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ABSTRACT

Meta-analysis using individual participant data (IPD) is an important methodology in inter-
vention research because it (a) increases accuracy and precision of estimates, (b) allows
researchers to investigate mediators and moderators of treatment effects, and (c) makes use
of extant data. IPD meta-analysis can be conducted either via a one-step approach that
uses data from all studies simultaneously, or a two-step approach, which aggregates data
for each study and then combines them in a traditional meta-analysis model. Unfortunately,
there are no evidence-based guidelines for how best to approach IPD meta-analysis for
count outcomes with many zeroes, such as alcohol use. We used simulation to compare the
performance of four hurdle models (3 one-step and 1 two-step models) for zero-inflated
count IPD, under realistic data conditions. Overall, all models yielded adequate coverage
and bias for the treatment effect in the count portion of the model, across all data condi-
tions. However, in the zero portion, the treatment effect was underestimated in most mod-
els and data conditions, especially when there were fewer studies. The performance of both
one- and two-step approaches depended on the formulation of the treatment effects, sug-
gesting a need to carefully consider model assumptions and specifications when using IPD.
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Introduction

Meta-analysis using individual participant data (IPD)
is an important methodology in intervention research
because it (a) increases accuracy and precision of esti-
mates, (b) allows for the examination of covariates
without potential ecological inference bias (Debray
et al., 2015), and (c) leverages extant data. In particu-
lar, the meta-analysis of IPD affords greater flexibility
than traditional, aggregate data meta-analysis to
account for differences in participants, intervention
approaches, study designs, and outcome measures
across studies. IPD meta-analysis and aggregate data
meta-analysis often produce comparable results when
considering the average effect across multiple studies,
such as an overall treatment effect size (Tierney et al,,
2020). However, IPD meta-analysis is preferable to
aggregate data meta-analysis as the use of participant-
level data allows for a consistent statistical model
across all studies as well as the ability to more flexibly
tailor the model to a variety of outcome types, such as

dichotomous (i.e., binary event) or count outcome
variables. Thus, the analysis of IPD better ensures that
the overall findings are based on a consistent set of
statistical assumptions. Hence, IPD meta-analysis has
long been considered the “gold standard” in meta-
analysis (Sutton & Higgins, 2008).

The best practices for IPD meta-analyses with
count outcomes are an area of ongoing research with
a lack of guidance based on rigorous empirical data
(e.g., simulation study). Count outcomes are com-
monly encountered in social behavioral research, with
outcome examples including alcohol use quantity,
number of sexual risk behaviors, and number of sui-
cide-related behaviors. The Poisson and negative bino-
mial (NB) models and their derivatives are commonly
used for such outcomes. One assumption of the
Poisson model is that the variability (i.e., dispersion)
of the outcome is equal to the mean. The NB model
extends the Poisson by incorporating a dispersion par-
ameter, which can accommodate situations where the
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variability of the outcome is higher than the mean
(i.e., overdispersion). In addition, count outcomes
often exhibit a greater frequency of zero outcomes
than would be expected by either the Poisson or NB
models. Ignoring zero inflation in the outcome (called
“zero-inflation bias”; Zhou et al., 2021) could lead to
biased results and subsequently incorrect inference
(Perumean-Chaney et al., 2013), although biased esti-
mates may be corrected mathematically in some situa-
tions using summary-level data (see Zhou et al,
2021). Outcomes with excessive zeroes can be accom-
modated by modeling the outcome in two parts: (1)
the probability of zero drinking and (2) the number
of drinks when drinking is non-zero. Count outcomes
where zero responses are kept separate from the non-
zero portion of the distribution are known as hurdle
models (Atkins et al., 2013; Atkins & Gallop, 2007).
Hurdle models can be implemented in Mplus
(Muthén & Muthén, 1998-2022) and R (R Core Team,
2022) and have been used in recent applied research
(e.g., Huh et al, 2015, 2019; Wood et al., 2010).

An alternative to the hurdle model is a zero-inflated
model, a type of mixture model that distinguishes
between two types of zeroes: (a) zero counts, which
would correspond with drinkers who happened not to
drink during the period of interest, and (b) “excess
zeroes” beyond what would be predicted by an ordin-
ary count distribution, which would correspond with
alcohol abstainers who never drink. Despite the theoret-
ical difference in how they consider zeroes, hurdle
models and zero-inflated models produce highly similar
estimates in practice (Atkins et al., 2013). Thus, this
article focuses on the hurdle model approach due to its
simpler interpretation with respect to zeroes.

Hurdle NB models can be applied to IPD meta-ana-
lysis to accommodate count outcomes with excessive
zeroes and over-dispersion using either a one-step or
two-step meta-analysis approach (Simmonds et al.,
2005, 2011). In a “one-step” or “one-stage” approach,
participant-level data from different studies are exam-
ined simultaneously in a single model. Using a single
model allows researchers to explicitly address the data
structure, such as clustering within studies and partici-
pant-level missing data. Furthermore, the one-step IPD
meta-analysis methods use a more exact likelihood spe-
cification compared to the two-step methods. For
example, individual-level moderators and mediators of
treatment effects can be directly modeled in a one-step
analysis, but not in a two-step analysis. However, one-
step IPD meta-analysis methods can be computationally
intensive and challenging to implement (Burke et al,
2017). A second approach to IPD meta-analysis, which
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has been the most common (Simmonds et al., 2015), is
a “two-step” or “two-stage” approach in which partici-
pant-level data are first aggregated to the study level
(e.g., study-specific estimates of the treatment effect).
These study-level data are then combined using trad-
itional meta-analytic methods to estimate the overall
effect and between-study heterogeneity.

In the context of count outcomes, different sample
populations can produce markedly different outcome
distributions (see Mun et al., 2022), which has
implications with respect to the choice of a one- or
two-step analysis. For example, when an alcohol inter-
vention study focuses on a broad population of individ-
uals, the outcome distribution may have a
disproportionate frequency of zeroes due to the pres-
ence of alcohol abstainers and occasional nondrinkers.
In contrast, studies of higher-risk individuals, such as
heavy drinkers, may have outcome distributions con-
sisting of mostly non-zero responses with very few zero
responses (i.e., zero drinks). When one or more studies
have few or no zero responses, a two-step approach
using hurdle models in the first step of meta-analysis
may be difficult or impossible because those studies
will not produce a treatment effect with respect to zero
drinking that can be combined in the second-step ana-
lysis. One-step models using multilevel modeling have
greater flexibility to accommodate treatment effects that
are missing by design, which we detail in the “One-step
IPD Meta-analysis” section. In contrast, there can be
data situations where a two-step meta-analysis may
provide flexibility, for example, when underlying distri-
butions differ by study (see Mun et al., 2022).

