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ABSTRACT

The application of unidimensional IRT models requires item response data to be unidimen-
sional. Often, however, item response data contain a dominant dimension, as well as one or
more nuisance dimensions caused by content clusters. Applying a unidimensional IRT model
to multidimensional data causes violations of local independence, which can vitiate IRT
applications. To evaluate and, possibly, remedy the problems caused by forcing unidimen-
sional models onto multidimensional data, we consider the creation of a projected unidi-
mensional IRT model, where the multidimensionality caused by nuisance dimensions is
controlled for by integrating them out from the model. Specifically, when item response
data have a bifactor structure, one can create a unidimensional model based on projecting
to the general factor. Importantly, the projected unidimensional IRT model can be used as a
benchmark for comparison to a unidimensional model to judge the practical consequences

of multidimensionality. Limitations of the proposed approach are detailed.

Item response theory (IRT) is a set of psychometric
models that characterize the relation between an indi-
vidual’s standing on a latent variable (the “trait”) and
their probability of responding to a binary or polyto-
mous item in a specific category. In contemporary
psychometrics, IRT models are often used to conduct
basic psychometric analyses, to construct measures,
and for administration and scoring. For these pur-
poses, however, IRT models make strong assumptions
about item response data. Most important, the appli-
cation of unidimensional IRT models assumes that the
item responses are unidimensional; that is, they are
locally independent, conditional on a single latent
variable (Chen & Thissen, 1997). In other words, uni-
dimensional IRT models require that correlations
among the items are completely explained by a single
common factor that reflects the intended target trait
assumed to underlie and cause the reliable variation

in item responses. Establishing that data are unidi-
mensional is critical, because important applications
of unidimensional IRT—interpreting the estimated
item and person parameters, computerized adaptive
testing, scale linking and equating, and evaluating dif-
ferential item functioning—depend, in large part, on
the data being consistent with the unidimensionality
assumption.

The unidimensionality requirement of unidimen-
sional IRT is a strong restriction. For measures of
any complex construct, item response data are typic-
ally multidimensional, not strictly unidimensional
(Humphreys, 1986; Ozer, 2001; Reckase et al., 1988,
Zhang, 2007). Many measures have a latent structure
where there is a dominant factor running through all
the items reflecting the target trait and several nuis-
ance dimensions reflecting common variance caused
by clusters of items with similar content (Reise et al.,
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2013, 2023). This structure results when psychological
traits have heterogeneous manifestations (Clark &
Watson, 2019; Tellegen, 1991), so that clusters of
items with different content are included to capture
the trait’s conceptual breadth. Soto and John (2017),
as one example, developed a measure of the Big Five
dimensions using 15 “facet” traits (see also, Comrey
(1961) and Hogan and Hogan (1995)).

If one believes that psychological constructs are hier-
archically structured, such as in the Hierarchical
Taxonomy of Psychopathology (HITOP; Kotov et al.,
2021), then any construct above the lowest rung of the
hierarchy must, by definition, have heterogenous content
and, thus, include a major and some minor dimensions.
Heterogeneity will increase as one moves up the con-
struct hierarchy (Morin et al.,, 2016). Multidimensionality
due to content facets is consistent with Gustafsson and
Aberg-Bengtsson (2010, Rules 1, 2, and 3, p. 108) who
argue that to measure a broad trait, one must include
content from lower, more conceptually narrow trait
dimensions. It is also in line with Hampson, John, and
Goldberg’s (1986) argument that, "Trait breadth and
hierarchical organization are central structural principles
in personality theory and research” (p. 37).

The tension between the unidimensionality
assumption of IRT models and the multidimensional
nature of psychometric data required for validity cre-
ates a conundrum. Although application of unidimen-
sional IRT is attractive, forcing multidimensional data
onto unidimensional models leads to some degree of
violation of the local independence assumption. Such
violation leads to bias in the item and person param-
eter estimates, which may spoil important IRT
applications.

To address the challenges of applying a unidimen-
sional IRT model to multidimensional data, some
have adopted bifactor IRT models (Cai et al., 2011;
Reise et al.,, 2023). The general factor in the bifactor
IRT model represents the intended target dimension,
and multidimensionality due to content facets is con-
trolled for through a set of orthogonal group factors.
Nevertheless, bifactor models have important limita-
tions. First, as detailed below, the item parameter esti-
mates in bifactor IRT models are difficult to interpret
(Stucky & Edelen, 2014). Second, a bifactor IRT
model is not parsimonious and is difficult to use in
important IRT applications, such as scale linking, dif-
ferential item functioning analysis, and computerized
adaptive testing. Third, the group factors in a bifactor
model sometimes consist of only a few items and, as
such, are considered as contributing to “nuisance”
variance rather than being of substantive interest.

In the present research, we attempt to overcome these
limitations by transforming the bifactor IRT model
parameters. Specifically, we create a projective unidimen-
sional IRT (PIRT) model based on projecting to a gen-
eral factor in a bifactor IRT model as previously
developed (Ip, 2010a, 2010b; Ip & Chen, 2014; Ip et al,
2013; Stucky et al, 2013; Stucky & Edelen, 2014). We
propose that the PIRT model has two important applica-
tions. First, it can be used as a standalone unidimen-
sional model for IRT applications (Ip & Chen, 2014).
Stucky et al. (2013), for example, demonstrate how PIRT
derived from a bifactor model can be used to create uni-
dimensional short-forms with content diversity. Kim and
Cho (2020) recently applied PIRT based on a bifactor
model to perform true-score equating. Second, it can be
used as a benchmark comparison model to judge the
practical effect of model misspecification caused by
imposing unidimensional IRT models on multidimen-
sional data. This latter application is in the spirit of
Crisan et al. (2017), who argue for careful consideration
of the practical consequences of model violations.

To understand the problem of multidimensional
data, we provide a small set of simulations to illustrate
the consequences of forcing multidimensional data
into a unidimensional IRT model. These illustrative
simulations provide a foundation for understanding
the strengths and limitations of our proposed project-
ive IRT modeling approach.

Multidimensional data forced into
unidimensional IRT models

Consider a researcher who wishes to use a multi-item
scale to assess a single, broad psychological construct.
We assume that the variance on each item can be
decomposed into four orthogonal parts: (a) a general
trait (reflected in all the items) that represents the
intended target construct, (b) group component (vari-
ance shared with a subset of content similar items),
(c) a specific component (reliable, systematic variance
unique to the item), and (d) random error. This is the
canonical bifactor structure originally proposed by
Holzinger and Swineford (1937).

Consider first the upper left panel in Table 1,
which displays a bifactor structure in the factor ana-
lytic metric with one general and three orthogonal
group factors. Demonstration A (Demo-A, upper left
panel) has 15 items, and each item has a factor load-
ing on the general factor of 0.60 and zero loadings on
the group factors. This structure represents a unidi-
mensional model where all items are related to the
general dimension equally. Given the known relation



MULTIVARIATE BEHAVIORAL RESEARCH 347

Table 1. The effects of forcing multidimensional data onto a unidimensional model in factor analytic and IRT metrics.

