 
to all sources of common variance. The closer xh is 
to xT , the more unidimensional. There are gaps of 
approximately 0.20 between xT and xh for the multi
dimensional data sets in Demos B, C, and D, suggest
ing significant multidimensionality.

Finally, the lower portion of Table 2 includes tests 
of model fit and practical fit indices that are readily 
available in mirt (Chalmers, 2012) output. M2 

(Maydeu-Olivares & Joe, 2006) is a limited informa
tion goodness-of-fit test that is not significant in 
Demo-A but significant in Demos B, C, and D. The 
root mean square error of approximation (RMSEA), 
standardized root mean squared residual (SRMSR), 
and comparative model index (CFI) all indicate a 
“poor” fit of the unidimensional model to the 

multidimensional datasets and a “good” fit for the 
Demo-A data.

How useful are these “unidimensional enough,” or 
“practical fit” indices and their associated bench
marks? We have three practical concerns that underlie 
our present proposal. First, the “benchmarks” for uni
dimensionality, when they exist at all, are somewhat 
arbitrary in the same way p <¼ 0.05 for “significant” 
or Cohen’s d¼ 0.20 for a “small” effect are arbitrary: 
their values have no precise reference. Second, fit indi
ces can reject models where the bias in parameter esti
mates has few, if any, practical consequences (Bonifay 
et al., 2015). Multidimensionality or lack of model fit 
does not necessarily suggest dire consequences in 
practical applications (Crişan et al., 2017). Indeed, the 
misfit in Demos B, C, and D may have very little 
effect on scaling individuals on the latent trait (i.e., 
scoring). Third, and most important, the values of the 
indices in Table 2 cannot be directly linked to any 
specific degree of bias in the estimated item parame
ters, trait level estimates, or standard errors, which 
are valuable to know when considering an IRT 
application.

In contrast, we argue that fitting a PIRT model can 
be used to directly judge the appropriateness of a uni
dimensional model and, thus, provide important 
insight to make more informed modeling decisions. 
Specifically, a comparison of the item parameter esti
mates, trait level estimates, and standard errors 
between a unidimensional IRT model and a better fit
ting PIRT model can tell you directly how wrong a 
unidimensional model is. Before illustrating such an 
application, we first describe PIRT and apply it to the 
three multidimensional datasets in Table 1 (Demo B, 
C, and D).

Projecting to the general factor in a bifactor 
model

PIRT is a class of models that attempt to create a uni
dimensional model out of a multidimensional space. 
Projection is based on the foundational work of Ip 
(2010a, 2010b) showing the conditions under which 
multidimensional models are equivalent to unidimen
sional models with local dependence. We describe 
projecting slopes (and intercepts) from a bifactor IRT 
model onto the general factor of a bifactor model, 
thus, creating a single dimension that is purified of 
nuisance dimensions. This single dimension captures 
the common factor running among the items (i.e., the 
general variance associated with the general factor).

Table 2. Fit and unidimensional enough indices for demon
strations A through D.

Demo-A Demo-B Demo-C Demo-D

Factor strength
EVR 9.42 3.35 4.29 4.41
ECV 1 .57 .59 .58
xh .89 .75 .77 .74
xtotal .89 .95 .94 .94

Model fit
M2 68.71 16,622 12,760 12,030
df 90 90 90 90
p .95 <.001 <.001 <.001
RMSEA 0 .133 .118 .115
SRMSR .006 .102 .084 .079
CFI 1 .844 .857 .884

Note: EVR is ratio of 1st to 2nd eigenvalue; ECV is explained common vari
ance; xh is omega hierarchical; xtot is omega total; M2 is the limited 
information fit statistic; df is degrees of freedom; RMSEA is root mean 
squared error of approximation; SRMSR is standardized root mean stand
ardized residual; CFI is comparative fit index.
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For presentation simplicity, assume there is an esti
mated restricted bifactor IRT model for binary items, 
where items load on the general factor (gen) and one 
group factor (grp) as in Equation (3).

P xi ¼ 1jhgen, hgrp
� �

¼
expðaiðgenÞhgen þ aiðgrpÞhgrp þ ciÞ

1þ expðaiðgenÞhgen þ aiðgrpÞhgrp þ ciÞ
,

(3) 

where, P xi ¼ 1jhgen, hgrp
� �

is the probably of endorsing 
the item (i) as a function of trait levels on the general 
ðhgenÞ and group ðhgrpÞ factors, aiðgenÞ is the IRT slope 
on the general factor, aiðgrpÞ is the IRT slope on the 
group factor, and ci is the intercept.

Our goal is to estimate the 2PL PIRT model in 
Equation (4) using Equation (3).

P xi ¼ 1jh0ð Þ ¼
expða�i hþ c�i Þ

1þ expða�i hþ c�i Þ
(4) 

where, a�i is the slope in the PIRT model, and c�i is 
the intercept in the PIRT model.

Treating the general factor in the bifactor model as 
the dimension to be projected to, we transform the 
slopes and intercepts from a bifactor IRT model to 
the PIRT model by using Equation (5):

a�i ¼ logiti ai genð Þ þ
ai grpð Þqri grpð Þ

ri genð Þ

� �

,   

c�i ¼ logitici, b�i ¼ −
c�i
a�i

� �

, (5) 

where logiti ¼ k2a2
iðgrpÞ 1 − q2

� �
r2

iðgrpÞ þ 1
h i−1=2 

and 

k ¼ 16
ffiffi
3
p

15p
¼ 0:59 ¼ 1=1:7, and b�i is the item location 

parameter in the PIRT model.
In a bifactor model, the general factor and group 

factor are orthogonal so that q (correlation among the 
latent factors) goes to 0. The group (r2

iðgrpÞÞ and general 
factor variances (r2

iðgenÞÞ are 1.0. Ip and Chen (2014), 
Table 11.4 (p. 246) displayed an estimated bifactor 
model with Item 1 slopes of agen ¼ 1:985, agrp ¼ 0:840 
and c ¼ 0:096: Performing the calculations based on 
these values, we obtain the following values that match 
the values estimated by Ip and Chen. 