Although the advantages of a one-step approach
over a two-step approach are clear in principle, it is
not clear empirically when the two approaches pro-
duce the same answer (Kontopantelis, 2018) and
under what circumstances the two approaches will
diverge (Burke et al., 2017). The few studies that have
examined this question suggest that one- and two-step
approaches provide a similar answer when focused on
the overall effect (i.e., treatment effects) for continu-
ous outcomes (Kontopantelis, 2018; Lin & Zeng, 2010;
Mathew & Nordstrom, 2010) or binary outcomes
(Cheng et al., 2019; Debray et al., 2012; Lin & Zeng,
2010; Stewart et al., 2012). Chen et al. (2020) demon-
strated via numerical studies and actual data analysis
that both continuous and binary outcomes obtained
from summary statistics can be as efficient as IPD.
However, they also noted a loss of efficiency (6-20%)
with a two-step approach when sample size was not
sufficient. To the best of our knowledge, no studies
have evaluated the relative performance of one- vs.
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two-step IPD meta-analysis approaches for count data
with excess zeroes.

If one- and two-step IPD approaches generate
comparable results, a two-step approach to IPD meta-
analysis may have an important advantage over a one-
step approach because estimating the overall effect
does not require raw data. Aggregate data can be
derived for each study by the original investigators,
which can be shared for the second-step synthesis.
Although it is increasingly common to share IPD,
data availability remains a barrier to IPD meta-ana-
lysis. If aggregate data derived under a common
model can be combined in the second-step meta-ana-
lysis without bias or loss of power, compared with
one-step IPD meta-analysis, two-step IPD meta-ana-
lysis can be counted on when data availability may be
limited. However, if one- vs. two-step IPD meta-ana-
lysis approaches have different statistical performance
outcomes, it is also important to know under which
data conditions different results emerge.

The current study was also motivated by the prac-
tical constraints encountered in one-step IPD meta-
analysis. IPD from multiple independent trials tend to
come from heterogeneous study designs, which pro-
duce an unbalanced design when pooled, resulting in
estimation challenges (Huh et al., 2019). The fact that
IPD can be analyzed in multiple ways within the one-
step IPD meta-analysis approach, compared to the
two-step IPD meta-analysis approach, also raises an
open question of whether meta-analysis outcomes are
sensitive to different modeling assumptions. The pre-
sent study addresses this gap in the literature by com-
paring the performance of four different modeling
strategies for one-step and two-step IPD meta-analysis
in the context of count data with varying degrees of
excess zeroes. More specifically, we compare the bias
and coverage of the intervention estimates from one-
and two-step IPD meta-analysis approaches using the
multilevel hurdle NB model via a Monte Carlo simu-
lation under realistic conditions when synthesizing
data across behavioral intervention studies.

IPD meta-analysis models for count data with
excess zeroes

This section introduces four statistical models for IPD
meta-analysis for count data with excess zeroes. The
two most common modeling approaches for count
data with excess zeroes are zero-inflated count models
(i.e., zero-inflated Poisson or zero-inflated NB) and
hurdle models, which are both two-part approaches
consisting of a binary logistic and a count regression

sub-model. An advantage of hurdle models compared
to zero-inflated models is that they are easier to inter-
pret and estimate because of the clear distinction
between zeroes and non-zero counts. In the current
study, the four models for IPD meta-analysis are
based on hurdle models in which the outcome is
modeled in two parts: (a) a logistic regression examin-
ing the likelihood of a zero outcome vs. a non-zero
outcome and (b) a zero-truncated count regression
examining the mean parameter for non-zero count
outcomes.

One-step IPD meta-analysis

We first detail three approaches for one-step IPD
meta-analysis in which the study-specific treatment
effects and the overall effect of treatment across stud-
ies are estimated in a single, simultaneous analysis.
Model 1 is a conventional, multilevel model in which
study is defined at the highest level (ie., cluster) of
the model and one or more dummy-coded predictor
variables for treatment assignment predicting inter-
vention outcome, the effect of which can vary by
study. Model 1 is ideal when studies are preplanned
with the same design, such as having the same num-
ber of study arms (e.g., all two-arm trials). Model 2 is
a reformulation of Model 1 that excludes the fixed
effect for treatment and accommodates differences in
the number of treatment groups (see Huh et al., 2015,
2019) by (1) using unique randomized groups at the
highest level of the multilevel model (MLM), instead
of study, and (2) estimating treatment effects by com-
puting the posterior distribution of the difference
between each treatment group and its corresponding
control group within studies. Finally, Model 3 is an
extension of Model 2 that includes an additional fixed
effect for treatment. Later in the “Simulation Design”
section, Model 1 will serve as the data generating
model and the gold standard against which three
other models will be compared, assuming a balanced
number of treatment arms (i.e., two) across studies.

Model 1: MLM with study at the highest level and
study-specific treatment effects

A conventional strategy for estimating treatment
effects across multiple studies is via a two- or three-
level MLM, where study is defined at the highest level
of the model and participants are nested within stud-
ies. If the data are structured such that each partici-
pant is associated with a single observation (e.g., one
follow-up assessment per participant), a two-level
model may be sufficient where participants (level 1)



are nested within study (level 2). However, if the data
consist of multiple follow-up observations nested
within participant, a three-level model is a logical
choice, where repeated observations (level 1) are
nested within participant (level 2), and participants
are nested within study (level 3). To derive study-spe-
cific treatment effects as well as an overall estimate of
treatment effect, a varying intercept coefficient can be
defined for each study in combination with a varying
treatment slope (for a two-arm design) to account for
variation in the treatment effect across studies.