Demonstration A — unidimensional

Demonstration B - unequal group

True loadings Estimated True loadings Estimated
Bifactor model 1-factor Bifactor model 1-factor

Item ;LGen ;LGIp1 iGrpZ )~Grp3 A o )vGen ;hGrp1 ijrpZ )~Grp3 A o

1 .60 0 0 0 .59 1.23 .60 .70 0 0 92 391
2 .60 0 0 0 .61 1.30 .60 .70 0 0 .92 3.87
3 .60 0 0 0 .60 1.28 .60 .70 0 0 91 3.71
4 .60 0 0 0 .59 1.24 .60 .70 0 0 91 3.85
5 .60 0 0 0 .60 1.27 .60 .70 0 0 91 3.74
6 .60 0 0 0 .61 1.30 .60 0 .50 0 .53 1.05
7 .60 0 0 0 61 1.30 .60 0 .50 0 .53 1.07
8 .60 0 0 0 .61 1.30 .60 0 .50 0 .52 1.05
9 .60 0 0 0 .60 1.27 .60 0 .50 0 .53 1.06
10 .60 0 0 0 .62 1.34 .60 0 .50 0 .53 1.05
1 .60 0 0 0 61 1.30 .60 0 0 .30 51 1.01
12 .60 0 0 0 .59 1.25 .60 0 0 .30 .50 0.97
13 .60 0 0 0 .60 1.29 .60 0 0 30 A48 0.94
14 .60 0 0 0 .61 1.30 .60 0 0 .30 48 0.93
15 .60 0 0 0 61 1.31 .60 0 0 .30 49 0.96

Demonstration C equal group Demonstration D cross-loadings
True factor loadings Estimated True factor loadings Estimated
Bifactor model 1-factor Bifactor model 1-factor

Item jvGen AGrp1 )vGrpZ }vGrp3 A a ;LGen /ALGr;ﬂ }vGrpZ AG!;B A o

1 60 .50 0 0 65 1.46 .60 .50 0 .10 68 1.58
2 60 .50 0 0 .66 1.49 .60 .50 0 0 .63 1.39
3 60 .50 0 0 .65 1.45 60 .50 0 0 .65 1.45
4 60 .50 0 0 .66 148 60 .50 0 0 64 1.42
5 60 .50 0 0 65 1.46 .60 .50 0 0 64 1.42
6 .60 0 .50 0 .66 1.51 .60 30 .50 0 77 2.05
7 .60 0 .50 0 .65 1.45 .60 0 .50 0 .67 1.56
8 .60 0 .50 0 .64 1.40 .60 0 .50 0 68 1.58
9 .60 0 .50 0 65 1.45 .60 0 .50 0 68 1.57
10 .60 0 50 0 .66 1.48 .60 0 .50 0 .69 1.64
" .60 0 0 .50 .65 1.45 .60 0 .50 .50 .80 2.30
12 .60 0 0 .50 .65 1.45 .60 0 0 .50 .65 1.46
13 .60 0 0 .50 65 1.47 .60 0 0 .50 64 1.40
14 .60 0 0 .50 .65 1.44 .60 0 0 .50 .65 1.46
15 60 0 0 50 64 1.44 .60 0 0 .50 .64 143

Note: / are factor loadings, 7 are estimated factor loadings; o are IRT slopes; & are estimated IRT slopes. Subscripts Gen, Grp1 ... Grp3 refer to general

and group factors in a bifactor model. Cross loadings in boldface type.

between the ordinal factor model and the IRT model
(Kamata & Bauer, 2008; Takane & De Leeuw, 1987),
the equivalent slope in a unidimensional 2-parameter
logistic (2PL; Equation (1)) model is shown in
Equation (2):

B B exp(OCi(O - Bz))
P(xi = 1|6) 1 + eXp(OCi(G - ﬁz)>
exp(OCiO + yz)

= S 1
I+ exp(ad + 7) M

where P(x; = 1|0) is the probability of endorsing
(x; = 1) item i as a function of a continuous, nor-
mally-distributed latent variable 0, typically, specified
to be mean 0 and variance 1. The o; parameter is a
slope or “discrimination” determining the steepness of
the item response function; f5; is a location parameter
- the point on the latent trait where the probability of

endorsing the item is 0.50; v,

1
—Ofiﬁr
Ai .60
o = ———(1.7) = ——
SN AT V1— 607

1

is an intercept equal to

(1.7) =1.275  (2)

In Equation (2), 4; is a factor loading in the ordinal
factor model (Takane & De Leeuw, 1987); thus, in a
unidimensional model with a true factor loading of
0.60, the true slope in the 2PL model is 1.275. In all
simulations below, we assume factor thresholds (t;)
and IRT intercept parameters are zero for each item.
We also assume that the latent variables have a stand-
ard normal distribution.

Based on the true IRT model, we simulated 10,000
cases and estimated a 2PL model using the full-
information marginal maximum likelihood method
available in mirt (Chalmers, 2012). With this large
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sample size, it is not surprising that in both the factor
analytic and the IRT metric, true parameters for the
one-dimensional model are well recovered. Both the
estimated factor loadings and IRT slope parameters
are unbiased; they reflect the general factor (i.e., the
intended “target” dimension that explains the correla-
tions among the items).

In Demonstration B (Demo-B; upper right panel),
each item has the same 0.60 true factor loading on
the general factor. The main difference from Demo A
is that we have added three orthogonal group factors
of five items each that vary in loading strength (0.70,
0.50, and 0.30), and, thus, communality. We simulated
10,000 cases and fit a 2PL (see Equation (1)) using
mirt. In Demo B, the estimated factor loadings are not
close to the true loadings of 0.60 nor the slopes to
1.275. In short, the loadings and IRT slopes in the
unidimensional models are pulled toward the first set
of five items that have the highest item intercorrela-
tions, yielding estimated slopes of approximately 3.82
for these items.

In Demo B the latent variable no longer reflects the
common variance among the items. Rather, when uni-
dimensional models are applied to multidimensional
data, the item parameters and latent variable are esti-
mating a so-called “reference composite,” or what
most-commonly is termed “functional dimension” (Ip
et al., 2013). The functional dimension is a kind of
weighted average of the dimensions. By virtue of
being optimized to explain as much common variance
as possible among the items, the unidimensional
model overrepresents the (greater) common variance
among this first set of items.

In Demo-C, as in Demos A and B, the general
factor has loadings of 0.60; the group factor loadings
are now all 0.50 (and, thus, equal communality).
Again, simulating 10,000 cases, the unidimensional
2PL model, when fit with mirt (Chalmers, 2012), has
factor loadings and IRT slopes that are all too high.
The unidimensional model has no way of pulling
apart the common variance due to general and group
factors, and, thus, it assumes that all common vari-
ance is general variance.

Demo-D has the same structure as Demo-C, but it
adds an additional complexity. One item on each of
the group factors is specified as having a cross-loading
on another of the group factors. Specifically, Item 1
has a cross-loading of 0.10 on group factor 3. Item 6
has a cross-loading of 0.30 on group factor 1, and
Item 11 has a cross-loading of 0.50 on group factor 2.
As we will soon illustrate, these cross-loadings can
pose challenges for our proposed projection IRT

approach. For now, we observe that in the present
example, when we simulated 10,000 cases and fit a
2PL model with mirt, the loadings and IRT slopes
are more biased than in Demo-C, especially for the
three items with cross-loadings. The factor loading,
for example, for Item 11 is now 0.80, which is a sub-
stantial distortion of its relation with the target
dimension.

Unidimensionality and IRT modeling

These demonstrations make clear that, if your meas-
urement goal is to fit a model that captures the com-
mon among the items, forcing
multidimensional data into unidimensional models

variance

can significantly interfere with that goal. Clearly, we
need to proceed cautiously when considering a unidi-
mensional IRT model application when we know the
data are multidimensional. This raises the question,
when are data “unidimensional enough,” such that we
do not need to be concerned about applications of the
unidimensional model (i.e., when can we expect prac-
tical consequences to be trivial)?

There has been considerable research exploring
conditions under which one can reasonably apply a
unidimensional IRT model, despite its misspecifica-
tion. As Ip (2010a) nicely summarizes this research,
“If there is a predominant general factor in the data,
and if the dimensions beyond that major dimension
are relatively small, the presence of multidimensional-
ity has little effect on item parameter estimates and
the associated ability estimates. If, on the other hand,
the data are multidimensional with strong factors
beyond the first one, unidimensional parameterization
results in parameter and ability estimates that are
drawn toward the strongest factor in the set of item
responses (this tendency is ameliorated to some extent
if the factors are highly correlated)” (p. 397).