a�i ¼ :8965 1:985ð Þ ¼ 1:78, c�i ¼ :8965 0:096ð Þ ¼ 0:086,

b�i ¼ −
0:086
1:78

� �

¼ −:0483:

Ip and colleagues are not the only researchers to con
sider projection in a bifactor context. Stucky et al. 
(2013), for example, evaluated the possibility of judging 
the effects of multidimensionality on unidimensional 
models by comparing the slope parameters in a 

unidimensional IRT model with the slope parameters 
from the general factor in the bifactor model. Such a 
comparison would appear to provide direct information 
on how much the unidimensional slopes are biased by 
the multidimensionality. Unfortunately, it is not that 
simple. The item parameters in an IRT bifactor model 
are conditional parameters and are not directly compar
able to the marginal item parameters estimated in unidi
mensional IRT models. In the IRT bifactor model, the 
slopes represent the relation between the item and trait 
for people at the mean on all group factors (conditional). 
In contrast, the desired target parameters are the slopes 
that relate the item to the latent variable after integrating 
out the other dimensions (marginal). For a proper com
parison, one must first transform item parameters from 
conditional to marginal through integrating out the 
multidimensionality; this is essentially the same as con
ducting a projection. This transformation is easy if a 
bifactor IRT structure is known. Using the above 
example:

Step 1. Convert IRT bifactor slopes from the gen
eral factor into a factor analytic correlational metric 
(see also Kamata & Bauer, 2008):

kiðgenÞ ¼
aiðgenÞ=1:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
PP

p¼1 aip=1:7
� �2

q

¼
1:985=1:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1:985
1:7

� �2
þ 0:840

1:7
� �2

q ¼ :723, 

where P represents the number of dimensions. The 
1.7 scaling factor is needed to convert from the factor 
analytic model (a normal probit model) into the IRT 
metric (a logistic model). Importantly, this equation 
clearly shows that the transformed loading on the 
general factor depends on the conditional slopes on 
all dimensions in the bifactor IRT model.

Step 2. Determine the standard deviation of resid
uals (riÞ in the factor analytic metric. 

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2
iðgenÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − :7232

p
¼ :69 

Observe that the term under the square root sign is 
the residual variance, but it is based only on the load
ing on the general factor, thus, treating the common 
variance due to the group factors as “residual” for the 
purposes of obtaining marginal item parameters.

Step 3. Convert this factor analytic model back into 
the metric of a new unidimensional PIRT model. 

a�i ¼
kiðgenÞ

ri

� �

1:7 ¼
:72
:69

� �

1:7 ¼ 1:78,

b�i ¼
−ci
agen

� �

¼
−0:09
1:985

� �

¼ −0:04,
(6) 
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c�i ¼ −a�i b�i
� �

¼ −1:78 −0:0483ð Þ ¼ 0:086 

The above values for the marginal slopes are equal 
to those we calculated previously for the PIRT model. 
We showed both approaches so that readers can see 
the equivalences in two distinct literatures. Both sets 
of equations integrate out the nuisance dimensions 
through marginalization. The parameters of the PIRT 
model are directly comparable to parameters in a uni
dimensional IRT model, and, if the PIRT model is 
accurate, one can judge how “bad” the parameter esti
mates are in the unidimensional model, which is con
taminated by multidimensionality.

The PIRT model can also be used as a stand-alone 
unidimensional IRT model for applications (Ip & 
Chen, 2014). The goal is for the slope parameters in 
the PIRT model to correctly reflect the relation 
between the general factor and the item responses, 
and the latent variable in PIRT then properly repre
sents the common factor running through the items. 
When is this “ideal” most likely achieved? The answer, 
we believe, is whenever the bifactor model is properly 
specified and accurately estimated (see also, Bell et al. 
(2024) for a similar view on estimating accurate 
omega coefficients). We return to this critical topic in 
the discussion.

The simulated data reconsidered

In Demos B, C, and D, item parameters were biased, 
and the unidimensional model did not fit the data. 
We now examine these three multidimensional data 
sets under PIRT. Tables 3–5 are results for Demos B, 
C, and D, respectively. Table 3 is results for the data 
with the variable group factor loadings (Demo-B). 
The top portion shows the true generating factor load
ings as well as the communality and the ECVi (Stucky 
et al., 2013; Stucky & Edelen, 2014), the percent of 
common variance explained by the general factor for 
an item and an index of item-level unidimensionality. 
Next to the factor loadings are the equivalent IRT 
item parameters in a bifactor model. These were cal
culated using standard equations cited earlier; for 
example, using Equation (2) with P representing 
dimensions:

aiP ¼
kiP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
PP

p¼1 k2
iP

q 1:7ð Þ:

In the far-right column are the correct projected 
slopes (1.275) that reflect the general variance with 
the nuisance dimensions integrated out. In the case of 

a known restricted bifactor model they are found 
most easily by:

a�i ¼ logitiðai genð ÞÞ or a�i ¼
kiðgenÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

iðgenÞ

q 1:7ð Þ: (6) 

In the bottom panel of Table 3 are shown the esti
mated slopes in a unidimensional 2PL model. These 
slopes closely approximate those in Table 1. In the 
bottom middle panel (bifactor) are the estimated 
bifactor slopes from mirt (Chalmers, 2012). They are 
not exactly equal to the true slopes, but they are close. 
Finally, in the rightmost panels are shown the esti
mated PIRT model and the difference between the 
true (e.g., computed via the closed form equation 
above from true values of the bifactor model) and 
estimated PIRT parameters. The differences are close 

Table 3. Demonstration B: true factor loadings and IRT slopes 
and estimated unidimensional, bifactor, and projected unidi
mensional slopes.