When modeling a count outcome with excess
zeroes, such as drinking quantity, a multilevel hurdle
model can be conducted that treats the outcome as a
mixture of two parts: (1) the probability of no drinks
vs. any drinks, which can be modeled via logistic
regression, and (2) the number of drinks when drink-
ing is non-zero, which can be modeled using a zero-
truncated count regression, such as the Poisson or NB
models. For the present study, we consider the zero-
truncated NB model, which includes an additional
overdispersion parameter to accommodate situations
where the variance of drinking, when it is non-zero, is
greater than would be predicted by the Poisson model.
This situation, where the variance of a variable is
greater than its mean, is relatively common in studies
with alcohol outcomes data and, more broadly, in
behavioral intervention and prevention studies.

The logistic portion of the hurdle model (Equation
(la)) examines whether an individual participant from a
specific study did not drink at a particular assessment
point. Here, the subscript (B) identifies regression coeffi-
cients from the logistic sub-model, and I is an indicator
function whose value is equal to one if the condition
inside the parentheses is true and zero otherwise. Let
Pr[DRINKS;~, ;s = 0] be the probability of individual i
in study s not drinking at assessment f, and
Pr[DRINKS;~¢ ;s > 1] be the probability of individual i
in study s drinking one or more drinks at assessment t.

Pr[DRINKS; -, ;s = 0]

g(Pr[DRINKStm 5> 1])

— by(s) + by(s TREATMENT;,
+by(s) [(DRINKS,_q s = 0) + by DRINKS,_q ;
=+ Uos(p) + ulS(B)TREATMENT,-S + T0i(B) (1a)

Let E[DRINKSt>Q, ,‘leRINKSt>0) is = 1] be the
expected number of drinks, when drinking, which was
one or greater for individual i in study s at assessment
t in Equation (1b). To constrain predictions to posi-
tive counts greater than or equal to one, the outcome
is modeled as the natural logarithm of the expected
number of drinks (i.e., log link function) as follows:
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log (E[DRINKS;~ ;| DRINKS,~ ;s > 1])
= by(c) + by(c)TREATMENT;,
+ by () [(DRINKS—q, ;s = 0) + bs(c) DRINKS,q ¢
+ thgy(c) + tys(c) TREATMENT;, + 7o), (1b)

where (C) identifies regression coefficients from the
zero-truncated NB sub-model.

The nonvarying regression coefficients b and
by(c) quantify the covariate-adjusted average difference
in post-baseline drinking between participants who
received treatment compared to control participants.
Covariates for baseline drinking are incorporated into
both the logistic (Equation (la)) and zero-truncated
NB (Equation (1b)) models to adjust for baseline
drinking. Baseline drinking, DRINKS;—;, was div-
ided into two related covariates to account for: (1) no
drinking vs. any drinking and (2) the number of
drinks at baseline including zeroes. These two covari-
ates are the third and fourth terms on the right-hand
side of Equations (1a and 1b). Consequently, individu-
als who did not drink at baseline have non-zero b,
and bz(c) terms (i.e., the association between not
drinking vs. drinking at baseline and postbaseline
drinking), while by and by are zeroed out in
Equations (la and 1b), respectively, because they are
multiplied by zero when the number of baseline
drinks is equal to zero. However, individuals who
drank at baseline are represented by non-zero byp,
and bj() terms, while by and by are zeroed out
in Equations (1a and 1b) when the number of baseline
drinks is non-zero.

Model 1 is a logical formulation of an MLM for
one-step IPD meta-analysis. However, its disadvan-
tages include greater complexity involving study-spe-
cific random intercepts and treatment slopes, which
may lead to greater nonconvergence during estima-
tion. Specifically, nonconvergence in estimation may
be more likely when extending the model to include
three-arm or four-arm trials where most studies are
two-arm trials (e.g., a treatment group and a control
group). In such situations, any study with just two
groups will have missing data for the third and fourth
intervention groups, when all of these studies are syn-
thesized together. In addition, with more than one
treatment type, it is likely that not all combinations of
treatments would have been “directly” evaluated “head
to head” in all studies. This results in rank deficiency
because of insufficient study-level data to estimate the
variance-covariance matrices of the study-specific ran-
dom coefficients (i.e., for wuyp), uiyp); and Uy ),
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Uc)) (see Huh et al, 2019 for a detailed
explanation).

In summary, Model 1 is ideal if there is no study-
level missing data in treatment groups. However,
when analyzing IPD from studies with different treat-
ment arms, the estimation difficulties of Model 1
under this common data situation point to the need
for alternative modeling strategies. The next approach,
which was first implemented by Huh et al. (2015), is a
simpler alternative to Model 1 in that it only uses a
varying intercept to model treatment effects, and cir-
cumvents the challenge described above when treat-
ment arms across studies are unbalanced and not

directly estimable.

Model 2: MLM with study-by-treatment combina-
tions at the highest level

To accommodate “missing” study-by-treatment combi-
nations, a single varying intercept parameter represent-
ing unique study-by-treatment combinations can be
specified, as detailed by Huh et al. (2019), each of
which represents a unique randomized group. Model 2
is a one-step MLM with a random intercept for a
unique study-by-treatment arm combination, where the
treatment effects are calculated as postestimation con-
trasts of the random intercept between groups within
studies. Model 2 can be implemented using a Bayesian
approach to produce a full joint posterior distribution
for the random effects (i.e., study-by-treatment effects),
which makes computing the posterior distribution of
the difference between each treatment group and its
corresponding control group straightforward (see
“Estimation Considerations” later).

The multilevel hurdle NB model that incorpo-
rates a varying intercept coefficient for unique
randomized groups (ie., study-by-treatment arm
combinations) can be seen in Equations (2a and
2b). The logistic portion of the hurdle model
(Equation (2a)) estimates whether an individual par-
ticipant belonging to a specific randomized group
did not drink (at a particular assessment point).
Let Pr[DRINKS;. j, = 0] be the probability of indi-
vidual i in randomized group g not drinking at
assessment t, and Pr[DRINKS;. j, > 1] be the prob-
ability of individual i in randomized group g drink-
ing one or more drinks at assessment ¢ The
randomized groups identified by the subscript g
represent the active treatment and control compari-
son groups across all studies. For example, five
two-arm studies, each with one treatment arm and
one control arm, would translate to a total of 10
randomized groups. To constrain predictions to

range from 0 to 1, the outcome is modeled as the
natural logarithm of the odds (i.e., logit link func-
tion) of the probability of not drinking vs. any
drinking, as follows:

Pr[DRINKS, -~ j¢ = 0]
&\ Pr[DRINKS ; > 1]