But how do we know if the first factor is “strong?”
In Table 2, we consider some commonly-reported
indices when applied to the data from Table 1. Our
first set of indices assess the first factor strength but
in slightly different ways. First, is the commonly
reported eigenvalue ratio (EVR), reflecting the ratio of
the first to second eigenvalue from the tetrachoric
correlation matrix. Higher values ostensibly reflect a
stronger general factor. In the data from the demon-
strations, this ratio is relatively large for Demo-A. All
other EVR values are above 3, a commonly noted
“benchmark” for a “strong” general factor indicating
that EVR would not detect issues with the data from
the demonstrations.



Table 2. Fit and unidimensional enough indices for demon-
strations A through D.

Demo-A Demo-B Demo-C Demo-D

Factor strength

EVR 9.42 335 4.29 441

ECV 1 57 .59 .58

wp .89 75 77 74

Orotal .89 95 94 .94
Model fit

M, 68.71 16,622 12,760 12,030

df 920 90 90 90

p 95 <.001 <.001 <.001

RMSEA 0 133 118 115

SRMSR .006 102 .084 .079

CFI 1 844 .857 .884

Note: EVR is ratio of 1°* to 2" eigenvalue; ECV is explained common vari-
ance; wy is omega hierarchical; wy; is omega total; M, is the limited
information fit statistic; df is degrees of freedom; RMSEA is root mean
squared error of approximation; SRMSR is standardized root mean stand-
ardized residual; CFl is comparative fit index.

Next are two “unidimensional enough” indices
derived from applying a bifactor model (Rodriguez
et al, 2016). One index that quantifies general factor
strength is the explained common variance (ECV;
Reise et al., 2013; ten Berge & Socan, 2004). The ECV
is the percent of common variance due to the general
factor. The closer to 1.0, the more unidimensional the
data. These values are all above 0.50, suggesting the
general factor is stronger than the group factors. Two,
Zinbarg et al. (2005, 2006) proposed coefficient omega
hierarchical (wy), which is the percent of sum score
variance due to the general factor. When w), is high,
the reliable variance in composite scores is interpret-
able as reflecting the general factor. Here, values range
from 0.89 (Demo-A) to 0.74 (Demo-D), suggesting
that the summed scores reflect a high degree of
reliable variance coming from the general factor.
Should these values be considered as evidence of uni-
dimensional enough? On the other hand, as a referent,
the wy, coefficient can be compared to an index called
omega total, wr, which estimates the reliability due
to all sources of common variance. The closer wy, is
to wr, the more unidimensional. There are gaps of
approximately 0.20 between w7 and wy for the multi-
dimensional data sets in Demos B, C, and D, suggest-
ing significant multidimensionality.

Finally, the lower portion of Table 2 includes tests
of model fit and practical fit indices that are readily
available in mirt (Chalmers, 2012) output. M,
(Maydeu-Olivares & Joe, 2006) is a limited informa-
tion goodness-of-fit test that is not significant in
Demo-A but significant in Demos B, C, and D. The
root mean square error of approximation (RMSEA),
standardized root mean squared residual (SRMSR),
and comparative model index (CFI) all indicate a
“poor” fit of the unidimensional model to the
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multidimensional datasets and a “good” fit for the
Demo-A data.

How useful are these “unidimensional enough,” or
“practical fit” indices and their associated bench-
marks? We have three practical concerns that underlie
our present proposal. First, the “benchmarks” for uni-
dimensionality, when they exist at all, are somewhat
arbitrary in the same way p <= 0.05 for “significant”
or Cohen’s d=0.20 for a “small” effect are arbitrary:
their values have no precise reference. Second, fit indi-
ces can reject models where the bias in parameter esti-
mates has few, if any, practical consequences (Bonifay
et al.,, 2015). Multidimensionality or lack of model fit
does not necessarily suggest dire consequences in
practical applications (Crisan et al., 2017). Indeed, the
misfit in Demos B, C, and D may have very little
effect on scaling individuals on the latent trait (i.e.,
scoring). Third, and most important, the values of the
indices in Table 2 cannot be directly linked to any
specific degree of bias in the estimated item parame-
ters, trait level estimates, or standard errors, which
are valuable to know when considering an IRT
application.

In contrast, we argue that fitting a PIRT model can

«

be used to directly judge the appropriateness of a uni-
dimensional model and, thus, provide important
insight to make more informed modeling decisions.
Specifically, a comparison of the item parameter esti-
mates, trait level estimates,
between a unidimensional IRT model and a better fit-
ting PIRT model can tell you directly how wrong a
unidimensional model is. Before illustrating such an

and standard errors

application, we first describe PIRT and apply it to the
three multidimensional datasets in Table 1 (Demo B,
C, and D).

Projecting to the general factor in a bifactor
model

PIRT is a class of models that attempt to create a uni-
dimensional model out of a multidimensional space.
Projection is based on the foundational work of Ip
(2010a, 2010b) showing the conditions under which
multidimensional models are equivalent to unidimen-
sional models with local dependence. We describe
projecting slopes (and intercepts) from a bifactor IRT
model onto the general factor of a bifactor model,
thus, creating a single dimension that is purified of
nuisance dimensions. This single dimension captures
the common factor running among the items (i.e., the
general variance associated with the general factor).
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For presentation simplicity, assume there is an esti-
mated restricted bifactor IRT model for binary items,
where items load on the general factor (gen) and one
group factor (grp) as in Equation (3).

exp( z(gen)egen + Qi(grp) egrp + i )
1+ exp(i(gen) Ogen + %igrp) Ogrp + 7 )’

3)

where, P(x; = 1|0gen, Ogrp) is the probably of endorsing
the item (i) as a function of trait levels on the general
(Ogen) and group (Ogr,) factors, g, is the IRT slope
on the general factor, oy is the IRT slope on the
group factor, and y; is the intercept.

Our goal is to estimate the 2PL PIRT model in
Equation (4) using Equation (3).

Plx; — 1/00) exp(0 + ;)
’ YT T+ exp(a0+ 7))

P(x,- = 1|0gem0grp)

(4)

where, o is the slope in the PIRT model, and 7} is
the intercept in the PIRT model.

Treating the general factor in the bifactor model as
the dimension to be projected to, we transform the
slopes and intercepts from a bifactor IRT model to
the PIRT model by using Equation (5):

. %i(grp) PTi(grp
= logit, <o¢i(gen) + %}
i(gen)
= logit y, bl = — (V—> 5)
%
. -1/2
where  logit, = [kz 0 grp) ( pz)a?(grp) + 1} and

k= M =0.59 =1/1.7,and b} is the item location
parameter in the PIRT model.

In a bifactor model, the general factor and group
factor are orthogonal so that p (correlation among the
latent factors) goes to 0. The group (af( grp)) and general
factor variances ((ff(gen)) are 1.0. Ip and Chen (2014),
Table 11.4 (p. 246) displayed an estimated bifactor
model with Item 1 slopes of o, = 1.985, g, = 0.840
and y = 0.096. Performing the calculations based on
these values, we obtain the following values that match
the values estimated by Ip and Chen.

= .8965(1.985) = 1.78, 7} = .8965(0.096) = 0.086,

1
. 0.086
b = - —— ) = —.0483.
1.78

Ip and colleagues are not the only researchers to con-
sider projection in a bifactor context. Stucky et al
(2013), for example, evaluated the possibility of judging
the effects of multidimensionality on unidimensional
models by comparing the slope parameters in a

unidimensional IRT model with the slope parameters
from the general factor in the bifactor model. Such a
comparison would appear to provide direct information
on how much the unidimensional slopes are biased by
the multidimensionality. Unfortunately, it is not that
simple. The item parameters in an IRT bifactor model
are conditional parameters and are not directly compar-
able to the marginal item parameters estimated in unidi-
mensional IRT models. In the IRT bifactor model, the
slopes represent the relation between the item and trait
for people at the mean on all group factors (conditional).
In contrast, the desired target parameters are the slopes
that relate the item to the latent variable after integrating
out the other dimensions (marginal). For a proper com-
parison, one must first transform item parameters from
conditional to marginal through integrating out the
multidimensionality; this is essentially the same as con-
ducting a projection. This transformation is easy if a
bifactor IRT structure is known. Using the above
example:

Step 1. Convert IRT bifactor slopes from the gen-
eral factor into a factor analytic correlational metric
(see also Kamata & Bauer, 2008):

; Xi(gen)/1.7

i(gen) —
\/1+ZP1 (p/1.7)°

1985/17

\/ 1+ 1 985 (0i§4710)2

where P represents the number of dimensions. The
1.7 scaling factor is needed to convert from the factor
analytic model (a normal probit model) into the IRT
metric (a logistic model). Importantly, this equation
clearly shows that the transformed loading on the
general factor depends on the conditional slopes on
all dimensions in the bifactor IRT model.