True factor model True IRT model

kGen kGrp1 kGrp2 kGrp3 h2 ECVi aGen aGrp1 aGrp2 aGrp3 aPIRT

1 .60 .70 0 0 .85 .42 2.63 3.07 0 0 1.28
2 .60 .70 0 0 .85 .42 2.63 3.07 0 0 1.28
3 .60 .70 0 0 .85 .42 2.63 3.07 0 0 1.28
4 .60 .70 0 0 .85 .42 2.63 3.07 0 0 1.28
5 .60 .70 0 0 .85 .42 2.63 3.07 0 0 1.28
6 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
7 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
8 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
9 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
10 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
11 .60 0 0 .30 .45 .80 1.38 0 0 .69 1.28
12 .60 0 0 .30 .45 .80 1.38 0 0 .69 1.28
13 .60 0 0 .30 .45 .80 1.38 0 0 .69 1.28
14 .60 0 0 .30 .45 .80 1.38 0 0 .69 1.28
15 .60 0 0 .30 .45 .80 1.38 0 0 .69 1.28

Estimated IRT models (N¼ 10,000)

Unidimensional Bifactor Projective unidimensional

âUni âGen âGrp1 âGrp2 âGrp3 âPIRT bias

1 3.91 2.74 3.17 0 0 1.30 −0.02
2 3.87 2.72 3.15 0 0 1.29 −0.01
3 3.71 2.61 2.95 0 0 1.30 −0.02
4 3.85 2.73 3.22 0 0 1.28 0.00
5 3.74 2.61 3.07 0 0 1.26 0.02
6 1.05 1.54 0 1.24 0 1.25 0.03
7 1.07 1.59 0 1.35 0 1.25 0.03
8 1.05 1.6 0 1.48 0 1.21 0.07
9 1.06 1.55 0 1.34 0 1.22 0.06
10 1.05 1.52 0 1.39 0 1.18 0.10
11 1.01 1.41 0 0 0.59 1.33 −0.05
12 0.97 1.38 0 0 0.67 1.29 −0.01
13 0.94 1.3 0 0 0.62 1.22 0.06
14 0.93 1.35 0 0 0.69 1.25 0.03
15 0.96 1.35 0 0 0.66 1.26 0.02

Note. k are true factor loadings; h2 is communality; ECVi is explained 
common variance for items; a are true slopes; and â are estimated 
slopes. Subscripts Gen, Grp1 … Grp3 refer to general and group factors. 
Subscript Uni refers to the unidimensional model and PIRT refers to the 
projective model. Bias is aPIRT −âPIRT .
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to zero. In other words, the item parameters and the 
latent variable now reflect the common variance 
among the items due to the general factor. This illus
trates that when data have a well-structured independ
ent cluster bifactor solution, the projective dimension 
can be highly accurate even in the presence of sub
stantial multidimensionality and poor fit to a unidi
mensional model.

Table 4 presents parallel results for Demo-C where 
the group factors all have the same loadings. The top 
portion provides the same information presented in 
Table 3, and the expected slope in the projective 
model remains 1.275. The bottom panel shows that 
the unidimensional 2PL model slopes (âuni) are 
upwardly biased. In the right-hand panels are the 
PIRT model (âpirt) estimates and the bias. Once again, 
when the multidimensionality is well structured, the 
PIRT model recaptures the common dimension very 

well. Through PIRT, we have obtained a unidimen
sional model in which the parameters and the latent 
variable reflect the common variance due to the gen
eral factor.

The data in Tables 3 and 4 are highly multidimen
sional (see Table 2), but the structure of that multidi
mensionality is via independent clusters. Table 5 is 
the projective results for Demo-D, where the inde
pendent cluster structure was contaminated by cross- 
loadings for three items (1, 6, and 11). To compute 
the true slope in the projected model, we now need to 
accommodate two group factor slopes. In the (condi
tional) IRT metric, an additional term in the logit 
scaling factor to accommodate two group factor slopes 
(grp and crossload).

a�i ¼ k2a2
grp þ k2a2

crossload þ 1
h i−1

2
agenð Þ:

When that is done, the true slopes in the PIRT are 
still 1.275. Alternatively, in the factor loading metric, the 
true PIRT slope can be estimated using Equation (7):

a�i ¼
kiðgenÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

iðgenÞ

q 1:7ð Þ ¼ 1:275:

In the bottom panel of Table 5 are the estimated 
PIRT results and bias based on estimating a restricted 
bifactor model. The results are not as accurate as 
before, and the average bias is −0.15. The latent vari
able measured here is captured best by Item 11—the 
item with the highest communality due to the cross- 
loading. The problem here is not the cross-loadings, 
per se, but rather in the algorithm used in the 
estimation of restricted bifactor models. Bifactor IRT 
models are estimated using full-information methods 
(Gibbons et al., 2007; Gibbons & Hedeker, 1992) that 
use quadrature nodes and weights to specify a nor
mally distributed latent variable. In multidimensional 
models, the number of quadrature points increases 
exponentially with the number of dimensions, which 
makes estimation challenging. The algorithm devel
oped by Gibbons and Hedeker (1992) allows each 
item to load on only one group factor. Consequently, 
the number of dimensions per item is at most two, 
making estimation of canonical bifactor IRT models 
feasible. When there are more than two loadings per 
item, however, suppressing common variance associ
ated with the cross-loading must create a distortion 
somewhere else in the model. In Demo-D, this distor
tion manifests as inflated loadings on the general and 
group factors for items with cross-loadings and down
wardly biased loadings for other items.

Table 4. Demonstration C: true factor loadings and IRT slopes 
and estimated unidimensional, bifactor, and projected unidi
mensional slopes.