= by(p) + by (5l (DRINKS— ;¢ = 0)
+ bZ(B)DRINKSt:()) ig + uOg(B) + r()i(B); (23)

where (B) identifies regression coefficients from the
logistic model. The zero-truncated NB portion of the
hurdle model (Equation (2b)) models occasions where
drinking did occur, for individual i in randomized
group g at assessment ¢, as follows:

log ((B[DRINKS 1, s [DRINKS,.. 5, > 1]
= by(c) + by(c)/(DRINKS,—,;y = 0)

+ bz(c) (DRINKSt:()’ ig) + uOg(C) + T’Oi(c), (2b)

where (C) identifies regression coefficients from the
zero-truncated NB model. To control for baseline
drinking, the covariates, I(DRINKS,—o; =0) and
DRINKS;—g,j;, are included in Equations (2a and
2b), as in Model 1. Similarly, the nonvarying
regression coefficients associated with the covariates
for baseline drinking quantify the effect of (1) not
drinking vs. drinking (b, b)), and (2) the
number of drinks when drinking (by), by(c)), on
the average drinking outcome across all randomized
groups.

The group-level varying coefficients u,z and
Uge(c) in the logistic and zero-truncated NB sub-
models, respectively, quantify the extent to which
each randomized group (i.e., control or intervention
group across studies) differs from the covariate-
adjusted average drinking outcome across all
groups.

Model 3: An extension of model 2 with an add-
itional fixed treatment effect

Model 3 is a modification of Model 2 that incorpo-
rates a fixed effect for treatment arm, such that the
overall treatment effect is directly estimated as a par-
ameter, rather than indirectly derived as post estima-
tion contrasts within studies from the varying
intercept terms (i.e., random intercepts) of the unique
randomized groups as in Model 2. The multilevel hur-
dle NB model that incorporates a fixed effect for
treatment in combination with varying intercept coef-
ficients for unique randomized groups (i.e., study-by-



treatment arm combinations) is described in

Equations (3a and 3b).

o, [ PTIDRINKS,..,; =
%8| Pr[DRINKS,~q ;¢ > 1]

= by(s) + by TREATMENT,
+ by(g)I(DRINKS; g, ;g = 0) + b33 DRINKS;, ¢
+ tog(p) + Toi(p)> and (3a)

log (E[DRINKSDO, ¢ [DRINKS .o,y > 1])

= by(c) + by(c) TREATMENT;,
+ by()I(DRINKS;—g, jg = 0) + b3()DRINKS, 0,
+ tgg(c) T+ Toi(c)» (3b)

where the subscripts have the same interpretation as
Equations (2a and 2b). The nonvarying treatment
coefficients b5y and b in the logistic and zero-
truncated NB models, respectively, quantify the aver-
age covariate-adjusted difference in the average drink-
ing outcome across groups for participants
randomized to a  treatment group (i.e,
TREATMENT), = 1) vs. a control group.

In Model 3, the group-level varying coefficients w5
and ug,(c) quantify the extent to which each random-
ized group differs from the (1) treatment- and (2) cova-
riate-adjusted average drinking outcome. Thus, when a
randomized group corresponds with a control condition
(ie, TREATMENT;, = 0), ug,(p and uggc) quantify
the extent to which that specific control group differs
from the average covariate-adjusted drinking outcome
across all control participants. Similarly, when a random-
ized group corresponds with an intervention condition,
Ugge(p) and ugg(c) quantify the extent to which a specific
intervention group differs from the average covariate-
adjusted drinking outcome in the intervention group.

Two-step IPD meta-analysis

Next, we describe a two-step IPD meta-analysis
approach to a hurdle model. A two-step approach
may be computationally more straightforward for
larger-scale IPD meta-analyses involving a larger sam-
ple of studies (e.g., 20 or more) or a larger number of
covariates, especially when using zero-altered count
models, which can be more computationally demand-
ing to estimate using a one-step approach. Also,
because the second step of a two-step IPD meta-ana-
lysis is functionally equivalent to a conventional meta-
analysis, this approach may be useful as a means of
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incorporating aggregate data in a meta-analysis that
were identically analyzed (e.g., zero-inflated Poisson)
by the original investigators. The application of a hur-
dle model in the first step of the IPD meta-analysis
produces two sets of treatment effect estimates, which
can be synthesized in the second step using a bivariate
meta-analysis, where each study contributes two out-
comes, corresponding to the treatment effect in the
logistic and zero-truncated portions of the hurdle
model.

Model 4: Two-step bivariate random-effects meta-
analysis

In the first-step analysis, a multilevel hurdle NB is esti-
mated for each study (Equations (4a and 4b)) to simul-
taneously derive a study-specific treatment effect on (a)
the probability of zero drinking, and (b) the quantity of
drinking when non-zero. The first step of the analysis
produces (a) a log odds ratio and (b) a log rate ratio for
each study, corresponding to the logistic and zero-trun-
cated NB portions of the hurdle model, respectively.

o Pr[DRINKSDo),‘ - 0]
&\ Pr[DRINKS,~,; > 1]

= by(s) + by (5 TREATMENT;
+ by(p) [(DRINKS;—o,; = 0) + b33 DRINKS,—,;
+ Toi(5)> and (4a)
og (E[DRINKS,]DRINKS;; > 1)
= by(c) + by(c)TREATMENT;
+ byl (DRINKS;—¢,; = 0) + b5 DRINKS;—,;
+ T0i0)- (4b)

All subscripts are previously defined. Note that there
are no subscripts ¢ or s in Equations (4a) or (4b) to
indicate that the model is estimated separately. The
first-step analysis in Equations (4a and 4b) is repeated
separately and sequentially for each study, and the
study-specific treatment effects and corresponding vari-
ance estimates are subsequently extracted and carried
forward to the second-step analysis.