Step 2. Determine the standard deviation of resid-
uals (0;) in the factor analytic metric.

i = \/1 = Agem) = V1 =723 = 69

Observe that the term under the square root sign is
the residual variance, but it is based only on the load-
ing on the general factor, thus, treating the common
variance due to the group factors as “residual” for the
purposes of obtaining marginal item parameters.

Step 3. Convert this factor analytic model back into
the metric of a new unidimensional PIRT model.

= .723,




i = —o; (B;) = —1.78(—0.0483) = 0.086

The above values for the marginal slopes are equal
to those we calculated previously for the PIRT model.
We showed both approaches so that readers can see
the equivalences in two distinct literatures. Both sets
of equations integrate out the nuisance dimensions
through marginalization. The parameters of the PIRT
model are directly comparable to parameters in a uni-
dimensional IRT model, and, if the PIRT model is
accurate, one can judge how “bad” the parameter esti-
mates are in the unidimensional model, which is con-
taminated by multidimensionality.

The PIRT model can also be used as a stand-alone
unidimensional IRT model for applications (Ip &
Chen, 2014). The goal is for the slope parameters in
the PIRT model to correctly reflect the relation
between the general factor and the item responses,
and the latent variable in PIRT then properly repre-
sents the common factor running through the items.
When is this “ideal” most likely achieved? The answer,
we believe, is whenever the bifactor model is properly
specified and accurately estimated (see also, Bell et al.
(2024) for a similar view on estimating accurate
omega coefficients). We return to this critical topic in
the discussion.

The simulated data reconsidered

In Demos B, C, and D, item parameters were biased,
and the unidimensional model did not fit the data.
We now examine these three multidimensional data
sets under PIRT. Tables 3-5 are results for Demos B,
C, and D, respectively. Table 3 is results for the data
with the variable group factor loadings (Demo-B).
The top portion shows the true generating factor load-
ings as well as the communality and the ECV; (Stucky
et al., 2013; Stucky & Edelen, 2014), the percent of
common variance explained by the general factor for
an item and an index of item-level unidimensionality.
Next to the factor loadings are the equivalent IRT
item parameters in a bifactor model. These were cal-
culated using standard equations cited earlier; for
example, using Equation (2) with P representing
dimensions:

Aip

/ P
1- Zp:l /LizP

In the far-right column are the correct projected
slopes (1.275) that reflect the general variance with
the nuisance dimensions integrated out. In the case of

(1.7).

Aip =
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Table 3. Demonstration B: true factor loadings and IRT slopes
and estimated unidimensional, bifactor, and projected unidi-
mensional slopes.

True factor model

True IRT model

4 4 , 4 2
AGen  AGmp1  AGmp2  AGrp3 h ECVi OlGen %G1  XGmp2  XGrp3  XPIRT

1 60 .70 0 0 .85 42 263 307 O 0 128
2 60 .70 0 0 85 42 263 307 O 0 128
3 .60 .70 0 0 .85 42 263 307 O 0 128
4 60 .70 0 0 8 42 263 307 O 0 128
5 60 .70 0 0 .85 42 263 307 O 0 128
6 60 O .50 0 61 59 163 0 136 0 128
7 60 O .50 0 61 59 163 0 136 0 128
8 60 O .50 0 61 59 163 0 136 0 128
9 60 O .50 0 61 59 163 0 136 0 128
10 60 0 .50 0 61 59 163 0 136 0 128
1 60 0 0 30 45 80 138 0 0 69 1.28
12 60 0 0 30 45 80 138 0 0 69 1.28
13 60 O 0 30 45 80 138 0 0 69 1.28
14 60 0 0 30 45 80 138 0 0 69 1.28
15 60 0 0 30 45 80 138 0 0 69 1.28
Estimated IRT models (N = 10,000)
Unidimensional Bifactor Projective unidimensional
O uni OGen &Grpl &Grpz &Grpz OpiRT bias
1 3.91 274 317 0 0 1.30 —0.02
2 3.87 272 315 0 0 1.29 —0.01
3 3.71 261 295 0 0 1.30 —0.02
4 3.85 273 322 0 0 1.28 0.00
5 3.74 261 307 0 0 1.26 0.02
6 1.05 154 0 124 0 1.25 0.03
7 1.07 159 0 135 0 1.25 0.03
8 1.05 16 0 148 0 1.21 0.07
9 1.06 15 0 134 0 1.22 0.06
10 1.05 152 0 139 0 1.18 0.10
1 1.01 141 0 0 059 133 —0.05
12 0.97 138 0 0 067 1.29 —0.01
13 0.94 13 0 0 062 1.22 0.06
14 0.93 135 0 0 069 1.25 0.03
15 0.96 135 0 0 0.66 1.26 0.02

Note. A are true factor loadings; h? is communality; ECV; is explained
common variance for items; o are true slopes; and & are estimated
slopes. Subscripts Gen, Grp1 ... Grp3 refer to general and group factors.
Subscript Uni refers to the unidimensional model and PIRT refers to the
projective model. Bias is otprr—0piT-

a known restricted bifactor model they are found
most easily by:

/Ii en
o = logit,(%igen)) oOF o = _ Cileen) (1.7). (6)
1= Algen

In the bottom panel of Table 3 are shown the esti-
mated slopes in a unidimensional 2PL model. These
slopes closely approximate those in Table 1. In the
bottom middle panel (bifactor) are the estimated
bifactor slopes from mirt (Chalmers, 2012). They are
not exactly equal to the true slopes, but they are close.
Finally, in the rightmost panels are shown the esti-
mated PIRT model and the difference between the
true (e.g., computed via the closed form equation
above from true values of the bifactor model) and
estimated PIRT parameters. The differences are close
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to zero. In other words, the item parameters and the
latent variable now reflect the common variance
among the items due to the general factor. This illus-
trates that when data have a well-structured independ-
ent cluster bifactor solution, the projective dimension
can be highly accurate even in the presence of sub-
stantial multidimensionality and poor fit to a unidi-
mensional model.

Table 4 presents parallel results for Demo-C where
the group factors all have the same loadings. The top
portion provides the same information presented in
Table 3, and the expected slope in the projective
model remains 1.275. The bottom panel shows that
the unidimensional 2PL model slopes (a,,;) are
upwardly biased. In the right-hand panels are the
PIRT model (&ir;) estimates and the bias. Once again,
when the multidimensionality is well structured, the
PIRT model recaptures the common dimension very

Table 4. Demonstration C: true factor loadings and IRT slopes
and estimated unidimensional, bifactor, and projected unidi-
mensional slopes.