True factor model True IRT model

kGen kGrp1 kGrp2 kGrp3 h2 ECVi aGen aGrp1 aGrp2 aGrp3 aPIRT

1 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
2 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
3 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
4 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
5 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
6 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
7 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
8 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
9 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
10 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
11 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28
12 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28
13 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28
14 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28
15 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28

Estimated IRT models (N¼ 10,000)

Unidimensional Bifactor Projective unidimensional

âUni âGen âGrp1 âGrp2 âGrp3 âPIRT Bias

1 1.46 1.62 1.36 0 0 1.26 0.02
2 1.49 1.65 1.32 0 0 1.30 −0.02
3 1.45 1.61 1.4 0 0 1.25 0.03
4 1.48 1.61 1.23 0 0 1.31 −0.03
5 1.46 1.61 1.32 0 0 1.27 0.01
6 1.51 1.67 0 1.39 0 1.29 −0.01
7 1.45 1.58 0 1.37 0 1.23 0.05
8 1.40 1.52 0 1.38 0 1.18 0.10
9 1.45 1.58 0 1.38 0 1.23 0.05
10 1.48 1.64 0 1.47 0 1.24 0.04
11 1.45 1.58 0 0 1.3 1.25 0.03
12 1.45 1.59 0 0 1.34 1.25 0.03
13 1.47 1.64 0 0 1.44 1.25 0.03
14 1.44 1.58 0 0 1.34 1.24 0.04
15 1.44 1.58 0 0 1.34 1.24 0.04

Note. k are true factor loadings; h2 is communality; ECVi is explained 
common variance for items; a are true slopes; and â are estimates 
slopes. Subscripts Gen, Grp1 … Grp3 refer to general and group factors. 
Subscript Uni refers to the unidimensional model, and PIRT refers to the 
projective model. Bias is aPIRT − âPIRT :
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Assume in Demo-D (see Table 5) that we knew the 
true generating solution so that that bifactor model 
was estimated correctly. To transform this model into 
a PIRT model, we need only the general factor loading 
and the communality. We will illustrate with Item 11. 
Specifically, first take the square root of the commu
nality (h2

i Þ minus the general factor loading squared 
and treat that value as if it were the only group factor 
loading. We will label that the pseudo group factor, 
kiðgrp0 Þ:

kiðgrp0 Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
i − k2

iðgenÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:86 − :36
p

¼ :71:

Now the implied IRT slope on the general and 
(pseudo) group (grp0 Þ factor is:

aiðgenÞ ¼
:60
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − :86
p 1:7ð Þ ¼ 2:73 aiðgrp0 Þ ¼

:71
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − :86
p 1:7ð Þ ¼ 3:2, 

and with these estimates, the slope of the PIRT model 
would be:

logit ¼
1

sqrtð1þ :5882ð3:2122ÞÞ
¼ :47, 

a�iðpirtÞ ¼ logit aiðgenÞð Þ ¼ 1:275:

Thus, the estimated slope for Item 11 in the pro
jected model based on a hypothetical, accurately-esti
mated bifactor model, would equal 1.275—the correct 
value. This demonstrates that the incorrect value of 
2.27 in Table 4 is solely a product of the estimation 
bias caused by forcing a group factor loading to be 
zero, when it should have been .50. The critically 
important point here is that essential to accurate pro
jection in a bifactor model is the accurate estimation 
of all the multidimensionality. We return to this topic 
in the discussion, but now demonstrate PIRT with 
real data.

Real data example

The data for this study are from 7,122 respondents to 
the 23-item PROMIS Healthcare Engagement item 
bank (Schalet et al., 2021). Sample details are provided 
in Schalet et al. (2021). For the purposes of these anal
yses, due to sparse data, we collapsed the two lowest 
(of five) categories into a single category and scored 
the items 0 to 3. Provisional item content is displayed 
in Supplemental Material. Based on previous work, 
the items can be partitioned into three content clus
ters: (1) Self-Management (SM), (2) Collaborative 
Communication (CC), and (3) Healthcare Navigation 
(HN). The results are divided into three sections: (1) 
restricted bifactor analysis and two comparison mod
eling sections evaluating (2) item parameters and (3) 
person parameters and standard errors. This data set 
was selected for the present illustration because it rea
sonably fits a bifactor model (see below), whereas in 
practice, it will be modeled and scored via unidimen
sional models.

Confirmatory item response theory

We first estimated a restricted bifactor IRT model, 
namely, the bifactor version of the graded response 
model (Samejima, 1997) using full-information mar
ginal maximum likelihood methods. The graded 
response model extends the 2PL described previously 
to three or more response categories. In this context, 
there were four slope parameters aGen and aHN , aCC , aSM 
(one for each of the latent factors corresponding to 

Table 5. Demonstration D: true factor loadings and IRT 
slopes, and estimated unidimensional, bifactor, and projected 
unidimensional slopes.

True factor model True IRT model

kGen kGrp1 kGrp2 kGrp3 h2 ECVi aGen aGrp1 aGrp2 aGrp3 aPIRT

1 .60 .50 0 .10 .62 .58 1.65 1.38 0 0.28 1.27
2 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
3 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
4 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
5 .60 .50 0 0 .61 .59 1.63 1.36 0 0 1.28
6 .60 .30 .50 0 .70 .51 1.86 0.93 1.55 0 1.27
7 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
8 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
9 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
10 .60 0 .50 0 .61 .59 1.63 0 1.36 0 1.28
11 .60 0 .50 .50 .86 .42 2.73 0 2.27 2.27 1.28
12 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28
13 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28
14 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28
15 .60 0 0 .50 .61 .59 1.63 0 0 1.36 1.28

Estimated IRT models (N¼ 10,000)

Unidimensional Bifactor Projective unidimensional

âUni âGen âGrp1 âGrp2 âGrp3 âPIRT bias

1 1.58 1.61 3.17 0 0 1.20 0.07
2 1.39 1.44 3.15 0 0 1.07 0.21
3 1.45 1.49 2.95 0 0 1.13 0.15
4 1.42 1.48 3.22 0 0 1.10 0.18
5 1.42 1.44 3.07 0 0 1.09 0.19
6 2.05 2.51 0 1.24 0 2.48 21.21
7 1.56 1.99 0 1.35 0 1.68 −0.40
8 1.58 1.92 0 1.48 0 1.74 −0.46
9 1.57 1.88 0 1.34 0 1.72 −0.44
10 1.64 1.94 0 1.39 0 1.80 −0.52
11 2.30 2.71 0 0 0.59 2.27 20.99
12 1.46 1.49 0 0 0.67 1.07 0.21
13 1.40 1.43 0 0 0.62 1.04 0.24
14 1.46 1.5 0 0 0.69 1.08 0.20
15 1.43 1.44 0 0 0.66 1.08 0.20