In the second-step analysis, the study-specific treat-
ment effect estimates are collated as a vector of cova-
riate-adjusted treatment effect estimates (b and
bisc)» where s indexes the study) and evaluated in a
bivariate  random-effects  meta-analysis = model
(Equation (4c)) to estimate a pooled, overall treatment
effect. We note that it is possible to combine the
entire set of coefficients (i.e., also including by

bZS(B)’ b35<3), bOS(C)’ bZS(C)’ and b35(c)). However, this
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is challenging to estimate and rarely done in practice.
Thus, we opted for a bivariate meta-analysis model
that focuses on only the treatment effects for simpli-
city. Hence, subscript 1 can be dropped. We kept sub-
script 1 in Equation (4c) to identify the two vectors of
point estimates for study-specific treatment effects
from the first-step analysis but dropped it from the
population parameters in Equations (4c and 4d).
Equation (4c) for level-1 study-specific population
parameters and Equation (4d) for level-2 hyperpara-
meters can be shown as follows:

[bls(s)]
biso)
N {95(13)} Tn) P(8,C)%5(8)95(C)
Osc) P(8,¢)%5(B)5(C) 750
and (4¢)
iz
Oyc)
N [M(m] ) P(,0)T(8)T(C)
ro " | peotm o o)

(4d)

Equation (4c) indicates how study-specific estimates
are derived from the level-1 population mean vector
and covariance matrix for study s, where the parame-
ters 0,5 and Oy are the study-specific treatment
effects on (a) not drinking and (b) the mean quantity
of drinking when non-zero, respectively, and 052(3) and
Gf(c) are the corresponding study-specific variances of
the treatment effects. Equation (4d) shows how the
level-1 population parameters (top) are drawn from the
level-2 hyperparameters (bottom), where p5) and g
are the overall mean hyperparameters, ‘L'%B) and T%c) are
the corresponding between-study variance hyperpara-
meters, and pg () is the correlation between the treat-
ment effects on (a) the probability of not drinking and
(b) the mean quantity of drinking when non-zero,
respectively (c.f,, Jiao et al., 2020; Mun et al., 2016).

Estimation considerations

Models 1 to 4 can be estimated using either restricted
maximum likelihood (REML) or Markov Chain
Monte Carlo (MCMC) sampling via a Bayesian
approach. MCMC is a simulation-based approach that
samples parameter values from a probability distribu-
tion known as the “posterior distribution.”

Model 2 was specified as a 3-level MLM with study
arm-specific effects to accommodate heterogeneity in

the number of study arms. The treatment effects for
each study can be calculated as the difference between
the intercept terms for a specific treatment group and
the corresponding control group, within each study.
Model 2 uses a Bayesian approach to MLM estimation
because the posterior distributions for the treatment
effects can be constructed by computing the difference
between draws from the posterior distributions of the
treatment intercept and the control intercept. This
new posterior distribution can be used to compute
point estimates (e.g., means) and interval estimates for
each treatment effect.

For Model 3, the modified version of Model 2, a
Bayesian approach was also used. However, because the
overall treatment effect was directly modeled as a non-
varying slope coefficient, rather than computed as a dif-
ference between varying intercept terms within studies,
the posterior distribution of the nonvarying coefficient
for treatment was used to characterize the point esti-
mate (i.e., mean) and variability of the treatment effect.

For Model 4, the two-step approach, each study
was separately and sequentially analyzed in the first-
step analysis with a 2-level MLM using a Bayesian
approach. In the second step of the analysis, the treat-
ment effects on (a) the probability of not drinking
and (b) the number of drinks, with their correspond-
ing variability, were analyzed in a bivariate aggregate
data meta-analysis, also using a Bayesian approach.

Prior specification for Bayesian models

A key feature of Bayesian models is the specification
of “prior” distributions for all modeled parameters.
When estimated using a Bayesian approach, the multi-
level hurdle NB models shown in Equations (1-4)
require prior distributions for (1) the nonvarying
intercept and slope coefficients for the covariates in
each model (i.e.,, treatment condition and baseline
drinking), (2) the varying intercept and slope
coefficients (Equations (la and 1b) only), and (3) the
over-dispersion parameter in the zero-truncated NB
sub-models (Equations (1b, 2b, 3b, and 4b)).

We used “weakly informative” priors for all the
models presented, which improve posterior sampling
while yielding comparable results to those obtained
with ML-based approaches, where the estimates are
driven entirely by data (Gelman et al.,, 2017). For non-
varying regression coefficients, we used a normal prior
with a mean of 0 and an SD of 1, which Gelman et al.
(2015) recommend as a default prior for regression
models. For the SD of the varying intercepts and
slopes, we used corresponding half-normal distribu-
tions with a mean of 0 and an SD of 1. For the over-



dispersion parameter of the count portion of the hur-
dle models, we used a weakly informative gamma dis-
tribution with shape and rate parameters of 0.01. This
combination of priors was chosen as it maximized
convergence across simulation conditions (Range =
97 to 100%), while producing results driven primarily
by the data.

For the second step of Model 4, the bivariate meta-
analysis of the study-specific treatment effects, we used a
normal distribution with a mean of 0 and an SD of 1 as
the prior for the overall treatment effect in the logistic
and zero-truncated NB sub-models. The corresponding
half-normal distributions with a mean of 0 and an SD
of 1 were used for the SD of the overall treatment effect
estimate. For the correlation parameter between the
study-treatment effects produced by logistic and zero-
truncated count sub-models, we used a Lewandowski-
Kurowicka-Joe distribution (Lewandowski et al., 2009)
with a scalar parameter of 1, which is equivalent to a
uniform distribution over the range of possible correl-
ation values.

Simulation design

The simulation study consisted of Models 1-4 utiliz-
ing multilevel hurdle NB modeling, with each applied
to 27 data conditions (three study sample sizes, three
rates of zero in the outcome, and three within-study
sample sizes), for a total of 27 x 4 (= 108) simulation
conditions.
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We simulated the outcome based on a two-part,
multilevel hurdle NB model, described in Model 1.
The 27 data conditions consisted of combinations of
(a) study-level samples of 5, 10, or 25 studies, (b)
within-study samples of 100, 200, or 500, and (c) pro-
portion of zeroes of 5%, 10%, or 25%. These data con-
ditions were selected to reflect sample sizes commonly
encountered in alcohol research and behavioral inter-
vention research more broadly.

A total of 100 simulated replication data sets were
generated for each of the 27 data conditions for each
of the four models, resulting in 10,800 simulated data
sets. The effect sizes of the treatment effects as well as
other parameters for the data generation were based
on an IPD meta-analysis of Project INTEGRATE
(Mun et al., 2015) data using Model 1. Model 1 was
chosen as the reference (i.e., true) model as it reflects
the most conventional strategy for a one-step IPD
meta-analysis, where study is defined as a clustering
variable in combination with a study-specific treat-
ment effect (i.e, a varying coefficient for treatment).
Deriving simulation parameters from real data
improves the generalizability of subsequent simulation
findings (Burton et al., 2006). The true values used to
produce the simulated data are summarized in Table
1. See also the Sensitivity Analysis section for results
when different true values were used.