True factor model True IRT model

j-Gen j-Grp1 AGrpZ j-Grp3 h 2 ECVi OlGen OGrp1  %Grp2  XGrp3  OLPIRT
1 .60 .50 0 0 61 59 163 136 O 0 1.28
2 .60 .50 0 0 61 59 163 136 0 0 1.28
3 60 .50 0 0 61 59 163 136 O 0 1.28
4 60 .50 0 0 61 59 163 136 O 0 1.28
5 60 .50 0 0 61 59 163 136 O 0 1.28
6 .60 0 .50 0 61 59 163 0 136 0 1.28
7 .60 0 .50 0 61 59 163 0 136 0 1.28
8 .60 0 .50 0 61 59 163 0 136 0 1.28
9 .60 0 .50 0 61 59 163 0 136 0 1.28
10 .60 0 .50 0 61 59 163 0 136 0 1.28
11 .60 0 0 50 61 59 163 0 0 136 1.28
12 .60 0 0 50 61 59 163 0 0 136 1.28
13 .60 0 0 50 61 59 163 0 0 136 1.28
14 .60 0 0 50 61 59 163 0 0 136 1.28
15 .60 0 0 50 61 59 163 0 0 136 1.28

Estimated IRT models (N = 10,000)

Unidimensional Bifactor Projective unidimensional
BLuni OGen Oap1 Ogp2 Ocp3 OpiRT Bias
1 1.46 162 136 0 0 1.26 0.02
2 1.49 165 132 0 0 1.30 —-0.02
3 1.45 161 14 0 0 1.25 0.03
4 1.48 161 123 0 0 1.31 —-0.03
5 1.46 161 132 0 0 1.27 0.01
6 1.51 167 0 139 0 1.29 —0.01
7 1.45 158 0 137 0 1.23 0.05
8 1.40 152 0 138 0 1.18 0.10
9 1.45 158 0 138 0 1.23 0.05
10 1.48 164 0 147 0 1.24 0.04
1 1.45 158 0 0 13 1.25 0.03
12 1.45 159 0 0 134 1.25 0.03
13 1.47 164 0 0 144 1.25 0.03
14 1.44 158 0 0 134 1.24 0.04
15 1.44 158 0 0 134 1.24 0.04

Note. A are true factor loadings; h? is communality; ECV; is explained
common variance for items; o are true slopes; and & are estimates
slopes. Subscripts Gen, Grp1 ... Grp3 refer to general and group factors.
Subscript Uni refers to the unidimensional model, and PIRT refers to the
projective model. Bias is oppr— Gppar-

well. Through PIRT, we have obtained a unidimen-
sional model in which the parameters and the latent
variable reflect the common variance due to the gen-
eral factor.

The data in Tables 3 and 4 are highly multidimen-
sional (see Table 2), but the structure of that multidi-
mensionality is via independent clusters. Table 5 is
the projective results for Demo-D, where the inde-
pendent cluster structure was contaminated by cross-
loadings for three items (1, 6, and 11). To compute
the true slope in the projected model, we now need to
accommodate two group factor slopes. In the (condi-
tional) IRT metric, an additional term in the logit
scaling factor to accommodate two group factor slopes
(grp and crossload).

1
(12,2 2.2 2
% = |:k o‘grp +k Xerossload + 1:| (age“)'

When that is done, the true slopes in the PIRT are
still 1.275. Alternatively, in the factor loading metric, the
true PIRT slope can be estimated using Equation (7):

”

Ai(gen
of = — 2 (1.7) = 1.275.
1- ’lt‘z(gen)

In the bottom panel of Table 5 are the estimated
PIRT results and bias based on estimating a restricted
bifactor model. The results are not as accurate as
before, and the average bias is —0.15. The latent vari-
able measured here is captured best by Item 11—the
item with the highest communality due to the cross-
loading. The problem here is not the cross-loadings,
per se, but rather in the algorithm used in the
estimation of restricted bifactor models. Bifactor IRT
models are estimated using full-information methods
(Gibbons et al., 2007; Gibbons & Hedeker, 1992) that
use quadrature nodes and weights to specify a nor-
mally distributed latent variable. In multidimensional
models, the number of quadrature points increases
exponentially with the number of dimensions, which
makes estimation challenging. The algorithm devel-
oped by Gibbons and Hedeker (1992) allows each
item to load on only one group factor. Consequently,
the number of dimensions per item is at most two,
making estimation of canonical bifactor IRT models
feasible. When there are more than two loadings per
item, however, suppressing common variance associ-
ated with the cross-loading must create a distortion
somewhere else in the model. In Demo-D, this distor-
tion manifests as inflated loadings on the general and
group factors for items with cross-loadings and down-
wardly biased loadings for other items.



Table 5. Demonstration D: true factor loadings and IRT
slopes, and estimated unidimensional, bifactor, and projected
unidimensional slopes.

True factor model

True IRT model

AGen }~Grp1 AGrpZ ;LGrp3 hz El CV,‘ OlGen %G1 OGrp2  OGrp3  OLPIRT
1 60 .50 0 10 62 .58 165 138 0 028 127
2 60 .50 0 0 61 .59 163 136 0 0 128
3 60 .50 0 0 61 59 163 136 0 0 128
4 .60 .50 0 0 61 .59 163 136 0 0 128
5 .60 .50 0 0 .61 .59 163 136 0 0 128
6 .60 .30 .50 0 .70 51 186 093 155 0 127
7 60 O .50 0 61 59 163 0 136 0 128
8 60 0 .50 0 61 .59 163 0 136 0 128
9 60 O .50 0 .61 .59 163 0 136 0 128
0 60 O .50 0 61 .59 163 0 136 0 1.28
1M1 60 O 50 50 86 .42 273 0 227 227 128
12 60 O 0 50 .61 .59 163 0 0 136 128
13 60 0 0 50 .61 .59 163 0 0 136 128
14 60 O 0 50 .61 .59 163 0 0 136 128
15 60 O 0 50 .61 .59 163 0 0 136 128

Estimated IRT models (N = 10,000)

Unidimensional Bifactor Projective unidimensional
Ouni OGen 566:;:1 &Grpz 566:;:3 OLpiRT bias
1 1.58 161 317 0 0 1.20 0.07
2 1.39 144 315 0 0 1.07 0.21
3 1.45 149 295 0 0 1.13 0.15
4 1.42 148 322 0 0 1.10 0.18
5 1.42 144 307 O 0 1.09 0.19
6 205 251 0 124 0 248 —-1.21
7 1.56 199 0 135 0 1.68 —0.40
8 1.58 192 0 148 0 1.74 —0.46
9 157 188 0 134 0 172 —0.44
10 164 194 0 139 0 1.80 —0.52
11 230 271 0 0 059 2.27 —0.99
12 1.46 149 0 0 067 1.07 0.21
13 1.40 143 0 0 062 1.04 0.24
14 1.46 15 0 0 069 1.08 0.20
15 1.43 144 0 0 066 1.08 0.20

Note. / are true factor loadings; h? is communality; ECV; is explained com-
mon variance for items; o are true slopes; and & are estimates slopes. Three
items with cross-loadings in boldface type. Subscripts Gen, Grp1...Grp3
refer to general and group factors. Subscript Uni refers to the unidimen-
sional model and PIRT refers to the projective model. Bias is oprr— Gpir-

Assume in Demo-D (see Table 5) that we knew the
true generating solution so that that bifactor model
was estimated correctly. To transform this model into
a PIRT model, we need only the general factor loading
and the communality. We will illustrate with Item 11.
Specifically, first take the square root of the commu-
nality (h?) minus the general factor loading squared
and treat that value as if it were the only group factor
loading. We will label that the pseudo group factor,
Ay

¢rp')

Aitgrgy = \/ 12— Fitgem) = V86 — .36 = .71.

Now the implied IRT slope on the general and
(pseudo) group (grp) factor is:
.60 71

—(1.7) =2.73 q, =——_(1.7) =32,
V1— 86 i

i(grp’

Xi(gen) =

) " /TZ 86
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and with these estimates, the slope of the PIRT model
would be:

1
sqrt(1 + .588%(3.2127%))

logit = = 47,

L pirty = 10git (%ifgen)) = 1.275.