Note. k are true factor loadings; h2 is communality; ECVi is explained com
mon variance for items; a are true slopes; and â are estimates slopes. Three 
items with cross-loadings in boldface type. Subscripts Gen, Grp1 … Grp3 
refer to general and group factors. Subscript Uni refers to the unidimen
sional model and PIRT refers to the projective model. Bias is aPIRT − âPIRT :
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each of the group factors, HN, CC, and SM), and three 
category intercept parameters ck (k¼ 1, 2, and 3). The 
model was estimated using mirt (Chalmers, 2012) with 
one intercept (or location) for each of the three boun
daries between response options: 0 vs 1,2,3; 0,1 vs 2,3; 
and 0,1,2 vs 3. The fit statistics for the restricted 
bifactor model are, M2 ¼ 3,392 (df¼ 161) p< 0.001, 
AIC¼ 328,542, SABIC¼ 328,967, RMSEA¼ 0.053, 
SRMSR¼ 0.036, and CFI ¼ .97. Coefficient xT value 
was 0.95, xH was 0.87, and ECV was 0.79, suggesting a 
strong common dimension. In the columns on the left 
in Table 6 are the estimated factor loadings from the 
restricted bifactor model. In the right panels are the 
estimated IRT bifactor slopes. Note that these slopes 
are in a conditional metric (slopes when all other fac
tors are at their mean value, zero) making them chal
lenging to interpret.

Evaluating the item parameters

Now we consider PIRT as a comparison model to 
judge the adequacy of a unidimensional model. In the 
left set of columns in Table 7 are the item parameter 
estimates for a unidimensional graded response model 
(Samejima, 1997) estimated with mirt: M2 ¼ 5261 
(df¼ 184, p< 0.001), AIC¼ 335,282, SABIC¼ 335,622, 
RMSEA¼ 0.06, SRMSR¼ 0.06, and CFI ¼ .95. The 
unidimensional model appears to fit reasonably well, 

but there is a large difference in M2, AIC, and SABIC 
between the bifactor and unidimensional models, sup
porting the idea that the bifactor is superior. In the 
right set of columns in Table 7 are the PIRT parame
ters. In the PIRT model, the latent trait is the general 
factor from the bifactor model but now with marginal 
instead of conditional item parameters, such that the 
group factors have been integrated out. For almost all 
items, the slopes in the unidimensional model are 
higher or equal to the slopes in the PIRT model. 
This result is expected because the former are inflated 
by multidimensionality, whereas the latter have 
any multidimensionality integrated out. The slopes 
decreasing the most from the unidimensional model 
to PIRT model are items 10, 12, and 15 (all health 
plan items), which have the lowest ECVi in the 
restricted solution of 0.70, 0.61 and 0.67, respectively. 
These three items all ask specifically about obtaining 
something from a “provider.” On the other hand, for 
two items, 18 and 21, the slopes in the PIRT model 
are larger than in the unidimensional IRT model. 
Interestingly, these items are from different content 
domains, but both items contain the phrase “pros and 
cons of treatment.” Observe also that these items had 
ECVi statistics of 0.97 and 0.98 in the restricted 
solution.

A relatively simple way to evaluate the effect of multi
dimensionality (i.e., how inaccurate the unidimensional 

Table 6. Restricted bifactor solution in factor analytic and IRT 
metrics.

Factor analytic item response theory

Item k̂G k̂HN k̂CC k̂SM h2 ECVi âGen âHN âCC âSM

1 .62 0 0 .24 .44 .87 1.41 0 0 0.54
2 .71 .29 0 0 .59 .86 1.89 0.78 0 0
3 .66 0 0 .34 .55 .79 1.67 0 0 0.86
4 .62 0 0 .37 .52 .74 1.54 0 0 0.91
5 .55 .27 0 0 .38 .81 1.20 0.58 0 0
6 .62 .27 0 0 .46 .84 1.43 0.63 0 0
7 .65 .24 0 0 .47 .88 1.51 0.56 0 0
8 .61 0 0 .44 .56 .65 1.56 0 0 1.13
9 .69 0 0 .33 .58 .81 1.80 0 0 0.86
10 .72 .47 0 0 .75 .70 2.44 1.59 0 0
11 .76 .33 0 0 .69 .85 2.34 1.00 0 0
12 .67 .53 0 0 .73 .61 2.18 1.74 0 0
13 .68 .42 0 0 .64 .72 1.92 1.20 0 0
14 .72 0 .40 0 .67 .76 2.14 0 1.19 0
15 .66 .46 0 0 .65 .67 1.89 1.31 0 0
16 .72 0 .38 0 .67 .78 2.15 0 1.14 0
17 .77 0 .22 0 .65 .92 2.22 0 0.64 0
18 .72 0 0 .13 .54 .97 1.81 0 0 0.32
19 .65 0 0 .44 .61 .68 1.77 0 0 1.2
20 .78 .31 0 0 .71 .87 2.47 0.97 0 0
21 .84 .12 0 0 .72 .98 2.72 0.39 0 0
22 .72 0 .39 0 .67 .77 2.15 0 1.17 0
23 .75 0 .39 0 .72 .78 2.40 0 1.26 0

Note. k̂G is estimated loading on general or group factors k̂HN:::SM where 
HN is Healthcare Navigation, CC is Collaborative Communication, and 
SM is Self Management; h2 is communality. âGen is the estimated slope 
parameter for the general factor; âHN:::SM are the estimated slope 
parameters for the group factors.

Table 7. Graded response model slopes and locations for the 
unidimensional and projective IRT models.