We calculated the bias and coverage of the treat-
ment effect estimates produced by each of the four
IPD meta-analysis models. The bias and coverage

Table 1. True values of the parameters used for data generation.

Parameter True value(s)

Description

Equation (1a) (Logistic sub-model)

bo(s) 2.94, 2.20, 1.10 Nonvarying intercept corresponding with probability of any
drinking in the control condition. The three values correspond
with a 5%, 10%, and 25% rate of zeroes, respectively

bi(p) 0.14 Nonvarying slope for treatment

bye) 3.16 Covariate effect of baseline drinking (not drinking vs. any
drinking)

b3 —091 Covariate effect of baseline drinking (quantity of drinking)

) 1.06 SD of study-level varying intercept

T1(8) 0.16 SD of study-level varying slope for treatment

G1o(8) 1.60 SD of participant-level varying intercept

Po1(8) 0.09 Correlation of the varying intercept and varying treatment slope

Equation (1b) (Zero-truncated negative binomial sub-model)

bo(c) 0.72 Nonvarying intercept corresponding with mean number of drinks
when drinking in the control condition

bi(o) —0.01 Nonvarying slope for treatment

2(0) 0.16 Covariate effect of baseline drinking (not drinking vs. any

drinking)

b3(c) 0.38 Covariate effect of baseline drinking (quantity of drinking)

To(c) 0.14 SD of study-level varying intercept

T1(0) 0.05 SD of study-level varying slope for treatment

Tr(0) 0.24 SD of participant-level varying intercept

Poi(0) —0.19 C(_)rrelat_ion of the varying intercept and varying treatment slope

() 330.00 Dispersion parameter

Notes. Correlations between the two hurdle sub-models were not modeled in the data generation, to minimize
nonconvergence in the simulation analyses. (B) = Logistic sub-model parameter; (C) = Zero-truncated negative

binomial sub-model parameter; SD = standard deviation.
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were evaluated separately for the logistic and zero-
truncated NB sub-models of each IPD meta-analysis
method (i.e., the effects of treatment vs. control on
the probability of zero drinking and the amount of
drinking when non-zero). The bias is the difference
between the point estimate of the treatment effect and
the true value, which was calculated across replica-
tions in each of the 108 simulation conditions to
ascertain the average bias and its 95% credible interval
(CI). The coverage is the percentage of replications in
each simulation condition in which the true value for
the treatment effect was within the estimated 95% CI.
A coverage between 92.5 and 97.5% is considered
optimal, per Bradley’s (1978) criterion of robustness,
with values below 92.5% considered problematic due
to increased likelihood of Type I error (i.e., the prob-
ability of a false positive).

Simulation results

A comprehensive summary of all simulation estimates
plotted in Figures 1-3, along with additional details
on estimation time and rate of nonconvergence for
each simulation condition, are available online as an
interactive R Shiny app (https://ipdmeta.shinyapps.io/
IPD_Rshiny/).

Figure 1 summarizes the raw bias of the treatment
effect estimates across the four models by (a) logistic
vs. zero-truncated count sub-model, (b) number of
studies, (c) sample size within study, and (d) propor-
tion of zeroes in the outcome. The mean bias of the
zero-truncated count estimates of treatment effect (see
solid symbols) were within rounding error of zero for
Models 1-4 across all data conditions. In contrast,
there was a more pronounced bias in the logistic esti-
mates of treatment effect (i.e., predicting no drinking
vs. any drinking; see hollow symbols). The bias in the
logistic portion was most pronounced in the smallest
sample conditions (i.e., 5 studies and 100 participants
per study), particularly with few zeroes (i.e., 5%).
Additionally, there was more variability in the esti-
mates of treatment effect in the logistic portion across
all models and conditions, which was reflected by the
much wider CIs. The logistic treatment effect esti-
mates produced from the true model (Model 1) were
generally within rounding error, as reflected by raw
biases close to zero. However, Models 2-4 tended to
underestimate the magnitude of the true treatment
effect of OR=1.15 in the logistic portion, with the
greatest underestimation occurring in the smallest
sample size condition with the fewest zeroes (i.e., 5
studies, 100 participants per study, 5% zeroes), at

OR=1.01 for Model 2, OR=1.02 for Model 3, and
OR=1.03 for Model 4. When there was a small-to-
modest number of studies (k=5 or 10) and/or partic-
ipants within study (N=100 or 200), the two-step
method produced more precise treatment effects with
respect to no drinking (vs. drinking) than the one-
step approaches, as evidenced by narrower 95% Cls
for the raw bias across data conditions. However,
those estimates were biased toward smaller treatment
effects than the true model (Model 1).

Figure 2 summarizes the coverage of the treatment
effect estimates. The coverage of Model 3 was accept-
able across all data conditions, ranging from 98% to
100% across both hurdle sub-models. The coverages
of Models 1 and 4 were also acceptable across most
data conditions, including the true model (Model 1I;
Range = [92%, 100%]) and the two-step model
(Model 4; Range = [91%, 100%]). The coverage of
Model 2, which contains less information than Model
1 (i.e., fewer parameters to model the treatment
effects), ranged from 85% to 100% for the logistic esti-
mates and 74% to 96% for the zero-truncated count
estimates of treatment effect. There was under-cover-
age of the zero-truncated count estimates of treatment
effect from Model 2 at moderate to large within-study
sample sizes (N=200 or 500), with lower coverage at
larger within-study sample sizes. However, the logistic
estimates of treatment effect from Model 2 were gen-
erally acceptable, except for some under-coverage at
the largest within-study sample size of 500, across the
three study-level sample sizes of 5, 10, and 25.