Thus, the estimated slope for Item 11 in the pro-
jected model based on a hypothetical, accurately-esti-
mated bifactor model, would equal 1.275—the correct
value. This demonstrates that the incorrect value of
2.27 in Table 4 is solely a product of the estimation
bias caused by forcing a group factor loading to be
zero, when it should have been .50. The critically
important point here is that essential to accurate pro-
jection in a bifactor model is the accurate estimation
of all the multidimensionality. We return to this topic
in the discussion, but now demonstrate PIRT with
real data.

Real data example

The data for this study are from 7,122 respondents to
the 23-item PROMIS Healthcare Engagement item
bank (Schalet et al., 2021). Sample details are provided
in Schalet et al. (2021). For the purposes of these anal-
yses, due to sparse data, we collapsed the two lowest
(of five) categories into a single category and scored
the items 0 to 3. Provisional item content is displayed
in Supplemental Material. Based on previous work,
the items can be partitioned into three content clus-
ters: (1) Self-Management (SM), (2) Collaborative
Communication (CC), and (3) Healthcare Navigation
(HN). The results are divided into three sections: (1)
restricted bifactor analysis and two comparison mod-
eling sections evaluating (2) item parameters and (3)
person parameters and standard errors. This data set
was selected for the present illustration because it rea-
sonably fits a bifactor model (see below), whereas in
practice, it will be modeled and scored via unidimen-
sional models.

Confirmatory item response theory

We first estimated a restricted bifactor IRT model,
namely, the bifactor version of the graded response
model (Samejima, 1997) using full-information mar-
ginal maximum likelihood methods. The graded
response model extends the 2PL described previously
to three or more response categories. In this context,
there were four slope parameters ., and oy, dcc, Ospr
(one for each of the latent factors corresponding to
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each of the group factors, HN, CC, and SM), and three
category intercept parameters y; (k=1, 2, and 3). The
model was estimated using mirt (Chalmers, 2012) with
one intercept (or location) for each of the three boun-
daries between response options: 0 vs 1,2,3; 0,1 vs 2,3;
and 0,1,2 vs 3. The fit statistics for the restricted
bifactor model are, M, = 3,392 (df=161) p <0.001,
AIC=328,542, SABIC=328,967, RMSEA =0.053,
SRMSR =0.036, and CFI = .97. Coefficient wr value
was 0.95, wy was 0.87, and ECV was 0.79, suggesting a
strong common dimension. In the columns on the left
in Table 6 are the estimated factor loadings from the
restricted bifactor model. In the right panels are the
estimated IRT bifactor slopes. Note that these slopes
are in a conditional metric (slopes when all other fac-
tors are at their mean value, zero) making them chal-
lenging to interpret.

Evaluating the item parameters

Now we consider PIRT as a comparison model to
judge the adequacy of a unidimensional model. In the
left set of columns in Table 7 are the item parameter
estimates for a unidimensional graded response model
(Samejima, 1997) estimated with mirt: M, = 5261
(df=184, p<0.001), AIC=335,282, SABIC =335,622,
RMSEA =0.06, SRMSR=0.06, and CFI = .95. The
unidimensional model appears to fit reasonably well,

Table 6. Restricted bifactor solution in factor analytic and IRT
metrics.

Factor analytic item response theory

ltem ic  mv  dcc dsm W ECVi Been  Guw  Gec Gsm
1 .62 0 0 24 44 .87 1.41 0 0 0.54
2 71 .29 0 0 .59 .86 1.89 0.78 0 0
3 .66 0 0 34 55 .79 1.67 0 0 0.86
4 .62 0 0 37 52 74 1.54 0 0 0.91
5 .55 27 0 0 38 .81 1.20 0.8 0 0
6 62 .27 0 0 46 .84 143 0.63 0 0
7 65 24 0 0 47 .88 1.51 056 0 0
8 .61 0 0 44 56 .65 1.56 0 0 1.13
9 .69 0 0 33 .58 .81 1.80 0 0 0.86
10 72 47 0 0 75 .70 244 159 0 0
11 .76 33 0 0 .69 .85 234  1.00 0 0
12 67 53 0 0 73 61 218 174 0 0
13 .68 42 0 0 .64 72 192 120 0 0
14 72 0 40 0 67 .76 2.14 0 1.19 0
15 .66 46 0 0 .65 .67 1.89 131 0 0
16 72 0 .38 0 67 .78 2.15 0 1.14 0
17 77 0 22 0 .65 92 2.22 0 0.64 0
18 72 0 0 13 54 97 1.81 0 0 0.32
19 .65 0 0 44 61 .68 1.77 0 0 1.2
20 78 31 0 0 71 .87 247 097 0 0
21 84 12 0 0 72 98 272 039 0 0
22 72 0 39 0 67 77 2.15 0 117 0
23 75 0 39 0 72 .78 2.40 0 1.26 0

Note. j»c is estimated loading on general or group factors EHN,,,SM where
HN is Healthcare Navigation, CC is Collaborative Communication, and
SM is Self Management; h? is communality. &, is the estimated slope
parameter for the general factor; duy sy are the estimated slope
parameters for the group factors.

but there is a large difference in M,, AIC, and SABIC
between the bifactor and unidimensional models, sup-
porting the idea that the bifactor is superior. In the
right set of columns in Table 7 are the PIRT parame-
ters. In the PIRT model, the latent trait is the general
factor from the bifactor model but now with marginal
instead of conditional item parameters, such that the
group factors have been integrated out. For almost all
items, the slopes in the unidimensional model are
higher or equal to the slopes in the PIRT model.
This result is expected because the former are inflated
the latter have
any multidimensionality integrated out. The slopes

by multidimensionality, whereas
decreasing the most from the unidimensional model
to PIRT model are items 10, 12, and 15 (all health
plan items), which have the lowest ECV; in the
restricted solution of 0.70, 0.61 and 0.67, respectively.
These three items all ask specifically about obtaining
something from a “provider.” On the other hand, for
two items, 18 and 21, the slopes in the PIRT model
are larger than in the unidimensional IRT model.
Interestingly, these items are from different content
domains, but both items contain the phrase “pros and
cons of treatment.” Observe also that these items had
ECV; statistics of 0.97 and 0.98 in the restricted
solution.

A relatively simple way to evaluate the effect of multi-
dimensionality (i.e., how inaccurate the unidimensional

Table 7. Graded response model slopes and locations for the
unidimensional and projective IRT models.

Unidimensional model PIRT model

& B Ba Bs 8 B Ba Bs
141 =263 -—1.46 042 134 =272 -152 0.43
196 —1.64 -0.90 023 172 -176 -0.96 0.25
147 =267 —135 008 149 -264 -—-136 0.07
141 142 -034 122 136 -146 035 1.25
129 -235 -153 -018 113 -256 -167 -0.20
148 —1.64 -0.80 044 134 -175 -085 0.47
157 -0.88 0.07 113 144  -093 0.07 118
132 -156 -033 106 129 -159 034 1.08
9 160 -190 -0.79 052 160 -190 -0.80 0.52
10 234 -138 -074 023 178 -156 -083 0.26
11 246 -163 -0.87 031 201 -176 -093 0.34
12 205 -149 -0.84 010 152 =173 -097 0.13
13 197 -147 -0.70 033 157 -165 -0.78 0.37
14 18 -185 -1.05 002 175 =191 -11m 0.01
15 194 -174 -107 -015 149 -198 -122 -0.17
16 192 -173 -0.98 016 178 -181 -1.04 0.15
17 205 -205 -120 -006 208 -—205 -—-121 -0.06
18 160 -208 -1.01 031 178 -198 -0.97 0.29
19 144 -182 -0.66 098 145 -183 -0.66 0.98
20 251 -121 -049 058 214 -128 -052 0.62
21 256 -153 —0.68 044 265 -—152 -0.68 0.44
22 187 =175 -085 029 177 -181 -091 0.28
23 198 -248 -172 -062 193 -250 -175 -0.64

Note: & are slope parameters and B1 to [33 are locations parameters in
the unidimensional model; &" are slope parameters and f} to f; are
locations parameters in the PIRT (Projective IRT) model.

oNOUVThA WN =
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Figure 1. Test response curves for unidimensional (solid) and PIRT (dashed) models.
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Figure 2. Test information curves in unidimensional (solid) and PIRT (dashed) models.

model is) is to compute test response curves (TRCs) and
test information curves (TICs) for the two models
(Ackerman et al., 2019; Stucky & Edelen, 2014). A TRC
is the sum of item response curves for a scale, and it con-
veys the relation between trait level and expected score
on a test. Differences between TRCs suggest that at a
fixed trait level, there are different expected scores for
the two models, reflecting potential differential test func-
tioning. TRCs for the unidimensional and PIRT models
are shown in Figure 1. TRCs for the two models show
nearly perfect overlap suggesting that the overall test
functioning is highly similar in the two models.
Distortion caused by multidimensionality does not
appear to be large enough to cause appreciable bias in
the item parameters. In this sense, the data are
“unidimensional enough.”