Unidimensional model PIRT model

â b̂1 b̂2 b̂3 â� b̂
�

1 b̂
�

2 b̂
�

3

1 1.41 −2.63 −1.46 0.42 1.34 −2.72 −1.52 0.43
2 1.96 −1.64 −0.90 0.23 1.72 −1.76 −0.96 0.25
3 1.47 −2.67 −1.35 0.08 1.49 −2.64 −1.36 0.07
4 1.41 −1.42 −0.34 1.22 1.36 −1.46 −0.35 1.25
5 1.29 −2.35 −1.53 −0.18 1.13 −2.56 −1.67 −0.20
6 1.48 −1.64 −0.80 0.44 1.34 −1.75 −0.85 0.47
7 1.57 −0.88 0.07 1.13 1.44 −0.93 0.07 1.18
8 1.32 −1.56 −0.33 1.06 1.29 −1.59 −0.34 1.08
9 1.60 −1.90 −0.79 0.52 1.60 −1.90 −0.80 0.52
10 2.34 −1.38 −0.74 0.23 1.78 −1.56 −0.83 0.26
11 2.46 −1.63 −0.87 0.31 2.01 −1.76 −0.93 0.34
12 2.05 −1.49 −0.84 0.10 1.52 −1.73 −0.97 0.13
13 1.97 −1.47 −0.70 0.33 1.57 −1.65 −0.78 0.37
14 1.85 −1.85 −1.05 0.02 1.75 −1.91 −1.11 0.01
15 1.94 −1.74 −1.07 −0.15 1.49 −1.98 −1.22 −0.17
16 1.92 −1.73 −0.98 0.16 1.78 −1.81 −1.04 0.15
17 2.05 −2.05 −1.20 −0.06 2.08 −2.05 −1.21 −0.06
18 1.60 −2.08 −1.01 0.31 1.78 −1.98 −0.97 0.29
19 1.44 −1.82 −0.66 0.98 1.45 −1.83 −0.66 0.98
20 2.51 −1.21 −0.49 0.58 2.14 −1.28 −0.52 0.62
21 2.56 −1.53 −0.68 0.44 2.65 −1.52 −0.68 0.44
22 1.87 −1.75 −0.85 0.29 1.77 −1.81 −0.91 0.28
23 1.98 −2.48 −1.72 −0.62 1.93 −2.50 −1.75 −0.64

Note: â are slope parameters and b̂1 to b̂3 are locations parameters in 
the unidimensional model; â� are slope parameters and b�1 to b�3 are 
locations parameters in the PIRT (Projective IRT) model.
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model is) is to compute test response curves (TRCs) and 
test information curves (TICs) for the two models 
(Ackerman et al., 2019; Stucky & Edelen, 2014). A TRC 
is the sum of item response curves for a scale, and it con
veys the relation between trait level and expected score 
on a test. Differences between TRCs suggest that at a 
fixed trait level, there are different expected scores for 
the two models, reflecting potential differential test func
tioning. TRCs for the unidimensional and PIRT models 
are shown in Figure 1. TRCs for the two models show 
nearly perfect overlap suggesting that the overall test 
functioning is highly similar in the two models. 
Distortion caused by multidimensionality does not 
appear to be large enough to cause appreciable bias in 
the item parameters. In this sense, the data are 
“unidimensional enough.”

On the other hand, Figure 2 displays the TICs for 
each model. A TIC reflects how much precision a set 
of items provides across the trait range. Figure 2
reveals that standard error estimates in the unidimen
sional model are too small. This is a clear concern for 
some applications of the unidimensional model.

Evaluating the person parameters

In this section, we consider the effects of multidimen
sionality on the estimated trait levels and standard 
errors. The most important potential problems with 
the unidimensional IRT model are that the item 
parameters may be biased by multidimensionality 
(e.g., inflated slopes), and, thus, the standard errors of 
trait level estimates may be too small due to the fail
ure to take into account local dependence between 
items during scoring.

If we assume that the PIRT model is a closer 
approximation to the true model, the item parameter 
estimates will be more accurate than in the unidimen
sional model. The accurate computation of standard 
errors in the PIRT model, however, can be problem
atic (Stucky et al., 2013). If there is “hidden” local 
dependence in the PIRT model, adjustments may 
need to be made to the standard errors, depending on 
the strength of the group factors (Ip & Chen, 2012, 
2014). Ip and Chen (2012, 2014) have recommended 
using sandwich estimators for scoring and computing 
standard errors in PIRT models. These estimators, 
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Figure 1. Test response curves for unidimensional (solid) and PIRT (dashed) models.
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Figure 2. Test information curves in unidimensional (solid) and PIRT (dashed) models.
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unfortunately, are not implemented in any standard 
software of which we are aware, so we rely on other 
solutions in the present illustration.

Specifically, recall that the latent variable in the 
PIRT model is equal to the general factor in the bifac
tor transformed to a marginal unidimensional model 
representation. As a consequence, one way of properly 
scoring individuals and estimating their standard 
errors is to use the bifactor model for scoring. Scoring 
using the bifactor model, however, can be improved 
by using a new updated algorithm named Lord- 
Wingersky 2.0 (L-W 2.0). Detailed descriptions of the 
technical aspects of the L-W 2.0 approach to scoring 
are beyond our scope (see Cai, 2015; Huang & Cai, 
2021). At the heart of the method is the production of 
a summed score to EAP trait-level estimate conversion 
table (Orlando et al., 2000; Rosa et al., 2001; Thissen 
et al., 1995).

Table 8 displays the summed score to trait level 
estimate table and standard errors for the unidimen
sional model and the bifactor model (general factor) 
with standard errors as obtained from flexmirt using 

L-W 2.0 (Cai, 2013). As expected, scores on the gen
eral trait are more spread out in the unidimensional 
IRT model relative to the bifactor IRT model. The dif
ferences, however, are small. Of importance, standard 
errors are too small in the unidimensional IRT model. 
In Figure 3, we display this result in terms of condi
tional reliability (1—conditional error variance). 
Clearly, the unidimensional model overestimates the 
scale’s precision; standard errors are lower than they 
should be. Overall, the marginal reliability of the trait 
level estimates in the unidimensional model and bifac
tor model with L-W 2.0 were estimated to be 0.93 
and 0.86, respectively.