Notably, the coverage of the treatment effects on
drinking severity in Model 2 was poorer as the number
of participants within each study increased. One poten-
tial explanation is that the treatment effects in Model 2
were calculated entirely from group-specific effects that
were shrunken toward the overall (population) mean,
resulting in greater shrinkage at larger sample size con-
ditions, compared with Model 1. A second explanation
is that the variance of the treatment effects on no
drinking was underestimated in Model 2 due to the
negative correlation between the random intercept and
slope terms used in the data generating model (see
Table 1). In other words, in studies where the average
probability of not drinking was greater, the treatment
effect on the probability of not drinking was smaller,
reflecting typical data. In Model 2, the study-level vary-
ing intercept and slope terms from Model 1 (i.e., the
data generating model) are collapsed into a single vary-
ing-intercept parameter representing unique random-
ized groups, from which the treatment effects are
derived. Mathematically, the intercepts u,(z) and u,(c)
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Figure 1. Bias of the treatment effect estimates produced by hurdle negative binomial meta-analysis models by (a) fitted model,
(b) hurdle sub-model, (c) no. of studies, (d) no. of participants within study, and (e) proportion of zeroes.

Notes. Model 1, the data generating model, a one-step multilevel model with study-specific intercepts and treatment slopes. Model
2, the model detailed in Huh et al., (2019), is a one-step multilevel model with a random intercept for unique study-by-treatment
arm combination, where the treatment effects are calculated as post hoc contrasts of the random intercept. Model 3 is an extension
of Model 2 that adds a fixed effect of treatment. Model 4 is a two-step IPD meta-analysis in which the treatment effect is estimated
separately by study (step 1), and the study-specific treatment estimates and corresponding variability are subsequently modeled in
a bivariate meta-analysis (step 2). Z-T count = Zero-truncated negative binomial sub-model, Logistic = Logistic sub-model.
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Fitted Model

Figure 2. Coverage of the treatment effect estimates produced by hurdle negative binomial meta-analysis models by (a) fitted
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model, (b) hurdle sub-model, (c) no. of studies, (d) no. of participants within study, and (e) proportion of zeroes.

Notes. Model 1, the data generating model, a one-step multilevel model with study-specific intercepts and treatment slopes. Model
2, the model detailed in Huh et al., (2019), is a one-step multilevel model with a random intercept for unique study-by-treatment
arm combination, where the treatment effects are calculated as post hoc contrasts of the random intercept. Model 3 is an extension
of Model 2 that adds a fixed effect of treatment. Model 4 is a two-step IPD meta-analysis in which the treatment effect is estimated
separately by study (step 1), and the study-specific treatment estimates and corresponding variability are subsequently modeled in
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Figure 3. A sensitivity comparison of simulation results under larger treatment effect sizes (Odds Ratio [OR] =2.01 and Rate Ratio
[RR] =0.50) compared with the original effect sizes (OR = 1.15 and RR = 0.99).

Notes. The two sets of treatment effect sizes were compared under a sample size of 10 studies, 200 participants per study, and
two observations per participant at zero outcome rates of 5%, 10%, and 25%. Negative bias in the logistic sub-model and positive
bias in the zero-truncated count sub-model correspond with underestimation of the true treatment effect size. Z-T count = Zero-

truncated negative binomial sub-model, Logistic = Logistic sub-model.

from Model 2 correspond with the sum of correlated
terms in Model 1, specifically uyq(5) ~ toy(p) + (by(p) +
u15<3))TREATMENT,~S and Ugg(c) = Ups(cC) + (bl(C) +
uy5(c)) TREATMENT;,, respectively. Because the vari-
ance of a sum of correlated terms is equal to the sum
of their variance of each plus two times their covari-
ance, a negative covariance could result in the variance
of the treatment effect produced by Model 2 being
underestimated.

With respect to model run time, the median dura-
tions for Models 1 to 4 were 4.5hours, 1.8hours,
2.0hours, and 0.7 hours, respectively. Model 1 with
N =500 across 25 studies took the longest to run (25-
26 hours). The convergence rates for Models 1 to 4

across all simulation replications were 99.8%, 100%,
100%, and 98.2%, respectively.

Sensitivity analysis

Since the simulation results presented focused on a
single treatment effect on the probability of zero
drinking (OR=1.15; logistic sub-model) and the
quantity of drinking when non-zero (RR=0.99; zero-
truncated count sub-model) derived from an analysis
of Project INTEGRATE (see Table 1 for all simulation
parameters), we conducted an additional sensitivity
analysis under larger treatment effect sizes of
OR=2.01 and RR=0.50 (i.e., log OR=0.70 and log
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RR = —0.70) with a subset of the data conditions. This
sensitivity analysis focused on an IPD sample size of
10 studies, 200 participants per study, and two obser-
vations per participant at each of the zero outcome
rate conditions (5%, 10%, and 25%).

Figure 3 summarizes the raw bias and coverage
under the original treatment effects (Figures 3a and
3b, top) for the logistic and zero-truncated count sub-
models (OR=1.15 and RR=0.99, respectively) and
larger treatment effects (Figures 3a and 3b, bottom;
OR=2.01 and RR=0.50, respectively). The bias
(Figure 3a) and coverage (Figure 3b) of the zero-trun-
cated count estimates were acceptable and comparable
across all models under the larger treatment effects.
However, the logistic estimates (hollow symbols in the
bottom half of Figure 3a) of Models 2-4 were under-
estimated under the larger treatment effect condition,
which was more pronounced in Models 3 and 4. The
coverage of the treatment effect estimates produced by
the one-step methods was similar when the effect sizes
were increased. The coverage of Model 2 tended to be
lower, and that of Model 3 tended to be higher than
95%. However, the logistic estimates of treatment
effect in Model 4 (hollow symbols in the bottom row
of Figure 3b) had lower coverage under the larger
effect size (Range = [65%, 75%]), with a larger pro-
portion of 95% ClIs not including the true value (i.e.,
OR = 2.01).

Discussion

Meta-analysis is an essential tool for evaluating the
effectiveness of intervention approaches across mul-
tiple studies with greater accuracy and precision than
single studies. IPD meta-analysis offers potential
advantages over traditional meta-analysis in the ability
to produce estimates of treatment effect that more
properly account for count outcomes with large num-
bers of zeroes, which are commonplace in social
behavioral and health-related research. Zero-altered
outcome variables can arise when examining the fre-
quency of a behavior, such as alcohol consumption
(e.g., number of drinks consumed), suicide-related
behaviors (e.g., number of suicide attempts), and sex-
ual activity (e.g., number of condom-protected sex
acts), among others. Count outcomes observed in
social behavioral and health-related research fre-
quently contain a large stack of zeroes, beyond the
frequency that would be accounted for by traditional
count modeling approaches such as Poisson or NB
regression.