On the other hand, Figure 2 displays the TICs for
each model. A TIC reflects how much precision a set
of items provides across the trait range. Figure 2
reveals that standard error estimates in the unidimen-
sional model are too small. This is a clear concern for
some applications of the unidimensional model.

Evaluating the person parameters

In this section, we consider the effects of multidimen-
sionality on the estimated trait levels and standard
errors. The most important potential problems with
the unidimensional IRT model are that the item
parameters may be biased by multidimensionality
(e.g., inflated slopes), and, thus, the standard errors of
trait level estimates may be too small due to the fail-
ure to take into account local dependence between
items during scoring.

If we assume that the PIRT model is a closer
approximation to the true model, the item parameter
estimates will be more accurate than in the unidimen-
sional model. The accurate computation of standard
errors in the PIRT model, however, can be problem-
atic (Stucky et al., 2013). If there is “hidden” local
dependence in the PIRT model, adjustments may
need to be made to the standard errors, depending on
the strength of the group factors (Ip & Chen, 2012,
2014). Ip and Chen (2012, 2014) have recommended
using sandwich estimators for scoring and computing
standard errors in PIRT models. These estimators,
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Table 8. Raw score to EAP trait level conversion tables for unidimensional and Lord-Wingersky 2.0 scoring.

EAP trait level estimates

Standard errors of measurement

Score U LW Score u LW Score U LW Score U L-W
0 -3.36 —3.24 36 —0.69 —0.66 0 0.44 0.49 36 0.21 0.35
1 -3.10 —2.98 37 —0.64 —0.61 1 0.39 0.45 37 0.21 0.35
2 —2.93 —2.82 38 —0.59 —0.56 2 0.36 0.43 38 0.21 0.35
3 -2.78 —2.68 39 —0.54 —0.51 3 0.34 0.41 39 0.21 0.35
4 —2.65 —2.56 40 —0.49 —0.46 4 0.32 0.40 40 0.21 0.35
5 —2.54 —2.45 41 -0.43 -0.41 5 0.30 0.39 41 0.22 0.35
6 —2.44 —2.35 42 —0.38 —0.36 6 0.29 0.38 42 0.22 0.35
7 —2.34 -2.26 43 -0.33 -0.31 7 0.28 0.37 43 0.22 0.35
8 -2.26 -2.18 44 —0.28 —0.26 8 0.27 0.37 44 0.22 0.35
9 -2.18 -2.10 45 -0.22 -0.21 9 0.26 0.36 45 0.22 0.35
10 -2.10 —2.03 46 -0.17 —0.16 10 0.26 0.36 46 0.22 0.35
1 -2.03 -1.96 47 -0.11 -0.10 1 0.25 0.36 47 0.22 0.36
12 -1.96 -1.89 48 —0.06 —0.05 12 0.24 0.36 48 0.22 0.36
13 -1.89 -1.83 49 0.00 0.00 13 0.24 0.35 49 0.22 0.36
14 -1.83 -1.76 50 0.06 0.06 14 0.23 0.35 50 0.23 0.36
15 -1.77 -1.70 51 0.12 0.12 15 0.23 0.35 51 0.23 0.36
16 -1.71 —1.65 52 0.18 0.18 16 0.23 0.35 52 0.23 0.36
17 —1.65 -1.59 53 0.24 0.24 17 0.22 0.35 53 0.23 0.36
18 -1.59 —1.53 54 0.31 0.31 18 0.22 0.35 54 0.24 0.36
19 —1.54 —1.48 55 0.38 0.37 19 0.22 0.35 55 0.24 0.36
20 —1.48 -1.43 56 0.45 0.44 20 0.22 0.35 56 0.24 0.37
21 -1.43 -1.38 57 0.52 0.51 21 0.22 0.35 57 0.25 0.37
22 -1.38 -1.33 58 0.60 0.58 22 0.21 0.35 58 0.25 0.37
23 -1.33 -1.28 59 0.68 0.66 23 0.21 0.35 59 0.26 0.38
24 -1.28 -1.23 60 0.76 0.74 24 0.21 0.35 60 0.27 0.38
25 -1.23 -1.18 61 0.86 0.83 25 0.21 0.35 61 0.28 0.39
26 -1.18 -1.13 62 0.96 0.92 26 0.21 0.35 62 0.29 0.39
27 -1.13 —1.08 63 1.07 1.03 27 0.21 0.35 63 0.31 0.40
28 —1.08 —1.03 64 1.19 1.14 28 0.21 0.35 64 0.32 0.41
29 -1.03 —0.99 65 1.32 127 29 0.21 0.35 65 0.35 0.43
30 —0.98 —0.94 66 1.48 1.42 30 0.21 0.35 66 0.37 0.44
31 —0.93 —0.89 67 1.66 1.58 31 0.21 0.35 67 0.40 0.47
32 —0.88 —0.85 68 1.90 1.80 32 0.21 0.35 68 0.44 0.50
33 —0.83 —0.80 69 2.24 2.14 33 0.21 0.35 69 0.52 0.56
34 -0.79 —0.75 34 0.21 0.35

35 —0.74 -0.70 35 0.21 0.35

Note: U is unidimensional; LW is Lord-Wingersky 2.0; score is summed score.

unfortunately, are not implemented in any standard
software of which we are aware, so we rely on other
solutions in the present illustration.

Specifically, recall that the latent variable in the
PIRT model is equal to the general factor in the bifac-
tor transformed to a marginal unidimensional model
representation. As a consequence, one way of properly
scoring individuals and estimating their standard
errors is to use the bifactor model for scoring. Scoring
using the bifactor model, however, can be improved
by using a new updated algorithm named Lord-
Wingersky 2.0 (L-W 2.0). Detailed descriptions of the
technical aspects of the L-W 2.0 approach to scoring
are beyond our scope (see Cai, 2015; Huang & Cai,
2021). At the heart of the method is the production of
a summed score to EAP trait-level estimate conversion
table (Orlando et al., 2000; Rosa et al., 2001; Thissen
et al., 1995).

Table 8 displays the summed score to trait level
estimate table and standard errors for the unidimen-
sional model and the bifactor model (general factor)
with standard errors as obtained from flexmirt using

L-W 2.0 (Cai, 2013). As expected, scores on the gen-
eral trait are more spread out in the unidimensional
IRT model relative to the bifactor IRT model. The dif-
ferences, however, are small. Of importance, standard
errors are too small in the unidimensional IRT model.
In Figure 3, we display this result in terms of condi-
tional reliability (1—conditional error variance).
Clearly, the unidimensional model overestimates the
scale’s precision; standard errors are lower than they
should be. Overall, the marginal reliability of the trait
level estimates in the unidimensional model and bifac-
tor model with L-W 2.0 were estimated to be 0.93
and 0.86, respectively.