Discussion

Unidimensional IRT models are commonly applied to 
multi-item measures designed to assess individual dif
ferences on a single target construct. Such models are 
ideal when the item response data are unidimen
sional—locally independent based on a single latent 
factor (Chen & Thissen, 1997). When item response 

Table 8. Raw score to EAP trait level conversion tables for unidimensional and Lord-Wingersky 2.0 scoring.
EAP trait level estimates Standard errors of measurement

Score U LW Score U LW Score U LW Score U L-W

0 −3.36 −3.24 36 −0.69 −0.66 0 0.44 0.49 36 0.21 0.35
1 −3.10 −2.98 37 −0.64 −0.61 1 0.39 0.45 37 0.21 0.35
2 −2.93 −2.82 38 −0.59 −0.56 2 0.36 0.43 38 0.21 0.35
3 −2.78 −2.68 39 −0.54 −0.51 3 0.34 0.41 39 0.21 0.35
4 −2.65 −2.56 40 −0.49 −0.46 4 0.32 0.40 40 0.21 0.35
5 −2.54 −2.45 41 −0.43 −0.41 5 0.30 0.39 41 0.22 0.35
6 −2.44 −2.35 42 −0.38 −0.36 6 0.29 0.38 42 0.22 0.35
7 −2.34 −2.26 43 −0.33 −0.31 7 0.28 0.37 43 0.22 0.35
8 −2.26 −2.18 44 −0.28 −0.26 8 0.27 0.37 44 0.22 0.35
9 −2.18 −2.10 45 −0.22 −0.21 9 0.26 0.36 45 0.22 0.35
10 −2.10 −2.03 46 −0.17 −0.16 10 0.26 0.36 46 0.22 0.35
11 −2.03 −1.96 47 −0.11 −0.10 11 0.25 0.36 47 0.22 0.36
12 −1.96 −1.89 48 −0.06 −0.05 12 0.24 0.36 48 0.22 0.36
13 −1.89 −1.83 49 0.00 0.00 13 0.24 0.35 49 0.22 0.36
14 −1.83 −1.76 50 0.06 0.06 14 0.23 0.35 50 0.23 0.36
15 −1.77 −1.70 51 0.12 0.12 15 0.23 0.35 51 0.23 0.36
16 −1.71 −1.65 52 0.18 0.18 16 0.23 0.35 52 0.23 0.36
17 −1.65 −1.59 53 0.24 0.24 17 0.22 0.35 53 0.23 0.36
18 −1.59 −1.53 54 0.31 0.31 18 0.22 0.35 54 0.24 0.36
19 −1.54 −1.48 55 0.38 0.37 19 0.22 0.35 55 0.24 0.36
20 −1.48 −1.43 56 0.45 0.44 20 0.22 0.35 56 0.24 0.37
21 −1.43 −1.38 57 0.52 0.51 21 0.22 0.35 57 0.25 0.37
22 −1.38 −1.33 58 0.60 0.58 22 0.21 0.35 58 0.25 0.37
23 −1.33 −1.28 59 0.68 0.66 23 0.21 0.35 59 0.26 0.38
24 −1.28 −1.23 60 0.76 0.74 24 0.21 0.35 60 0.27 0.38
25 −1.23 −1.18 61 0.86 0.83 25 0.21 0.35 61 0.28 0.39
26 −1.18 −1.13 62 0.96 0.92 26 0.21 0.35 62 0.29 0.39
27 −1.13 −1.08 63 1.07 1.03 27 0.21 0.35 63 0.31 0.40
28 −1.08 −1.03 64 1.19 1.14 28 0.21 0.35 64 0.32 0.41
29 −1.03 −0.99 65 1.32 1.27 29 0.21 0.35 65 0.35 0.43
30 −0.98 −0.94 66 1.48 1.42 30 0.21 0.35 66 0.37 0.44
31 −0.93 −0.89 67 1.66 1.58 31 0.21 0.35 67 0.40 0.47
32 −0.88 −0.85 68 1.90 1.80 32 0.21 0.35 68 0.44 0.50
33 −0.83 −0.80 69 2.24 2.14 33 0.21 0.35 69 0.52 0.56
34 −0.79 −0.75 34 0.21 0.35
35 −0.74 −0.70 35 0.21 0.35

Note: U is unidimensional; LW is Lord-Wingersky 2.0; score is summed score.
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data are not unidimensional, for example, due to the 
inclusion of multiple content clusters (see Soto & 
John, 2017), unidimensional IRT models can be prob
lematic. The central issues are that item parameters 
may be biased by multidimensionality (e.g., slopes too 
high), which results in biased trait level estimates and 
standard errors that may be severely biased (too 
small). The resulting latent trait may not represent the 
common variance among all the items (i.e., the 
intended construct), but instead may represent a refer
ence composite or functional dimension (Ip et al., 
2013; Strachan et al., 2022), whose de facto definition 
(based on unidimensional IRT loadings) may differ 
greatly from the construct definition intended for the 
target dimension.

Recognizing these problems caused by forcing a 
unidimensional model onto multidimensional data, 
many researchers have proposed alternative models. 
In the present paper, we implemented a bifactor IRT 
model to control for the biasing effects of multidi
mensionality. Specifically, we created a unidimensional 
PIRT model (Ip & Chen, 2014; Stucky et al., 2013) 
based on projecting to the general factor in a bifactor 
model, integrating out the group factors. To the 
degree that the bifactor model fits the data, the unidi
mensional PIRT model would be expected to provide 
more accurate item parameter estimates. In turn, these 
item parameters are in a marginal IRT metric so that 
they are comparable to the item parameters in the 
unidimensional IRT model. We used the comparison 
of the unidimensional IRT model with the PIRT 
model to judge the degree to which multidimensional
ity is biasing item parameters in the unidimensional 
model. This approach may be more useful for judging 
the practical significance of model misspecification, 
compared to relying on statistical indices of fit or 

first-factor strength (so called “unidimensional 
enough” indices). Using test response curves, the com
parison between PIRT and the unidimensional model 
suggested that in the present empirical dataset, the 
unidimensional model provides essentially the same 
results, in terms of expected scores conditional on 
trait level, as the PIRT model.