The key challenge of IPD meta-analysis is develop-
ing an analytic strategy that accurately reflects the
characteristics of each study’s design and outcome
measures while maintaining a consistent analytic
approach across studies that may differ with respect
to participant characteristics, number of treatments
tested, timing of assessments, and outcome measures.
If the original studies reported outcomes from an ana-
lysis that appropriately reflected outcome distribu-
tions, these outcomes could easily be combined in a
traditional meta-analysis. Many of the analytic deci-
sions detailed in this study, such as how to accommo-
date zero-altered count data in a longitudinal analysis,
are also relevant to investigators in the context of sin-
gle-study analysis. Having explained the rationale for
original study investigators, we note that many
advanced more appropriate models have only recently
emerged. Therefore, there is a need to validly combine
data from original trials that used methods that are
not ideal from the current methodological perspective.
IPD meta-analysis offers flexibility, yet it can be con-
fusing to navigate through modeling options.

The present study compared four different formula-
tions of an IPD meta-analysis utilizing multilevel hur-
dle NB modeling to synthesize treatment effects under
various data conditions commonly encountered in
social behavioral research. The two-step approach
generally produced unbiased treatment effect estimates
with acceptable coverage when the true effect size was
small to modest (OR or RR < 1.15). However, the
two-step approach tended to underestimate the treat-
ment effect on the probability of no drinking (i.e., the
logistic sub-model) when the true treatment effect was
not small (OR=2.01).

As expected, Model 1, the one-step approach used
as the data generating model, performed the best
across data situations. However, the key drawbacks of
Model 1 are that it can only accommodate a balanced
design where all studies had the same treatment con-
ditions and a substantially greater estimation time.

To permit an IPD meta-analysis where studies eval-
uated different numbers or types of treatments, we
evaluated two alternative one-step approaches, Models
2 and 3, which were capable of accommodating unbal-
anced designs across studies. We found that Model 3
produced more accurate estimates of treatment effect
and corresponding intervals than Model 2, especially
for the count sub-models. Specifically, Model 3 dir-
ectly represented treatment assignment as a predictor
in the model, which resulted in more accurately esti-
mated credible intervals for the treatment effects (i.e.,
improved coverage of the true effect).



A vpattern in the findings across various hurdle
model-based meta-analysis approaches was that the
logistic estimates tended to be more biased than the
corresponding truncated count model estimates. This
performance discrepancy may exist because the logis-
tic portion of the hurdle model contains less informa-
tion due to the dichotomous nature of the outcome.
The degree of bias in the logistic estimates was com-
pounded when the between- and within-study sample
sizes were small to modest (i.e., five studies and/or
200 or fewer participants per study). For the truncated
count model part, all four models yielded similar
results.

Models 2-4 simplify the estimation of the treatment
effects, compared with Model 1, the true model. For
example, Model 2 represents the treatment effect with
two fewer parameters by dropping the fixed slope coef-
ficient of treatment and simplifying the clustered
design by modeling study-by-treatment arm combina-
tions as a single random intercept term. Model 3 rein-
troduces the fixed effect of treatment in Model 1, but
retains Model 2’s simplified manner of accounting for
clustering. In Model 4, the studies are analyzed separ-
ately and sequentially, the results of which are carried
forward into a bivariate meta-analysis. That two-step
procedure also leads to information loss, as several
parameters are not carried over to the second step of
Model 4, including coefficients for the covariate effects
and participant-level variance parameters. Model 4 had
a sizable bias and a low coverage for the logistic sub-
model in the large effect size condition, especially when
zero rate was small. Previous simulation research has
shown poorer performance of logistic sub-models in
the context of zero-inflated Poisson models (Zhou
et al., 2023) and more generally in longitudinal analysis
(Kim et al., 2020), although this observation warrants
further investigation.

Limitations and future directions

It is important to consider the limitations of the pre-
sent study. First, this simulation focused on a specific
approach for modeling count data with many zeroes:
hurdle NB regression. However, there are other
approaches to zero-altered outcome data, including
traditional zero-inflated models, which allow for
zeroes in the count portion of the model (e.g., distin-
guishing between alcohol abstainers and drinkers who
happened not to drink on a particular occasion) and
newer marginalized zero-inflated approaches that pro-
duce a single set of treatment estimates, such as the
marginalized zero-inflated Poisson regression model
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(Martin & Hall, 2017; Mun et al, 2022). Further
investigation via real data analyses and simulation will
be needed to assess the bias and coverage of other
approaches to modeling zero-altered count outcomes
in an IPD meta-analysis. Second, the present simula-
tion assumed complete data at the participant and
study levels across all approaches, so it does not pro-
vide extent that the four
approaches examined may be impacted by missing
assessment data.

Finally, an important methodological issue in IPD
meta-analysis research is how to incorporate sum-
mary-based results from completed analyses that did
not properly account for zero-inflation, when the ori-
ginal data are not available. The recently developed
Zero-inflation Bias Correction method (ZIBC method;
Zhou et al., 2021) can mathematically correct biased
treatment effect estimates that were improperly ana-
lyzed with the Poisson model as if they were correctly
analyzed using the zero-inflated Poisson model in the
original study. The ZIBC-adjusted treatment effect
estimates can then be combined with IPD-derived
treatment effects from other studies in the second step
of a two-step IPD meta-analysis. The ZIBC method
only requires summary information from the original
study; however, it is limited to situations where the
error was the choice of a Poisson model that ignored
excessive zeroes. More methodological work and the
increasing availability of IPD would help address
related methodological challenges when combining
data from existing studies.

information on the

Conclusions

This simulation study is the first to evaluate the
and precision of IPD meta-analysis
approaches for count outcomes with excessive zeroes

accuracy

and over-dispersion, including one-step and two-step
approaches. In general, for the zero-truncated count
sub-model, all models yielded similar results under all
data conditions. However, for the logistic sub-model,
performance varied. The true, one-step model pro-
duced the best performance while other models
underestimated treatment effects on the logistic out-
come. It may be unreasonable to draw a sweeping
conclusion about one- vs. two-step IPD meta-analysis
for count outcomes with many zeroes. The perform-
ance of both one- and two-step approaches depended
on the formulation of the treatment effects, suggesting
a need to carefully consider model assumptions and
specifications when using IPD.
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