Discussion

Unidimensional IRT models are commonly applied to
multi-item measures designed to assess individual dif-
ferences on a single target construct. Such models are
ideal when the item response data are unidimen-
sional—locally independent based on a single latent
factor (Chen & Thissen, 1997). When item response
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Figure 3. Reliability curves in unidimensional (solid) and PIRT model (dashed): Lord-Wingersky 2.0 scoring.

data are not unidimensional, for example, due to the
inclusion of multiple content clusters (see Soto &
John, 2017), unidimensional IRT models can be prob-
lematic. The central issues are that item parameters
may be biased by multidimensionality (e.g., slopes too
high), which results in biased trait level estimates and
standard errors that may be severely biased (too
small). The resulting latent trait may not represent the
common variance among all the items (i.e., the
intended construct), but instead may represent a refer-
ence composite or functional dimension (Ip et al,
2013; Strachan et al., 2022), whose de facto definition
(based on unidimensional IRT loadings) may differ
greatly from the construct definition intended for the
target dimension.

Recognizing these problems caused by forcing a
unidimensional model onto multidimensional data,
many researchers have proposed alternative models.
In the present paper, we implemented a bifactor IRT
model to control for the biasing effects of multidi-
mensionality. Specifically, we created a unidimensional
PIRT model (Ip & Chen, 2014; Stucky et al., 2013)
based on projecting to the general factor in a bifactor
model, integrating out the group factors. To the
degree that the bifactor model fits the data, the unidi-
mensional PIRT model would be expected to provide
more accurate item parameter estimates. In turn, these
item parameters are in a marginal IRT metric so that
they are comparable to the item parameters in the
unidimensional IRT model. We used the comparison
of the unidimensional IRT model with the PIRT
model to judge the degree to which multidimensional-
ity is biasing item parameters in the unidimensional
model. This approach may be more useful for judging
the practical significance of model misspecification,
compared to relying on statistical indices of fit or

first-factor ~strength (so called “unidimensional
enough” indices). Using test response curves, the com-
parison between PIRT and the unidimensional model
suggested that in the present empirical dataset, the
unidimensional model provides essentially the same
results, in terms of expected scores conditional on
trait level, as the PIRT model.

PIRT is a unidimensional model with built in local
dependence (Ip, 2010a, 2010b). This “hidden” local
dependence is critically important for the computation
of standard errors. Consequently, standard errors
need to be modified if we wish to use them as a com-
parison model to the unidimensional model standard
errors. We used the bifactor model as the comparison
and used a summed score to EAP conversion method
based on Lord-Wingersky 2.0 (Cai, 2015), available in
flexmirt to calculate standard errors. Our results
showed that standard errors in the unidimensional
model were too small. In the future, alternative meth-
ods to compute standard errors are expected to be
available in standard software, including Ip and Chen
(2012, 2014) sandwich estimators.

Beyond its application as a comparison model, the
PIRT model can also serve as a stand-alone model to
be used for IRT modeling applications, such as for
basic psychometric analysis and short-form creation
(Stucky et al., 2013), computerized adaptive testing,
equating and linking, and differential item functioning
analysis. These applications rest on the unidimension-
ality assumption of IRT being true; that is, they all
require an invariant measurement scale. In theory, the
PIRT dimension should have an invariance property
unobtainable otherwise (Ip & Chen, 2014; Strachan
et al., 2021). In practice, a PIRT model can only be
considered “purified” of multidimensionality to the
degree that the multidimensionality is successfully
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modeled; unmodeled multidimensionality, such as
that caused by response sets, cross-loadings (e.g.,
Demo-D), correlated group factors, or correlated
residuals, might not be adequately represented by a
restricted bifactor model. It is important to report
model diagnostics, such as local independence tests,
and patterns of factor loadings/slopes, to strengthen
the claim that the restricted bifactor is a reasonable
comparison model.

Limitations of bifactor models

By accommodating multidimensional data structures,
PIRT greatly expands the range of data sets that can
be fit to unidimensional models. Obtaining a well-
estimated and accurate restricted bifactor model is
critical for the present comparison method to operate
effectively.

Problems in estimating a bifactor model

There are two prevailing concerns regarding bifactor
models. The first lies in the interpretation of general
and group factors (Bonifay et al., 2017), especially
under conditions in which the group factors cannot
be considered as “exchangeable” (Eid, 2020; Eid et al.,
2017; Heinrich et al., 2020). In this framework, alter-
native models such S — 1 type models, are preferred
for representing so-called “multi-faceted” constructs
(Eid, 2020). In S — 1 type models, the general factor
is defined by anchoring it through a content cluster.
Doebler and Doebler (2022) describe exploratory
PIRT models that project to specific subdomains of
interest to the investigator. These PIRT models seem
highly comparable to the goals of the S — 1 model to
anchor a dominant dimension though a subdomain,
but we are unaware of any research that has drawn
this connection.

A second concern is that there are frequent prob-
lems in the estimation of bifactor models, such as fac-
tor collapse, replicability, and unexpected negative
loadings (e.g., Heinrich et al, 2020). The critical
insight from the PIRT equations and our demonstra-
tion is that the slopes (or loadings) for the general
and group factors should be accurate to allow for
proper adjustment of the slopes in the PIRT model to
represent the general factor.

The most critical factor in applying PIRT is the
degree to which the structure conforms to a restricted
bifactor model (Reise et al., 2011); in other words, the
degree to which there is an independent cluster struc-
ture with no cross-loadings. If there is variance due to

cross-loadings, the PIRT model may not properly
account for multidimensionality. Zhang et al. (2023)
observed that forcing cross-loadings to zero in a bifac-
tor model resulted in identification issues, among
other problems. Thus, in situations where PIRT is
most needed, one must evaluate whether the data are
“bifactor enough,” such that an accurate multidimen-
sional model can be estimated and then transformed.
The evaluation of the “fit” of a bifactor model, prior
to PIRT, is an important step.

Conclusion

To know how “wrong” you are, you must have some
standard for what is “right.”

Our central goal was to introduce and illustrate a
PIRT model based on a bifactor model and to use this
model to judge the degree to which item and person
parameters (including standard errors) are wrong
when multidimensional data are forced into a unidi-
mensional model. In this concluding section, we
review the interplay of the unidimensional, the bifac-
tor, and the projective models and consider the basic
question, what does one do in practice?

We first consider the comparison between the uni-
dimensional IRT and the PIRT model. If the data are
multidimensional and contain both general and non-
trivial group factors, and the bifactor model fits the
data better, the PIRT item parameters will be less
biased and should be used in practice. The PIRT
model is superior because the item parameters have
been corrected for the multidimensionality.

In contrast, neither the unidimensional nor the
basic PIRT model may properly control for the local
independence violations caused by content clusters
when estimating standard errors. For both models,
standard errors will be too small. We recommend
using the Lord-Wingersky 2.0 algorithm for scoring
hierarchical models to produce more accurate stand-
ard errors.

The latent variable in the PIRT model is the same
latent variable as the general factor in the bifactor
model. Why not simply use the bifactor model in
practice? The PIRT model is superior for four reasons.
First, in a bifactor IRT model, the item parameters are
on a conditional metric, making them more difficult
to interpret substantively—they need to be marginal-
ized to make sense and to be comparable to a unidi-
mensional model. Second, psychometric information
in multidimensional space is very complicated and
difficult to interpret when there are more than two
dimensions. Third, the bifactor IRT model cannot be



easily used for basic IRT applications, such as linking,
computerized adaptive testing, and differential item
functioning testing. Fourth, typically, there are few
items on the group factors, so that the researcher
could not reliably score individuals on them. The
group factors tend to be merely a device to control
for nuisance variance, so it is better to simply inte-
grate them out. For these reasons, we believe the
PIRT model is much easier to work with in applied
settings. We, also emphasize that the PIRT model is
only as good as the accuracy of the bifactor model'
on which it is based. If the bifactor model is poorly
estimated, a PIRT application cannot be justified.
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projection. For purposes of this research, however, we limited our work
to the restricted bifactor IRT case.
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