PIRT is a unidimensional model with built in local 
dependence (Ip, 2010a, 2010b). This “hidden” local 
dependence is critically important for the computation 
of standard errors. Consequently, standard errors 
need to be modified if we wish to use them as a com
parison model to the unidimensional model standard 
errors. We used the bifactor model as the comparison 
and used a summed score to EAP conversion method 
based on Lord-Wingersky 2.0 (Cai, 2015), available in 
flexmirt to calculate standard errors. Our results 
showed that standard errors in the unidimensional 
model were too small. In the future, alternative meth
ods to compute standard errors are expected to be 
available in standard software, including Ip and Chen 
(2012, 2014) sandwich estimators.

Beyond its application as a comparison model, the 
PIRT model can also serve as a stand-alone model to 
be used for IRT modeling applications, such as for 
basic psychometric analysis and short-form creation 
(Stucky et al., 2013), computerized adaptive testing, 
equating and linking, and differential item functioning 
analysis. These applications rest on the unidimension
ality assumption of IRT being true; that is, they all 
require an invariant measurement scale. In theory, the 
PIRT dimension should have an invariance property 
unobtainable otherwise (Ip & Chen, 2014; Strachan 
et al., 2021). In practice, a PIRT model can only be 
considered “purified” of multidimensionality to the 
degree that the multidimensionality is successfully 

0 10 20 30 40 50 60 70

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Summed Score

R
el

ia
bi

lit
y

Figure 3. Reliability curves in unidimensional (solid) and PIRT model (dashed): Lord-Wingersky 2.0 scoring.
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modeled; unmodeled multidimensionality, such as 
that caused by response sets, cross-loadings (e.g., 
Demo-D), correlated group factors, or correlated 
residuals, might not be adequately represented by a 
restricted bifactor model. It is important to report 
model diagnostics, such as local independence tests, 
and patterns of factor loadings/slopes, to strengthen 
the claim that the restricted bifactor is a reasonable 
comparison model.

Limitations of bifactor models

By accommodating multidimensional data structures, 
PIRT greatly expands the range of data sets that can 
be fit to unidimensional models. Obtaining a well- 
estimated and accurate restricted bifactor model is 
critical for the present comparison method to operate 
effectively.

Problems in estimating a bifactor model

There are two prevailing concerns regarding bifactor 
models. The first lies in the interpretation of general 
and group factors (Bonifay et al., 2017), especially 
under conditions in which the group factors cannot 
be considered as “exchangeable” (Eid, 2020; Eid et al., 
2017; Heinrich et al., 2020). In this framework, alter
native models such S − 1 type models, are preferred 
for representing so-called “multi-faceted” constructs 
(Eid, 2020). In S − 1 type models, the general factor 
is defined by anchoring it through a content cluster. 
Doebler and Doebler (2022) describe exploratory 
PIRT models that project to specific subdomains of 
interest to the investigator. These PIRT models seem 
highly comparable to the goals of the S − 1 model to 
anchor a dominant dimension though a subdomain, 
but we are unaware of any research that has drawn 
this connection.

A second concern is that there are frequent prob
lems in the estimation of bifactor models, such as fac
tor collapse, replicability, and unexpected negative 
loadings (e.g., Heinrich et al., 2020). The critical 
insight from the PIRT equations and our demonstra
tion is that the slopes (or loadings) for the general 
and group factors should be accurate to allow for 
proper adjustment of the slopes in the PIRT model to 
represent the general factor.

The most critical factor in applying PIRT is the 
degree to which the structure conforms to a restricted 
bifactor model (Reise et al., 2011); in other words, the 
degree to which there is an independent cluster struc
ture with no cross-loadings. If there is variance due to 

cross-loadings, the PIRT model may not properly 
account for multidimensionality. Zhang et al. (2023) 
observed that forcing cross-loadings to zero in a bifac
tor model resulted in identification issues, among 
other problems. Thus, in situations where PIRT is 
most needed, one must evaluate whether the data are 
“bifactor enough,” such that an accurate multidimen
sional model can be estimated and then transformed. 
The evaluation of the “fit” of a bifactor model, prior 
to PIRT, is an important step.

Conclusion

To know how “wrong” you are, you must have some 
standard for what is “right.”

Our central goal was to introduce and illustrate a 
PIRT model based on a bifactor model and to use this 
model to judge the degree to which item and person 
parameters (including standard errors) are wrong 
when multidimensional data are forced into a unidi
mensional model. In this concluding section, we 
review the interplay of the unidimensional, the bifac
tor, and the projective models and consider the basic 
question, what does one do in practice?

We first consider the comparison between the uni
dimensional IRT and the PIRT model. If the data are 
multidimensional and contain both general and non- 
trivial group factors, and the bifactor model fits the 
data better, the PIRT item parameters will be less 
biased and should be used in practice. The PIRT 
model is superior because the item parameters have 
been corrected for the multidimensionality.

In contrast, neither the unidimensional nor the 
basic PIRT model may properly control for the local 
independence violations caused by content clusters 
when estimating standard errors. For both models, 
standard errors will be too small. We recommend 
using the Lord-Wingersky 2.0 algorithm for scoring 
hierarchical models to produce more accurate stand
ard errors.

The latent variable in the PIRT model is the same 
latent variable as the general factor in the bifactor 
model. Why not simply use the bifactor model in 
practice? The PIRT model is superior for four reasons. 
First, in a bifactor IRT model, the item parameters are 
on a conditional metric, making them more difficult 
to interpret substantively—they need to be marginal
ized to make sense and to be comparable to a unidi
mensional model. Second, psychometric information 
in multidimensional space is very complicated and 
difficult to interpret when there are more than two 
dimensions. Third, the bifactor IRT model cannot be 
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easily used for basic IRT applications, such as linking, 
computerized adaptive testing, and differential item 
functioning testing. Fourth, typically, there are few 
items on the group factors, so that the researcher 
could not reliably score individuals on them. The 
group factors tend to be merely a device to control 
for nuisance variance, so it is better to simply inte
grate them out. For these reasons, we believe the 
PIRT model is much easier to work with in applied 
settings. We, also emphasize that the PIRT model is 
only as good as the accuracy of the bifactor model1

on which it is based. If the bifactor model is poorly 
estimated, a PIRT application cannot be justified.
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